
1

Rolling Star

New Mexico
Supercomputing Challenge

Final Report
April 2, 2008

Team 008

Albuquerque Academy

Team Members:
Brandon Smith
Wesley Smalls

Sponsoring Teacher:
Jim Mims

Project Mentor:
Kiran Manne

2

Table of Contents

Cover Page 1
Table of Contents 2
Executive Summary 3
Problem Statement 4
Description of Major Calculation Methods 5
Description of Major Routines 9
Results 12
Conclusions 13
Project Achievements 14
Recommendations 15
Acknowledgements 16
References and Citations 17
Appendices 18
 Appendix A: Program Screenshots 18
 Appendix B: Program Code 30

3

Executive Summary

This Project attempts to model a star through many stages of its life,

from the Bok Globule (or nebula) stage, all the way through to the star’s nova

(super or otherwise) event and its aftermath

Because the purpose of the project was to have a person be able to study

a star from any angle and move freely around and within it, we chose to write

the final program’s code in C++ with the OpenGL graphics library. This allowed

us to easily produce stunning 3-D representations of the star, its surroundings,

and its internal workings.

The final program is based around the principle of taking large packets of

mass and having them mimic the activity of an atom or molecule. We chose this

method so that the simulation could be carried out without trying to calculate

everything for every atom within a star.

The “macros” that the simulation is based around have several attributes

that dictate their behavior. Using a traditional “Sweep” method in which every

macro is examined individually, the Program applies all forces and effects to

each macro through every time step, thereby creating an animation of the star.

The results of the testing show promising results. In almost every

simulation, a star successfully forms and many of its more common phenomena

can be easily seen. However, there is always room for improvement and any

simulation can be made to be more exact. Ours is no exception.

4

Problem Statement

Stars have always held a large scientific interest for scientists in many

different fields. Some of the reasons for this are: they emit multiple types of

electromagnetic radiation, project charged particles from their surface creating

effects such as the solar wind, and they produce some of the most powerful

gravitational and electromagnetic effects in the universe. Because of this,

scientists have yearned for ways to predict the many effects and phenomena

caused by stars for reasons such as: weather prediction, safe space travel and

study, to learn about how solar systems and galaxies are formed, and the

simple advancement of astronomy and other fields.

5

Description of Major Calculation Methods

 In our original prototype program, we strove to perfect the basic

principles that would dictate how the macros would eventually interact. During

the process of building the prototype program and testing it, we decided that

there would need to be five main methods for dealing with all of the

calculations pertaining to each individual macro. These methods are: dealing

with gravity, dealing with electromagnetic forces, dealing with collisions and

momentum, dealing with and transferring heat and energy, and finally dealing

with fusion and its forces.

 The method that we used for dealing with gravity is fairly simple and

straight-forward. We use a loop to find the distance between two macros; use

the gravitational force constant, the masses of the two macros and the distance

between them to calculate a vector force on each macro, and apply that force to

the macros in the form of acceleration. The loop then repeats this for every pair

of macros in the system.

 The method that we use for dealing with electromagnetic forces is very

similar to the method used for dealing with gravity. It uses a loop to find the

distance between two macros, and then uses this distance to calculate forces

acting on each macro. However, because the electromagnetic force is so much

stronger than gravity, and because the program only utilizes its effects as a

6

countermeasure against macros being able to appear inside one another in a

time-step jump, the electromagnetic force is only recognized when two macros

are reasonably close to one another. It is used as a repelling force only.

 Collisions between macros are a very important aspect to the program. In

real life, when a chunk of matter comes in contact with another chunk of matter,

one would expect them to bounce off of each other (assuming they are moving

and no external forces are being applied). The method that we developed for

dealing with collisions between macros is a simple routine that conserves the

energy of the two-macro system. In essence, it takes the sum of the vector

quantities of the momentum from each macro, and divides it between them

according to their masses.

 When two macros collide, the law of conservation of momentum dictates

that the total momentum of the system be conserved. However, the law of

conservation of energy dictates that all of the system’s energy must also be

conserved. In order to handle this, the program converts all of the lost kinetic

energy from a collision into stored or internal energy for the macros. This

energy is realized through heat. The program then finds the sum of the two

macros’ energies, and splits it between the two on an energy-per-unit-of-mass

basis. Until fusion begins within the star, collisions between macros are the

only sources of energy.

In order to deal with fusion and its forces, the program must do several

things, including keeping track of every macro’s atomic number and state, their

energy-per-unit-of-mass, and their proximity to other macros. Using all of

7

these factors, the program calculates whether or not a macro is capable of

fusion. If it is capable, then when it comes in contact with another macro, the

program calculates whether or not the new macro system is jointly capable of

fusion. If it is, then the proper fusion reaction “takes place,” and each of the

macros goes their own separate ways with a new density, speed, and energy

level.

Originally, we used a “Bleed off” method to deal with how the energy of

fusion spread to the macros around a “fusing” macro. This method simply

found all of the macros within a certain radius of the “fusing” macro and, based

on their distances and the number of macros present, divided up the “fusing”

macro’s extra energy in small increments every time step. This had the effect of

the macro “shining,” and passing on its energy in the form of light. However,

this method had several drawbacks: 1) it did not take into account how the

macro would become excited and begin to move in a different way, 2) It did not

take into account the effects of actual light and how it interacts with objects, 3)

it assumed that all of the energy went to the macros around it and did not take

into account the energy that simply leaked off into space.

In order to correct many of the “Bleed off” method’s shortcomings, we

devised a much simpler method to describe a macro’s behavior while “fusing.”

The Wiggle method is simple: As the macro “fuses,” it “wiggles,” i.e. its velocity

changes by the amount of energy that it releases every time step due to fusion.

This method takes into account how the individual macro is affected by the

forces of its own fusion. It also passes on this fusion energy by means of a

8

method that already exists within the program. Finally, it is much less resource

intensive than the “Bleed off” method.

9

Description of Major Routines

 All of the routines in the program are broken down into simple steps.

There is at least one routine representing each of the methods in the program.

The first major routine that the program uses is the routine that

initializes all of the graphics libraries and all of the other functions required by

OpenGL in order to work properly. This routine, Init(), also sets up many of the

needed machine states for OpenGL and, most importantly, creates all of the

macros that will be active during the program’s running time.

The routine that it calls to create the macros is CreateNewMacro(). This

routine gives each macro a random position in 3-Dimensional space that is

within half of a light year from the origin. It gives each macro a radius based on

the total system mass, the number of macros, and the density of the “Hydrogen

gas” that each of them is made up of. Also, it gives them a color of 100% red,

and an initial velocity of 0. All of these values are stored in arrays.

During each of the time steps, the Display() routine is called. In this

routine, the camera is positioned wherever the user specifies, and all of the

macros are drawn in their respective position.

 The routine to draw the macros is called DrawMacros(). This routine

draws the macros in their correct positions in either a fully solid 3-D mode, a

Wire Frame 3-D mode, or a point mode. The user can toggle between these

modes by pressing the “m” key.

10

Because of how OpenGL operates, we decided to put all of the programs

major calculations in the Idle() function. The Idle() function is called whenever

the program is not drawing the scene. In this function, the camera position and

orientation can be changed if the user has pressed on of the movement keys (w,

e,a, s, d, f, j, k, l, ;, I, and o). After the camera is moved and or rotated, if the

simulation has not been paused (space bar), it calls the major routines of the

program: applyMacroForces(), moveMacros(), and checkMacroPositions().

The applyMacroForces() routine was originally going to be a a crossroads

where all of the functions dealing with macro forces would be called, however,

after some development of the code, the only function that it calls is

applyGravity().

The moveMacros() function does exactly that, it moves the macros

according to their current positions and speeds and generates new positions for

them to occupy.

The checkMacroPositions() function is really one of the most important

routines that the program calls. It checks the postions of all of the macros in

relation with their radii, and if any of their radii are overlapping, then the

conserveMomentum() routine is called.

The conserveMomentum() routine, again, does exactly what it says it does,

it conserves the momentum n macro-to-macro systems. It compares the

positions of macros that are overlapping, finds the sum of the two-macro-

system, and divides it between them on a per-mass basis. From this routine,

11

the routines: fuseTogether(), transferHeat(), transferEnergy(), and

moveSpecificMacros().

The transferHeat() routine transfers heat between macros. It finds the

sum of the system’s heat, and then divides it between them on a heat-per-

mass basis.

The transferEnergy() routine does the same thing as the transferHeat()

routine, except that it deals with the extraEnergy variable of the macros.

The moveSpecificMacros() routine simply moves each of the two

overlapping macros far enough apart in opposite directions that they are no

longer touching.

The fuseTogether() routine calculates all of the effects of fusion. It covers

the compression of the macros’ radii, and their increased energy output, which

is represented by the macros increasing their speed randomly.

12

Results

 In almost every one of the trial runs of the program, at all stages of

development, the results that were generated by the program indicated that all

of the benchmarked stages and routines were met and were functioning

properly.

 In the later stages of development, when we were able to add the effects

of fusion to the macros and measure their increased energy output, we saw the

effects of a stable, roughly circular sun. The center was represented by white-

hot macros that had a smaller radius and a higher density. They were moving

faster with much higher energy than were the cooler macros at the surface of

the sun. We were able to distinguish evidence of “sun spots” and rough “solar

flares” on the surface of the star that eventually formed.

13

Conclusions

 In the prototypes of the program, we achieved a stable, navigable system

for our simulation to run in. We then added macros and gravity, the basic force

at work in the program. After gravity we added collision detection and the

conservation of momentum. This led to the “generation of energy” from

collisions, which led to fusion being possible between macros.

 From the results that we obtained from running the program, we can

safely assume that the simulation runs correctly at approximately the right time

scale for whatever size star the program is simulating. It can be deemed a

success.

14

Project Achievements

 We decided upon a scientific topic for which we have developed a

functional computational model. This model gives a visual representation of the

events that happen during a star’s life. The model takes the scientific principles

and laws that we know govern the events of a star’s life and give those laws a

manifestation that further enables us to understand the effect the laws truly

have.

15

Recommendations

 Increase numbers and run on a computer that can efficiently handle the

massive numbers needed for an accurate simulation. This will greatly improve

the quality of the simulation and give a much more thorough representation of

the laws involved in running the star’s life.

16

Acknowledgements

 We would like to first thank Mr. Jim Mims, our computer science teacher,

for helping teach us everything needed to complete this project and helping us

remember deadlines.

 We would then like to thank Mr. Kiran Manne, our project mentor and

Physics teacher, without whom we would never have been able to attempt this

project.

 Finally, we would like to thank all of our friends for putting up with us as

we slowly (and likely very annoyingly) made our way through this project.

17

References

Written

ILLUSTRATED ENCYCLOPEDIA OF ASTRONOMY AND SPACE

Author: Thomas Y. Crowell, Published in: 1979 (first edition), Editor: Ian Ridpath

Internet

http://en.wikipedia.org/wiki/Nuclear_fusion

http://filer.case.edu/sjr16/advanced/stars_birth.html

http://hyperphysics.phy-astr.gsu.edu/hbase/astro/snovcn.html

http://hyperphysics.phy-astr.gsu.edu/hbase/astro/nebula.html

http://en.wikipedia.org/wiki/Nuclear_fusion
http://filer.case.edu/sjr16/advanced/stars_birth.html
http://hyperphysics.phy-astr.gsu.edu/hbase/astro/snovcn.html
http://hyperphysics.phy-astr.gsu.edu/hbase/astro/nebula.html

Appendix A: Project Screenshots

18

19

20

21

22

23

24

25

26

27

28

29

30

Appendix B: Project Code

#include <GL/glut.h>

#include <stdlib.h>

#include <ctime>

#include <string.h>

#include <iostream.h>

#include <math.h>

int mainScreenHeight = 700;

int mainScreenWidth = 700;

bool SimulationPaused = false;

int beginning_macro_number = 100000;

double time_step = 10000000; // in years

long beginning_cloud_radius = 1000;//4730.2642; // * 1000000000000; // meters = lightyear / 2 (cloud is lightyear

across)

31

double system_mass = 1.99 * 100000000000000 * 1000; //sun's mass * bok globule mass

int corona_radius = 9460.5284 * 1000000000000;

double camera_position[] = {0,0,3000000000000000};

double camera_rotation[] = {0,0,0};

int camera_rotating[] = {0,0,0,0,0,0};

int camera_moving[] = {0,0,0,0,0,0};

double camera_movement_speed = 50000000000000;

double camera_rotation_speed = .9;

int drawMode = 3;

double macro_xposition[100000];

double macro_yposition[100000];

double macro_zposition[100000];

double macro_xspeed[100000];

32

double macro_yspeed[100000];

double macro_zspeed[100000];

double macro_xaccel[100000];

double macro_yaccel[100000];

double macro_zaccel[100000];

double macro_mass[100000]; // in kilograms

double macro_radius[100000]; // in meters

double macro_wiggle_radius[100000];

//double macro_rcolor[10000];

double macro_gcolor[100000]; //temerature guage

double macro_bcolor[100000]; //extra energy guage

bool macro_fusing[100000]; //releasing fusion energy

int macro_nuclear_state[100000]; //Hydrogen, Helium, ...

double macro_extra_energy[100000];

double macro_centerofmass[3];

double macro_totalmass = 0;

double macro_massmultiplier = 0;

float macro_mat_specular[] = {.2,.2,0,1};

float macro_mat_shininess[] = {10};

float macro_mat_emission[] = {.2,.2,0,.05};

float macro_mat_Diffuse[] = {.2,.2,0,.1};

float light_position[] = {0,0,-50000000,0};

float white_light[] = {.5,.5,.5};

33

float ambient_light[] = {.2,.2,.2,.1};

#ifndef PI

#define PI 3.1415926535897932384626433832795

#endif

#ifndef G

#define G 6.673 * (10 ^ (-11))

#endif

#ifndef E

#define E 9 * (10 ^ (9))

#endif

#ifndef A

#define A 6.022 * (10 ^ (23))

#endif

int randomInt(int range, bool neg)

{

 int theNumber = 0;

 float negNum = 0;

 theNumber = int(range * rand() / (RAND_MAX + 1.0));

 if (neg == true)

34

 {

 negNum = rand () % (2) + 1;

 if (negNum <= 1)

 {

 theNumber = -1 * theNumber;

 }

 }

 return theNumber;

}

void createNewMacro(int number)

{

 do

 {

 macro_xposition[number] = randomInt(beginning_cloud_radius, true);

 macro_yposition[number] = randomInt(beginning_cloud_radius, true);

 macro_zposition[number] = randomInt(beginning_cloud_radius, true);

 }

 while (double(sqrt((macro_xposition[number] * macro_xposition[number]) + (macro_yposition[number] *

macro_yposition[number]) + (macro_zposition[number] * macro_zposition[number]))) > beginning_cloud_radius);

 macro_xposition[number] = macro_xposition[number] * 1000000000000;

 macro_yposition[number] = macro_yposition[number] * 1000000000000;

 macro_zposition[number] = macro_zposition[number] * 1000000000000;

 // V = (PI * (4 / 3) * (R * R * R))

 // density = 10000 particles per cubic centimeter

 // density = 10000000000000 particles per cubic meter (10000 * 100 * 100 * 100)

 // avogadro's number = A =

35

 // grams = ((particle #) * atomic mass units) / A = ((particle #) * amu) / A

 // kilograms = ((particle #) * amu * 1000) / A

 // v = m / d

 // 4PiRRR = 30000000000000m

 // RRR = 30000000000000m / 4Pi

 // R = (30000000000000m / 4Pi) ^ (1 / 3)

 // R = pow((30000000000000m / 4Pi), (1 / 3));

 macro_xspeed[number] = 0;

 macro_yspeed[number] = 0;

 macro_zspeed[number] = 0;

 macro_xaccel[number] = 0;

 macro_yaccel[number] = 0;

 macro_zaccel[number] = 0;

 macro_mass[number] = double(system_mass / beginning_macro_number);

 macro_radius[number] = double(pow(((30000000000000 * macro_mass[number]) / (4 * PI)), (1.0 / 3.0)) *

10000);

 //macro_rcolor[number] = 0;

 macro_gcolor[number] = 0;

 if (randomInt(2,false) == 1)

 macro_bcolor[number] = false;

 else

36

 macro_bcolor[number] =false; //false

 macro_fusing[number] = false;

 macro_nuclear_state[number] = 1;

 macro_extra_energy[number] = 0;

 //macro_bcolor[number] = randomInt(255,false);

}

void moveMacros(void)

{

 int e;

 for (e = 0; e <= beginning_macro_number; e++)

 {

 macro_xspeed[e] = double(macro_xspeed[e] + macro_xaccel[e]);

 macro_yspeed[e] = double(macro_yspeed[e] + macro_yaccel[e]);

 macro_zspeed[e] = double(macro_zspeed[e] + macro_zaccel[e]);

 macro_xposition[e] = double(macro_xposition[e] + (macro_xspeed[e] * 31559328 * time_step)); //

number of seconds in a year

 macro_yposition[e] = double(macro_yposition[e] + (macro_yspeed[e] * 31559328 * time_step));

 macro_zposition[e] = double(macro_zposition[e] + (macro_zspeed[e] * 31559328 * time_step));

 macro_xaccel[e] = 0;

 macro_yaccel[e] = 0;

 macro_zaccel[e] = 0;

 macro_gcolor[e] = double(macro_gcolor[e] - (macro_gcolor[e] / 1000)); // 3x

 if (macro_gcolor[e] < 0)

 macro_gcolor[e] = 0;

 }

}

void moveSpecificMacros(int i, int e)

{

37

 double totalDistance, xDistance, yDistance, zDistance, rDistance, crossDistance;

 rDistance = double(macro_radius[i] + macro_radius[e]);

 xDistance = double(macro_xposition[i] - macro_xposition[e]);

 yDistance = double(macro_yposition[i] - macro_yposition[e]);

 zDistance = double(macro_zposition[i] - macro_zposition[e]);

 totalDistance = double(sqrt((xDistance * xDistance) + (yDistance * yDistance) + (zDistance * zDistance)));

 crossDistance = double(rDistance - totalDistance);

 macro_xposition[i] = double(macro_xposition[i] + (crossDistance * (xDistance / totalDistance)));

 macro_yposition[i] = double(macro_yposition[i] + (crossDistance * (yDistance / totalDistance)));

 macro_zposition[i] = double(macro_zposition[i] + (crossDistance * (zDistance / totalDistance)));

 xDistance = -xDistance;

 yDistance = -yDistance;

 zDistance = -zDistance;

 macro_xposition[e] = double(macro_xposition[e] + (crossDistance * (xDistance / totalDistance)));

 macro_yposition[e] = double(macro_yposition[e] + (crossDistance * (yDistance / totalDistance)));

 macro_zposition[e] = double(macro_zposition[e] + (crossDistance * (zDistance / totalDistance)));

}

void fuseTogether(int i, int e)

{

 double totalEnergy = double(macro_extra_energy[i] + macro_extra_energy[e]);

 double requiredEnergy = 0;

 switch (macro_nuclear_state[i])

 {

38

 case 1:

 requiredEnergy = 3;

 break;

 case 2:

 break;

 case 3:

 break;

 case 4:

 break;

 case 5:

 break;

 case 6:

 break;

 case 7:

 break;

 case 8:

 break;

 case 9:

 break;

 }

 switch (macro_nuclear_state[e])

 {

 case 1:

 requiredEnergy = requiredEnergy + 3;

39

 break;

 case 2:

 break;

 case 3:

 break;

 case 4:

 break;

 case 5:

 break;

 case 6:

 break;

 case 7:

 break;

 case 8:

 break;

 case 9:

 break;

 }

 if (totalEnergy >= requiredEnergy)

 {

 }

}

void transferHeat(int i, int e)

40

{

 double heatPerMass = double((macro_gcolor[i] + macro_gcolor[e]) / (macro_mass[i] + macro_mass[e]));

 double energyPerMass = double((macro_extra_energy[i] + macro_extra_energy[e]) / (macro_mass[i] +

macro_mass[e]));

 macro_gcolor[i] = macro_gcolor[i] + macro_extra_energy[i];

 if (macro_gcolor[i] > 1)

 {

 macro_extra_energy[i] = macro_gcolor[i] - 1;

 macro_gcolor[i] = 1;

 }

 else

 {

 macro_extra_energy[i] = 0;

 }

 macro_gcolor[e] = macro_gcolor[e] + macro_extra_energy[e];

 if (macro_gcolor[e] > 1)

 {

 macro_extra_energy[e] = macro_gcolor[e] - 1;

 macro_gcolor[e] = 1;

 }

 else

 {

 macro_extra_energy[e] = 0;

 }

 macro_gcolor[i] = double(macro_mass[i] * heatPerMass);

 macro_gcolor[e] = double(macro_mass[e] * heatPerMass);

 macro_extra_energy[i] = double(macro_mass[i] * energyPerMass);

 macro_extra_energy[e] = double(macro_mass[e] * energyPerMass);

41

}

void transferEnergy(int i, int e, double macro1LostEnergy, double macro2LostEnergy) //the crash between two macros

generates heat/light and shares it between them.

{

 macro_gcolor[i] = double(macro_gcolor[i] + (macro1LostEnergy / 1000));

 if (macro_gcolor[i] > 1)

 {

 macro_extra_energy[i] = double(macro_extra_energy[i] + macro_gcolor[i] - 1);

 macro_gcolor[i] = 1;

 }

 else

 {

 if (macro_gcolor[i] < 1)

 {

 if (macro_extra_energy[i] >= (1 - macro_gcolor[i]))

 {

 macro_extra_energy[i] = double(macro_extra_energy[i] - (1 - macro_gcolor[i]));

 macro_gcolor[i] = 1;

 }

 else

 {

 macro_gcolor[i] = double(macro_gcolor[i] + macro_extra_energy[i]);

 macro_extra_energy[i] = 0;

 }

 }

 }

 macro_gcolor[e] = double(macro_gcolor[e] + (macro2LostEnergy / 1000));

 if (macro_gcolor[e] > 1)

 {

 macro_extra_energy[e] = double(macro_extra_energy[e] = macro_gcolor[e] - 1);

42

 macro_gcolor[e] = 1;

 }

 else

 {

 if (macro_gcolor[e] < 1)

 {

 if (macro_extra_energy[e] >= (1 - macro_gcolor[e]))

 {

 macro_extra_energy[e] = double(macro_extra_energy[e] - (1 - macro_gcolor[e]));

 macro_gcolor[e] = 1;

 }

 else

 {

 macro_gcolor[e] = double(macro_gcolor[e] + macro_extra_energy[e]);

 macro_extra_energy[e] = 0;

 }

 }

 }

}

void conserveMomentum(int i, int e, double mFactor)

{

 double xMomentum = 0, yMomentum = 0, zMomentum = 0;

 double macro1speed, macro2speed;

 double macro1EnergyI, macro1EnergyF;

 double macro2EnergyI, macro2EnergyF;

 double macro1LostEnergy, macro2LostEnergy;

 int f = 0;

 macro1speed = double(sqrt((macro_xspeed[i] * macro_xspeed[i]) + (macro_yspeed[i] * macro_yspeed[i]) +

(macro_zspeed[i] * macro_zspeed[i])));

43

 macro2speed = double(sqrt((macro_xspeed[e] * macro_xspeed[e]) + (macro_yspeed[e] * macro_yspeed[e]) +

(macro_zspeed[e] * macro_zspeed[e])));

 macro1EnergyI = double((macro_mass[i] * (macro1speed * macro1speed)) / 2);

 macro2EnergyI = double((macro_mass[e] * (macro2speed * macro2speed)) / 2);

 xMomentum = double(((macro_xspeed[i] * macro_mass[i]) + (macro_xspeed[e] * macro_mass[e])) / 2);

 yMomentum = double(((macro_yspeed[i] * macro_mass[i]) + (macro_yspeed[e] * macro_mass[e])) / 2);

 zMomentum = double(((macro_zspeed[i] * macro_mass[i]) + (macro_zspeed[e] * macro_mass[e])) / 2);

 macro_xspeed[i] = double(xMomentum / (-macro_mass[i]));

 macro_yspeed[i] = double(yMomentum / (-macro_mass[i]));

 macro_zspeed[i] = double(zMomentum / (-macro_mass[i]));

 macro_xspeed[e] = double(xMomentum / (-macro_mass[e]));

 macro_yspeed[e] = double(yMomentum / (-macro_mass[e]));

 macro_zspeed[e] = double(zMomentum / (-macro_mass[e]));

 macro1speed = double(sqrt((macro_xspeed[i] * macro_xspeed[i]) + (macro_yspeed[i] * macro_yspeed[i]) +

(macro_zspeed[i] * macro_zspeed[i])));

 macro2speed = double(sqrt((macro_xspeed[e] * macro_xspeed[e]) + (macro_yspeed[e] * macro_yspeed[e]) +

(macro_zspeed[e] * macro_zspeed[e])));

 macro1EnergyF = double((macro_mass[i] * (macro1speed * macro1speed)) / 2);

 macro2EnergyF = double((macro_mass[e] * (macro2speed * macro2speed)) / 2);

44

 macro1LostEnergy = double((macro1EnergyI - macro1EnergyF));

 macro2LostEnergy = double((macro2EnergyI - macro2EnergyF));

 if (macro1LostEnergy < 0)

 macro1LostEnergy = -macro1LostEnergy;

 if (macro2LostEnergy < 0)

 macro2LostEnergy = -macro2LostEnergy;

 if (macro_extra_energy[i] + macro_extra_energy[e] >= 6)//macros have enough energy to fuse

 {

 fuseTogether(i, e);

 }

 else

 {

 transferHeat(i, e);

 transferEnergy(i, e, macro1LostEnergy, macro2LostEnergy);

 }

 moveSpecificMacros(i, e);

 //moveMacros();

}

void repelEachOther(int i, int e, double wrDistance, double rDistance, double xDistance, double yDistance, double

zDistance, double totalDistance)

{

 double wRatio = macro_wiggle_radius[i] / macro_wiggle_radius[e];

 double macro1Force = 0, macro2Force = 0, macro1Accel = 0, macro2Accel = 0;

 macro1Force = double((E * (macro_mass[i] * macro_mass[e])) / double((macro_wiggle_radius[i] - rDistance +

wrDistance - totalDistance) * (macro_wiggle_radius[i] - rDistance + wrDistance - totalDistance)));

45

 macro2Force = double((E * (macro_mass[i] * macro_mass[e])) / double((macro_wiggle_radius[e] - rDistance +

wrDistance - totalDistance) * (macro_wiggle_radius[i] - rDistance + wrDistance - totalDistance)));

 macro1Accel = double((macro1Force / macro_mass[i]) + (macro2Force / macro_mass[i]));

 macro2Accel = double((macro1Force / macro_mass[e]) + (macro2Force / macro_mass[e]));

 if (macro_xspeed[i] >= 0)

 macro_xspeed[i] = double(macro_xspeed[i] - (macro1Accel * (xDistance / totalDistance)));

 else

 macro_xspeed[i] = double(macro_xspeed[i] + (macro1Accel * (xDistance / totalDistance)));

 if (macro_yspeed[i] >= 0)

 macro_yspeed[i] = double(macro_yspeed[i] - (macro1Accel * (yDistance / totalDistance)));

 else

 macro_yspeed[i] = double(macro_yspeed[i] + (macro1Accel * (yDistance / totalDistance)));

 if (macro_zspeed[i] >= 0)

 macro_zspeed[i] = double(macro_zspeed[i] - (macro1Accel * (zDistance / totalDistance)));

 else

 macro_zspeed[i] = double(macro_zspeed[i] + (macro1Accel * (zDistance / totalDistance)));

 if (macro_xspeed[e] >= 0)

 macro_xspeed[e] = double(macro_xspeed[e] - (macro2Accel * (xDistance / totalDistance)));

 else

 macro_xspeed[e] = double(macro_xspeed[e] + (macro2Accel * (xDistance / totalDistance)));

 if (macro_yspeed[e] >= 0)

 macro_yspeed[e] = double(macro_yspeed[e] - (macro2Accel * (yDistance / totalDistance)));

 else

 macro_yspeed[e] = double(macro_yspeed[e] + (macro2Accel * (yDistance / totalDistance)));

 if (macro_zspeed[e] >= 0)

46

 macro_zspeed[e] = double(macro_zspeed[e] - (macro2Accel * (zDistance / totalDistance)));

 else

 macro_zspeed[e] = double(macro_zspeed[e] + (macro2Accel * (zDistance / totalDistance)));

 //double((rDistance + wrDistance - totalDistance) / wrDistance);

}

void checkMacroPositions(void)

{

 int i, e;

 int COMDistance = 0;//center of mass, checks to see if macro is within corona radius

 double totalDistance, rDistance, wrDistance, xDistance, yDistance, zDistance;

 for (i = 0; i <= beginning_macro_number; i++)

 {

 e = i;

 for (e = 0; e <= beginning_macro_number; e++)

 {

 if (e != i)

 {

 wrDistance = double(macro_wiggle_radius[i] + macro_wiggle_radius[e]);

 rDistance = double(macro_radius[i] + macro_radius[e]);

 xDistance = double(macro_xposition[i] - macro_xposition[e]);

 yDistance = double(macro_yposition[i] - macro_yposition[e]);

 zDistance = double(macro_zposition[i] - macro_zposition[e]);

 totalDistance = double(sqrt((xDistance * xDistance) + (yDistance * yDistance) +

(zDistance * zDistance)));

47

 if (totalDistance <= wrDistance + rDistance)

 {

 if (totalDistance <= rDistance)

 conserveMomentum(i, e, 1);

 else

 repelEachOther(i, e, wrDistance, rDistance, xDistance, yDistance,

zDistance, totalDistance);

 }

 }

 }

 COMDistance = double(sqrt(((macro_centerofmass[0] - macro_xposition[i]) * (macro_centerofmass[0]

- macro_xposition[i])) + ((macro_centerofmass[0] - macro_yposition[i]) * (macro_centerofmass[0] - macro_yposition[i]))

+ ((macro_centerofmass[0] - macro_zposition[i]) * (macro_centerofmass[0] - macro_zposition[i]))));

 if (COMDistance >= corona_radius)

 {

 macro_xspeed[i] = -macro_xspeed[i];

 macro_yspeed[i] = -macro_yspeed[i];

 macro_zspeed[i] = -macro_zspeed[i];

 macro_xposition[i] = macro_xposition[i] + macro_xspeed[i];

 macro_yposition[i] = macro_yposition[i] + macro_yspeed[i];

 macro_zposition[i] = macro_zposition[i] + macro_zspeed[i];

 macro_xspeed[i] = double(macro_xspeed[i] / 5);

 macro_yspeed[i] = double(macro_yspeed[i] / 5);

 macro_zspeed[i] = double(macro_zspeed[i] / 5);

 }

 macro_bcolor[i] = double(double(macro_nuclear_state[i]) / 26); // iron

 }

}

48

void applyGravity(void)

{

 double totalDistance, xDistance, yDistance, zDistance;

 double totalAccel;

 int i, e;

 for (i = 0; i <= beginning_macro_number; i++)

 {

 e = i;

 for (e = 0; e <= beginning_macro_number; e++)

 {

 xDistance = double(macro_xposition[e] - macro_xposition[i]);

 yDistance = double(macro_yposition[e] - macro_xposition[i]);

 zDistance = double(macro_zposition[e] - macro_xposition[i]);

 totalDistance = double(sqrt((xDistance * xDistance) + (yDistance * yDistance) + (zDistance *

zDistance)));

 totalAccel = double(((G * (macro_mass[i] * macro_mass[e])) / (totalDistance * totalDistance))

/ (macro_mass[i]));

 macro_xaccel[e] = double(macro_xaccel[e] + (totalAccel * (xDistance / totalDistance)));

 macro_yaccel[e] = double(macro_yaccel[e] + (totalAccel * (yDistance / totalDistance)));

 macro_zaccel[e] = double(macro_zaccel[e] + (totalAccel * (zDistance / totalDistance)));

 xDistance = -xDistance;

 yDistance = -yDistance;

 zDistance = -zDistance;

 macro_xaccel[i] = double(macro_xaccel[i] + (totalAccel * (xDistance / totalDistance)));

 macro_yaccel[i] = double(macro_yaccel[i] + (totalAccel * (yDistance / totalDistance)));

 macro_zaccel[i] = double(macro_zaccel[i] + (totalAccel * (zDistance / totalDistance)));

49

 }

// macro_wiggle_radius[i] = double((macro_radius[i] * macro_extra_energy[i]) / (macro_mass[i]));

 }

}

void applyMacroForces(void)

{

 applyGravity();

}

void findCenterOfMass(void)

{

 int i = 0;

 macro_centerofmass[0] = 0;

 macro_centerofmass[1] = 0;

 macro_centerofmass[2] = 0;

 for (i = 0; i <= beginning_macro_number; i++)

 {

 macro_centerofmass[0] = macro_centerofmass[0] + (macro_massmultiplier * macro_xposition[i] *

macro_mass[i]);

 macro_centerofmass[1] = macro_centerofmass[1] + (macro_massmultiplier * macro_yposition[i] *

macro_mass[i]);

 macro_centerofmass[2] = macro_centerofmass[2] + (macro_massmultiplier * macro_zposition[i] *

macro_mass[i]);

 }

}

50

void drawMacros(void)

{

 int i = 0;

 switch (drawMode)

 {

 case (1):

 glMaterialfv(GL_FRONT, GL_EMISSION, macro_mat_emission);

 glEnable(GL_LIGHTING);

 glEnable(GL_LIGHT0);

 glEnable(GL_BLEND);

 glDepthMask(GL_FALSE);

 for (i = 0; i <= beginning_macro_number; i++)

 {

 glPushMatrix();

 float macro_mat_diffuse[] = {1,macro_gcolor[i],macro_extra_energy[i],.05};

 glTranslatef(macro_xposition[i], macro_yposition[i], macro_zposition[i]);

 glMaterialfv(GL_FRONT, GL_DIFFUSE, macro_mat_diffuse);

 glutSolidSphere(macro_radius[i] + macro_wiggle_radius[i],5,5);

 glPopMatrix();

 }

 glDisable(GL_BLEND);

 glDepthMask(GL_TRUE);

 glDisable(GL_LIGHTING);

 glDisable(GL_LIGHT0);

 break;

 case (2):

 for (i = 0; i <= beginning_macro_number; i++)

 {

 glColor3f(1,macro_gcolor[i],macro_extra_energy[i]);

 glPushMatrix();

 glTranslatef(macro_xposition[i], macro_yposition[i], macro_zposition[i]);

 glutWireSphere(macro_radius[i] + macro_wiggle_radius[i],5,5);

 glPopMatrix();

51

 }

 break;

 case (3):

 glBegin(GL_POINTS);

 for (i = 0; i <= beginning_macro_number; i++)

 {

 glColor3f(1,macro_gcolor[i],macro_extra_energy[i]);

 glVertex3f(macro_xposition[i],macro_yposition[i],macro_zposition[i]);

 }

 glEnd();

 break;

 }

}

void drawReferenceGalaxy(void)

{

 glColor3f(.7,0,.7);

 glutWireSphere(4730.2642 * 1000000000000000,25,25);

}

void idle(void)

{

 int i = 0;

 if (camera_moving[0] == 1)

 {

 camera_position[0] = camera_position[0] - camera_movement_speed;

 }

 if (camera_moving[1] == 1)

 {

 camera_position[0] = camera_position[0] + camera_movement_speed;

 }

 if (camera_moving[2] == 1)

 {

52

 camera_position[1] = camera_position[1] - camera_movement_speed;

 }

 if (camera_moving[3] == 1)

 {

 camera_position[1] = camera_position[1] + camera_movement_speed;

 }

 if (camera_moving[4] == 1)

 {

 camera_position[2] = camera_position[2] + camera_movement_speed;

 }

 if (camera_moving[5] == 1)

 {

 camera_position[2] = camera_position[2] - camera_movement_speed;

 }

 if (camera_rotating[0] == 1)

 {

 camera_rotation[0] = camera_rotation[0] + camera_rotation_speed;

 }

 if (camera_rotating[1] == 1)

 {

 camera_rotation[0] = camera_rotation[0] - camera_rotation_speed;

 }

 if (camera_rotating[2] == 1)

 {

 camera_rotation[1] = camera_rotation[1] - camera_rotation_speed;

 }

 if (camera_rotating[3] == 1)

 {

 camera_rotation[1] = camera_rotation[1] + camera_rotation_speed;

 }

 if (camera_rotating[4] == 1)

53

 {

 camera_rotation[2] = camera_rotation[2] - camera_rotation_speed;

 }

 if (camera_rotating[5] == 1)

 {

 camera_rotation[2] = camera_rotation[2] + camera_rotation_speed;

 }

 if (SimulationPaused == false)

 {

 applyMacroForces();

 moveMacros();

 checkMacroPositions();

 findCenterOfMass();

 }

glutPostRedisplay();

}

void display(void)

{

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glMatrixMode(GL_PROJECTION);

 glLoadIdentity();

 gluPerspective(45, 1, 0, 30000);

54

 // start fresh

 glMatrixMode(GL_MODELVIEW);

 glLoadIdentity();

 //drawOrientationDisplay();

 // set up "camera"

 glRotated(-camera_rotation[0],0,1,0);

 glRotated(-camera_rotation[1],1,0,0);

 glRotated(-camera_rotation[2],0,0,-1);

 glTranslatef(-camera_position[0], -camera_position[1], -camera_position[2]);

 //drawReferenceGalaxy();

 drawMacros();

 //drawPhotons();

 //create smooth animation

 glutSwapBuffers();

 //draw scene

 glFlush();

}

void reshape(int w, int h)

55

{

 //Define the window and viewing rules

 glMatrixMode(GL_PROJECTION);

 gluPerspective(45,1,0,3000000);

 glMatrixMode(GL_MODELVIEW);

 glLoadIdentity();

 glutPostRedisplay();

}

void keyboardDown(unsigned char key, int x, int y)

{

 switch (key)

 {

 case '-'://slow down movement speed

 camera_movement_speed = camera_movement_speed / 1.5;

 break;

 case '='://accelerate movement speed

 camera_movement_speed = camera_movement_speed * 1.5;

 break;

 case '['://slow down movement speed

 camera_rotation_speed = camera_rotation_speed / 1.25;

 break;

 case ']'://accelerate movement speed

 camera_rotation_speed = camera_rotation_speed * 1.25;

 break;

 case 'j'://turn heading left

 camera_rotating[0] = 1;

 break;

 case ';'://turn heading right

 camera_rotating[1] = 1;

 break;

 case 'k'://pitch head down

 camera_rotating[2] = 1;

56

 break;

 case 'l'://pitch head up

 camera_rotating[3] = 1;

 break;

 case 'i'://roll left

 camera_rotating[4] = 1;

 break;

 case 'o'://roll right

 camera_rotating[5] = 1;

 break;

 case 'a'://move down neg. x axis

 camera_moving[0] = 1;

 break;

 case 'f'://move up pos. x axis

 camera_moving[1] = 1;

 break;

 case 's'://move down neg. y axis

 camera_moving[2] = 1;

 break;

 case 'd'://move up pos. y axis

 camera_moving[3] = 1;

 break;

 case 'w'://move down neg. z axis

 camera_moving[4] = 1;

 break;

 case 'e'://move up pos. z axis

 camera_moving[5] = 1;

 break;

 case 'm'://move up pos. z axis

 switch (drawMode)

 {

 case 1:

 drawMode = 2;

 break;

57

 case 2:

 drawMode = 3;

 break;

 case 3:

 drawMode = 1;

 break;

 }

 break;

 case ' '://pause/unpause simulation

 if (SimulationPaused == false)

 SimulationPaused = true;

 else

 SimulationPaused = false;

 break;

 case 27:

 exit(0);

 break;

 }

 glutPostRedisplay();

}

void keyboardUp(unsigned char key, int x, int y)

{

 switch (key)

 {

 case 'j'://turn heading left

 camera_rotating[0] = 0;

 break;

 case ';'://turn heading right

 camera_rotating[1] = 0;

 break;

 case 'k'://pitch head down

 camera_rotating[2] = 0;

58

 break;

 case 'l'://pitch head up

 camera_rotating[3] = 0;

 break;

 case 'i'://roll left

 camera_rotating[4] = 0;

 break;

 case 'o'://roll right

 camera_rotating[5] = 0;

 break;

 case 'a'://move down neg. x axis

 camera_moving[0] = 0;

 break;

 case 'f'://move up pos. x axis

 camera_moving[1] = 0;

 break;

 case 's'://move down neg. y axis

 camera_moving[2] = 0;

 break;

 case 'd'://move up pos. y axis

 camera_moving[3] = 0;

 break;

 case 'w'://move down neg. z axis

 camera_moving[4] = 0;

 break;

 case 'e'://move up pos. z axis

 camera_moving[5] = 0;

 break;

 }

 glutPostRedisplay();

}

void mouse(int button, int state, int x, int y)

{

59

 switch (button)

 {

 case GLUT_LEFT_BUTTON:

 if (state == 0)

 {

 }

 else

 {

 }

 break;

 case GLUT_RIGHT_BUTTON:

 if (state == 0)

 {

 }

 else

 {

 }

 break;

 default:

 break;

 }

}

void init(void)

{

 //OpenGL initializing calls

 glEnable (GL_DEPTH_TEST);

 glShadeModel (GL_SMOOTH);

 glClearColor (0.0, 0.0, 0.0, 0.0);

60

 //Fog stuff

 //glEnable(GL_FOG);

 //blending stuff

 glBlendFunc(GL_SRC_COLOR, GL_DST_COLOR);

 //glMaterialfv(GL_FRONT, GL_SPECULAR, macro_mat_specular);

 //glMaterialfv(GL_FRONT, GL_SHININESS, macro_mat_shininess);

 //lighting stuff

 glLightfv(GL_LIGHT0, GL_DIFFUSE, white_light);

 glLightfv(GL_LIGHT0, GL_SPECULAR, white_light);

 glLightModelfv(GL_LIGHT_MODEL_AMBIENT, ambient_light);

 glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);

 //Standard stuff

 glShadeModel (GL_SMOOTH);

 //create macros

 srand((unsigned)time(0));

 for (int number = 0; number <= beginning_macro_number; number++)

 {

 createNewMacro(number);

 macro_totalmass = macro_totalmass + macro_mass[number];

 }

 macro_massmultiplier = 1 / macro_totalmass;

 macro_totalmass = macro_totalmass * 10000;

}

int main(int argc, char** argv)

{

 //Initialization calls

61

 glutInit(&argc, argv);

 glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);

 glutInitWindowSize (mainScreenWidth, mainScreenHeight);

 glutInitWindowPosition (200, 50);

 glutCreateWindow (argv[0]);

 init();

 glutIdleFunc(idle);

 glutReshapeFunc (reshape);

 glutKeyboardFunc (keyboardDown);

 glutKeyboardUpFunc (keyboardUp);

 glutMouseFunc (mouse);

 glutDisplayFunc (display);

 glutMainLoop();

 return 0;

}

