

Turn Up the Heat
Energy Efficiency through Smart Wall Design

New Mexico
Supercomputing Challenge

Final Report
April 2, 2008

Team #61

Los Alamos Middle School

Mentor
 Robert Robey

Teacher
 LeAnn Salazar

 Jessie Bohn

Team Members
 Rachel Robey

i

Table of Contents

Table of Contents ... i
Table of Figures .. ii
Executive Summary .. 1
Introduction ... 2

Problem Statement .. 2
Objective ... 2
Yellow Pine ... 3
Why it Works .. 4
The Wall.. 5

Heat Transfer .. 6
Mathematical Model ... 8

Heat Transfer .. 8
Night and Day ... 10

Computational Model ... 12
First Order Finite Difference .. 12
Boundary conditions ... 14
Assumptions .. 15

Code .. 16
Program ... 16
Language ... 17
Graphics .. 17

Results ... 18
Conclusions ... 20

Smart Wall Model ... 20
Model Capabilities .. 20

Teamwork ... 21
Recommendations ... 22

Model .. 22
Wall Design .. 22

Appendix ... 23
Bibliography ... 23
Acknowledgements ... 23

i

ii

Table of Figures

Figure 1 Energy usage pie chart .. 2
Figure 2 Ponderosa - a yellow pine tree .. 3
Figure 3 Ponderosa pine habitats .. 3
Figure 4 Ponderosa cones ... 3
Figure 5 Bark of a yellow pine tree .. 3
Figure 6 Typical pine habitats ... 3
Figure 7 Capacitor/resistor .. 4
Figure 8 Wall design and materials .. 5
Figure 9 Types of heat transfer ... 6
Figure 10 Temperatures from www.casaescondida.com/weather.htm 11
Figure 11 An example of a sine wave (max 65, min 10) .. 11
Figure 12 (Screenshot) The wall by the densities of the materials 12
Figure 13 The dimension of a "cell" ... 13
Figure 14 State variable and Flux ... 13
Figure 15 Descriptions of the assumptions ... 15
Figure 16 Code Flowchart .. 16
Figure 17 Screenshot... 17
Figure 18 Night/Day graphic .. 17
Figure 19 Five percent resin total energy graph ... 18
Figure 20 five percent energy difference graph .. 19
Figure 21 twenty-five percent resin energy difference graph ... 19
Figure 22 twenty-five percent resin total energy graph .. 19
Figure 23 Work Breakdown .. 21

Executive Summary

 We came across a wall design that

used yellow pine to save energy. The resin

melts/freezes at 71°F and reduces the heat

flow through the wall. It sounded like it

would work, but it didn’t. The state change point is too high; it cannot reach that

temperature easily, if at all. It doesn’t reduce the energy use; however, it may be useful in

cooling or if the inside temperature was high enough to let it reach the state change point.

1) Original wall design doesn’t work
2) We DID design a wall that works
3) Our simulation helped us to

design effective walls

 We DID design a wall that works. We lowered the melting/freezing ten degrees,

and increased the percentage of resin in the wood. The difference in energy (between

regular wood and wood with properties like yellow pine) was only significant if the wood

was 10%-25% resin. The state change point can’t be too high, or it won’t reach that

temperature, if it is too low, it won’t be able to freeze.

“People seek a challenge just as

fire seeks to flame.”
 The wall we designed in our program works, but is it

buildable? An article we found discussed using salt hydrates,

paraffins, and fatty acids for state changing materials in

drywall. These materials could also be used in other parts of

the wall.

~ Chinese proverb.

“The shrewd guess, the fertile
ypothesis, the courageous lea

to a tentative conclusion—these
are the most valuable coin of

the thinker at work. But in most
schools guessing is heavily

somehow with laziness.”

h p

penalized and is associated

~Jerome S. Bruner (b. 1915),

U.S. psychologist

 We wrote a program to help us design and test the

walls and their efficiency. We use the finite difference method

and the computer to calculate the heat transfer quickly and

accurately. We can chart the results and compare a wall with

wood that didn’t have the properties of yellow pine to wood

that did. It is also possible to use the program to test the wall in a variety of conditions or

expand on it to test different designs of walls.

1

Introduction
Problem Statement

 Energy conservation has become

very important, and heating homes is one

of many activities that require large

amounts of energy and fossil fuels.

Conserving heat already in the house,

through means such as insulation, cuts

down on the amounts and cost of heating.

We are researching yellow pine, a natural

and renewable resource, which could be

used as a building material to prevent heat loss. Figure 1 Energy usage pie chart

 The resin in yellow pine has a high melting/freezing point, and like all materials,

stores energy during a state change. In a wall, it could help to minimize the loss of heat.

We will compare the energy that must be added to the inside to maintain a comfortable

70°F temperature. We will run the model for regular wood and that with the properties of

yellow pine.

 We were initially interested in building because of a house renovation, and

happened to come across yellow pine when we were browsing the internet for ideas. We

were curious because types of yellow pine grow in our area (such as ponderosa). As we

read more about it we discovered that it could be helpful in conserving energy, which was

something we were interested in.

Objective

 We wanted to create a model to show the wall, time of day, and the amount of

heat flow to determine the effectiveness of yellow pine in reducing energy use. For the

wall we wanted to have a design that would be accurate and appropriate. The point of the

project was to test yellow pine as compared to other building materials, and so our

program was to use the wall as a division between the indoors and the outdoors and to

show the flow of heat. In our visual we also have a window that shows the temperature of

2

each cell in the wall model. We used a formula to find a temperature wave that would

realistically enhance our program by giving it a night and day as a thermal swing. Night

and day is important to the yellow pine because it shows how the resin

reacts differently according the outside temperature.

Yellow Pine

 Yellow pine includes several different species of trees7. Most of these trees are

found in southeastern America and include fast growing pine species. Approximately half

of all pine species are yellow pines. The most commonly looked for trait of yellow pine is

how much resin the pine tree contains.

 Ponderosa is one of the most common of the yellow pine trees, but is found in

the southwestern interior of North America. They grow around 82 – 98 feet tall and 3 feet

wide. Their needles are their leaves, making them conifers. They are often called

evergreens because they never completely lose their leaves. The needles grow commonly

in groups of three, and are 5-11 inches long, with sharp points at the ends. Cones carry

the seeds, and are around 4 inches in length. Cones consist of "scales" with rigid points

on them. The cones scales are arranged in a Fibonacci shaped spiral. The bark of mature

trees is an orange brown, and has grooves between flaky plates of bark. The bark is tough

and protects the trees from common fires. The bark of younger trees is often black.

Figure 4 Ponderosa cones

Figure 6 Typical pine
habitats

Figure 2 Ponderosa -
a yellow pine tree Figure 3 Ponderosa

pine habitats

 Figure 5 Bark of a
yellow pine tree

3

Why it Works

The resin in the wood is what actually stores the energy in yellow pine. It changes

state (melt/freeze) at 71°Fahrenheit. When the resin reaches this temperature, the

temperature (in the resin) will no longer increase, but the energy will continue to grow.

This is because the energy is being used to break the bonds between the molecules, which

creates a greater potential energy. However, the kinetic energy, to which temperature is

linked, remains steady throughout the state

change, only increasing after the state change is

complete. In a wall, yellow pine would store

much of the heat flowing out, and then emit it

when it froze. For example, if it is hot outside,

the resin melts, and the heat does not pass

through until it has melted. When it becomes cold, it will emit any energy it has stored.

Figure 7 Capacitor/resistor

The materials in a wall act much as the resistors and capacitors in electronics.

Something that does not conduct well will act as a resistor by reducing the amount of heat

that can flow through. A wall with yellow pine is different because the resin acts as a

capacitor by storing energy, while a regular wall (without the occurrence of a state

change) contains only materials that act as resistors. Figure 7 shows a resistor and a

capacitor.

4

The Wall

 In order to assess the efficiency of yellow pine and other materials, we designed a

wall. The current wall has five materials that make up its six parts (segments): stucco,

foam sheathing, plywood, fiberglass insulation, sheetrock, and wooden studs. Stucco is

used commonly for building where we live. It consists of aggregate (sand, gravel, crushed

stone or concrete), a binding material that works as a glue, and water. It is applied to the

surface when it is wet and then hardens. It sticks to the next layer in the wall, which is the

foam sheathing. The innermost layer is drywall, or sheetrock; this is what is seen from

the inside of the house. It is a plaster, which is sometimes mixed with a fiber, and

enclosed by heavy paper.

Between the foam and

sheetrock are wooden studs

with fiberglass insulation.

The studs are the framework

of the wall, and hold up

higher floors of the house.

The rest of the wall is built

off the structure. However,

there is a lot of heat loss

through the studs because it

flows through the wood much

more quickly than the

insulation. The fiberglass

insulation comes in batts (pre-

cut) and blankets (roll). It is

meant to prevent a large flow

of heat, and works best when

it’s not compressed. We

decided on this design

because it is relatively common in New Mexico, and it is very similar to the walls we saw

constructed in the renovation.

Figure 8 Wall design
and materials

S
tu

cc
o

S
he

at
hi

n
g

S
tu

d

(1
½

 x
 5

 ½
)

D
ry

w
al

l
(5

/8
”)

Fi
be

rg
la

ss

In
su

la
ti

on
 (

4
”)

Studs 16”
on center

P
ly

w
oo

d

5

Heat Transfer
 Some of our initial work was studying the different types of heat transfer and

identifying where they would occur in our wall. Heat will always flow from a region of

higher temperature to that of lower temperature. We are using all three of the modes of

heat transfer in our problem: conduction, convection, and radiation.

Conduction ConvectionConduction
Conduction is the flow of heat within

a substance or between substances in

a direct physical link. The molecules

pass heat one to another rather than

moving. Heat transfer through solid,

opaque objects can only occur

through conduction. Conduction is

found throughout the model: the air,

the surfaces of the wall, and the wall.

It is also the only heat transfer in the

wall.

Radiation State Change

 Figure 9 Types of heat transfer

Convection

Convection is the main energy transfer between a solid surface and either a liquid or gas.

It is a combination of conduction and storage of energy and heat as well as the motion of

the molecules. Through conduction, heat will move from a warm surface to an adjacent

fluid or gas. These fluid or gas particles will move to an area of lower temperature

because of an increase in temperature. Energy will be passed on to other fluid particles

and as they, in turn, move they carry energy and a flow of energy and particles is created.

This flow will usually become somewhat circular as some particles lose energy and move

back to the heat source. Though it is not strictly a type of heat transfer, it does transport

energy relative to a difference in temperature. Convection occurs at the surfaces of the

wall. The greater temperature gradient causes there to be more heat flow on the outside

surface, and there is very little on the inside.

6

Radiation
Radiation is the flow of heat from one place to another, without flowing through a

material. The heat can flow through even a vacuum, though our project did not require

this. There are many other characteristics of radiation that did not apply to our project.

Heat travels by waves in radiation, and any object it comes in contact with absorbs its

heat. Radiation is found only where the wall radiates heat into the cold air, without

moving through the particles.

State Change

A state change is the change of matter from one state to another (solid, liquid, gas).

Energy either enters or leaves the material, depending on how the material is changing.

The energy will continue to increase (or decrease), but the temperature will remain steady

once the state change begins until the process has finished. The energy breaks/loosens the

bonds between the molecules, making it less rigid. The kinetic energy does not increase

until afterwards, so the temperature does not change either. The state change will occur in

the wall using yellow pine, the resin will melt when it reaches 71° and freeze when it

reaches the same temperature.

7

Mathematical Model

Heat Transfer

8

“Math nies. ematics: silent harmo
Music: sounding numbers.”

 The types of heat are represented by two equations.

One is the flow of heat by conduction, and the second is

conduction and radiation, which are combined.

~ Mason Cooley (b. 1927)

“I’m not even thinking straight

~ Kurt Neumann (1906–1958),

Neumann. Dr. Lisa Van Horn
(Osa Massen), Rocketship X-M,

any more. Numbers buzz in my
head like wasps.

German screenwriter. Kurt

after hours of calculations
(1950)

The rate of heat transfer by conduction, qk, is as follows.

௞ݍ ൌ െ݇ܣ
∆ܶ
 ݔ∆

- k, the thermal conductivity of the material

- A, the area through which heat is flowing, measured

rp ndicular to the heat flow direction pe e

- ∆T/∆x, the difference in temperature over the distance w

heat flow

ith respect to the direction of

The rate of heat transfer by convection (combined with radiation), qc, in Btu (British

thermal unit) per hour is the product three different values.
௖ݍ ൌ ത݄௖ܣ∆ܶ

- hc, the convective heat transfer coefficient, the average unit of thermal convective

conductance

- A, the heat transfer area, measured perpendicular to the heat flow

- ΔT, difference between the surface temperature, and a temperature of the fluid/gas

The equation of state shows the relationship between energy and temperature. Although it

is not completely linear, it becomes lin int. Since we are only working in the

area after that point, we can treat the re

ear after a po

st as linear.

ܧ ൌ ܿ௩ܶ

- cv stands for the specific heat of the material, which is the amount of heat required to

raise a quantity of weight one degree

- T is the temperature of the material at that point

 When the resin melts, the temperature will not rise. It was necessary to find how

much energy was needed before the temperature again begins to increase, in order to

mimic the change of state mathematically.

 We were able to find the value for the vaporization of several types of resins,

though not specifically that of a yellow pine. We began by converting the value into the

correct units. We are working in Btu/lb rather than cal/mole. We converted by

multiplying by a ratio of the two units that is also equal to one. For example, we

multiplied byଵ଴଴଴ ௖௔௟
௞௖௔௟

 and it canceled the calories and kilocalories. Since it is also amounts

to one, it does not change the answer when you multiply.

௩௔௣ܧ ൌ
13.44 ݈݇ܿܽ
݈݁݋݉ ൌ ൬

13.44 ݈݇ܿܽ
݈݁݋݉ ൰

݈݁݋݉
154݃݉ ൬

ܾ݈/ݑݐܤ 1.8
݈ܿܽ/݃݉ ൰ ൬

1000 ݈ܿܽ
݈݇ܿܽ ൰ ൌ

ݑݐܤ 24192
154 ݈ܾ

 This is the value for vaporization; the resin will be melting, and the energy for

fusion (melting) is about fifteen percent of that of vaporization. Also, about five percent

of wood is resin. Find the fifteen percent of the value above (times 0.15), and then five

per 0cent (times .5).

௙௨௦௜௢௡ܧ ؆ ݊݅ݏ݁ݎ ݏ݅ ݀݋݋ݓ ݂݋ ௩௔௣௢௥௜௭௔௧௜௢௡ ~5%ܧ ݂݋ 15%

௙௨ܧ ൌ ሺ0.15ሻሺ0.05ሻܧ௩௔௣ ൌ
ݑݐܤ1.175
݈ܾ௪௢௢ௗ

The final result is 1.175 Btu per pound of wood. This is the amount of energy it takes to

melt the resin in every pound of wood. The value is approximate, the source didn’t have

specifically yellow pine; however, it will still show the effectiveness of materials

(specifically resin) that conduct a state change in the wall, to preserve heat. We can

change the percentage of resin in the wood by using a different percentage in decimal

form in the place of 0.05.

9

Night and Day

 We decided to create a thermal swing that resembles a night and day to more

accurately test the wall. This will allow us the resin to store energy during the “day” in

order to emit it when it is cold. We composed a sinusoidal wave for a minimum and

maximum temperature.

ሻݐሺݕ ൌ ܣ ൈ ݐሺ߱݊݅ݏ ൅ ሻߠ
A general sine wave is:

• is the amplitude, or the distance from the center A

• is the angular frequency, which is the radians per unit of time and is equal to
ଶగ
்

߱

 is the phase, or the placement of the wave ߠ •

The placement on the y axis, using t a he aver ge (mean)

ݔܽ݉ܶ ൅ ܶ݉݅݊
2

ݔܽ݉ܶ െ ܶ݉݅݊
2

The amplitude is shown as

Angular frequency is two pi over time. Since we measure the day in minutes, and there

are a total of 1440 minutes in a day

ߨ2
1440

ൌ
2/ߨ2
1440/2

ൌ
ߨ
720

Phase is set using the current time and peak the time of a

ݐ ൅ ௢௙௙௦௘௧ݐ

These terms are combined to create a formula which is used to find a temperature at any

time for a a ture mum. given d ily tempera maximum and mini

ܶ ൌ
ݔܽ݉ܶ ൅ ܶ݉݅݊

2

10

൅
ݔܽ݉ܶ െ ܶ݉݅݊

2 ݊݅ݏ ቆ൫ݐ ൅ ௢௙௙௦௘௧൯ݐ
ߨ
720ቇ

- T is the temperature
- Tmax, Tmin are the maximum and minimum temperatures
- t is the time
- t fset is the shift of the peak, in this case to make it midday, midnight of

- ஠
଻ଶ଴

 is the angular frequency and sets how often a peak occurs
Figure 10 Temperatures from
www.casaescondida.com/weather.htm

Month High Low
January 42°F 19°F
February 48°F 23°F
March 55°F 25°F
April 64°F 34°F
May 73°F 43°F
June 84°F 52°F
July 87°F 57°F

August 84°F 55°F
September 80°F 49°F

October 68°F 38°F
November 52°F 25°F
December 45°F 19°F

 Figure 11 An example of a sine wave (max 65, min 10)

0

10

20

30

40

50

60

70

12
:0
0
A
M

1:
30

 P
M

3:
00

 P
M

4:
30

 P
M

6:
00

 P
M

7:
30

 P
M

9:
00

 P
M

10
:3
0
PM

12
:0
0
PM

1:
30

 A
M

3:
00

 A
M

4:
30

 A
M

6:
00

 A
M

7:
30

 A
M

9:
00

 A
M

10
:3
0
A
M

12
:0
0
A
M

1:
00

 P
M

2:
30

 P
M

4:
00

 P
M

5:
30

 P
M

7:
00

 P
M

8:
30

 P
M

10
:0
0
PM

11
:3
0
PM

1:
00

 A
M

2:
30

 A
M

4:
00

 A
M

5:
30

 A
M

7:
00

 A
M

8:
30

 A
M

10
:0
0
A
M

11
:3
0
A
M

Te
m
pe

ra
tu
re

Time of Day

11

Computational Model
First Order Finite Difference

 For the computational model we broke our wall into

cells of equal size. We work with the temperature/energy at

the center of each cell. Since we choose to make each cell one

inch by one inch, some of the actual widths of the materials

had to be approximated. The smaller the cells are, the more

points there are at which you know the conditions. Make note

that the wall is a horizontal cross-section.

Computers are good at swift,
accurate computation and at

storing great masses of
information. The brain, on the
other hand, is not as efficient a

number cruncher and its
memory is often highly fallible; a
basic inexactness is built into its

esign. The brain’s strong poin

at making shrewd guesses and

information presented to it.”
my Campbell (b.

d t
is its flexibility. It is unsurpassed

at grasping the total meaning of

~ Jere 1931)

12

“From then on, when anything
went wrong with a computer, we

said it had bugs in it.”
~ Grace Murray Hopper, on the
removal of a 2-inch-long moth

from an experimental computer
at Harvard in 1945, quoted in

Time 16 Apr 84

We used a first order

c

ing

n

s used to find the value

te

finite difference method to

alculate the energy in the

cells. Our project uses

boundary problems, find

interior conditions from the

conditions at the boundary,

which is commonly solved by finite difference. I

this case, we are using central difference.

 Finite difference i

Figure 12 (Screenshot) The wall by the densities of the materials

in the center of each cell in the next iteration,

after heat transfer has been calculated. We use

information in the current time step to recalcula

the energy. This is shown by:

௜ܷ,௝
௡ାଵ ൌ ௜ܷ,௝

௡ ൅
ݐ∆
ݔ∆ ቀܨ௜ାభమ,௝

௡ െ ௜ିభమ,ೕܨ
௡ ቁ ൅

ݐ∆
ݕ∆ ቀܨ௜,௝ାభమ

௡ െ ௜,௝ିభమܨ
௡ ቁ

In ௜ܷ,௝

௡ାଵ, U is the state variable with time in the superscript and spatial in the subscript.

This term describes the conditions in the next time step (݊ ൅ 1) at a place (i,j). ௜ܷ,௝
௡ stands

for the current conditions at a point in space. ∆௧
∆௫
 is ܨ

ݖ∆

ݕ∆

ܨ ൬
ݑݐܤ

ݎ݄ െ ଶݐ݂
൰ ሻݎሺ݄ݐ∆

ଶሻݐሺ݂ݖ∆ݕ∆
ଷሻݐሺ݂ݖ∆ݕ∆ݔ∆

ൌ ܨ ൬
ݑݐܤ

ݎ݄ െ ଶݐ݂
൰ ሻݎሺ݄ݐ∆

ଶݐ݂ ݖ∆ݕ∆

ଷݐ݂ ݖ∆ݕ∆ݔ∆

simplified. The term ∆௧
∆௫
ቀܨ௜ାభమ,௝

௡ െ ௜ିభమ,ೕܨ
௡ ቁ ൅ ∆௧

∆௬
ቀܨ௜,௝ାభమ

௡ െ ௜,௝ିభమܨ
௡ ቁ is the flux at

each border in the cell, a half (step) taking you from the center of the cell

to the boundary. Energy will either be added

or subtracted from the state

variable value.

 ݔ∆

 We are using first order finite difference, which

means we find the flux once every time step. This is a linear

interpolation between the two points and a flux in the

center. Second order, on the other hand, finds the flux

halfway through the time step and then again at the end.

When we calculate the flux, and we find the flux at each boundary, rather than go cell by

cell and find the difference at each of its boundaries. If we were to go cell by cell, we

would compute the flux at the same boundary twice.

 Our problem requires only one conservation law, that of energy. There are no

differences in density, mass, or momentum, only energy. The conservation of energy is

shown as ܧ௧ ൅ ௫,௬ݍ ൌ 0 or, in matrix form,ሾܧሿ௧ ൅ ሾݍሿ௫,௬ ൌ 0. This is a combination of a

state variable and a flux term, which are the differences at the boundaries. These are

commonly referred to as “U” and “F” in numerical methods. Et is a shortened form of డா
డ௧

,

U Fi+½ Fi-½

Fj-½

F Figure 13 The dimension of a "cell" j+½

Figure 14 State variable and Flux

13

which stands for energy relative to time. qx,y is the flux term. This expands to ݍ௞,௫ ൅

௖,௫ݍ ൅ ௞,௬ݍ ൅ ௖,௬ which are the equations for heat transfer (qk being conduction and qcݍ

being a combination of convection and radiation) in the x and y directions. This is a two

dimensional model, which works well for the problem we are modeling.

Boundary conditions

 We needed to be able to calculate the energy/heat that needed to be added to the

“house” to keep it at a comfortable 70°F temperature. We maintained this temperature at

the inside boundary, but we had to find the temperature it would be in order to track the

energy that must be added. We set the outside boundaries of the ghost cells to zero so as

to eliminate the loss or gain of heat. We knew the how much energy needed to be added

to maintain the seventy degree temperature through subtraction.

 The outside boundary follows the sinusoidal wave that we created. The minimum

and maximum are variables to make it easy to test the wall in different temperatures.

14

Assumptions

 We made several assumptions in our model which occasionally cause it to differ

from real life. The temperature swing (sinusoidal wave) is a good approximation, but a

real temperature history would be more accurate. Also, the radiation and convection are

combined to calculate the heat loss at the wall surfaces. This does not show the larger

heat loss that is experienced on windy days, and there is no difference in the loss/gain of

heat through radiation on clear days as compared to cloudy days. The model is two

dimensional and does not show some things are only possible with three dimensions, but

this is not as important in our model as in others. Last of all, it was necessary to change

the melting/freezing point to 61° since the highest temperature in the model is 70° and it

is impossible that the resin can reach its 71° state change point. The biggest inaccuracies

of the model are because we were unable to find exact numbers for things such as the

energy needed for fusion.

Assumption/Limitation Description

Temperature swing –
sinusoidal wave

Good approximation, not completely accurate

Radiation and convection
combined

Does not show different heat loss/gain for different
weather

2‐D
Three dimensions are necessary for some
actions/properties; however, it is not as important in
our model as in others

Melting/Freezing at 61°
Because the highest temperature in the model is 70°, it
is impossible that the resin can reach the 71°
melt/freeze point

Cells are one inch by one inch
A higher resolution would give more accurate results

Figure 15 Descriptions of the assumptions

15

Code
Program
 We began with an example from the supercomputing kickoff of a shallow water

model, and modified it for heat transfer. Since we were learning the language as we did

our project, it was helpful to have the structure of the code. We began by setting the wall

into the program, and then we added the equations. Once we had it running, we added

some of our own touches to the graphics (see below). We continued to improve the

program; one of the biggest changes was putting in the y direction. It was only later that

we wrote code to give the wood properties of the yellow pine. We also inserted a sheet of

plywood that was not in the original wall. Some of the initial results didn’t make sense,

so we went through the program and equations a few times to get it to work properly.

Main Subroutines

Allocate
Memory

Energy, Mass,
etc.

Cells

Temperatures

Begin
Iteration loop

First Pass

fluxes in the x
& y directions

Second Pass

add/subtract
fluxes from

cell

Energy/

Temperature

End Iteration
loop

Display

display
window

Print data

Figure 16 Code Flowchart

16

Language
 We are working in C, and using the libraries MPI (Message Passing Interface) and

MPE (Multi-Processing Environment). We have the MPI calls in the code, but we have

not run the program on multiple processors (parallel) or debugged it. We use the MPE

library for the graphics.

Graphics
 Our graphics window is divided into top and bottom halves. At the bottom, it

displays what is being shown, the iteration number, and the run time. The top shows the

cell characteristics. When the program is first started, it shows the wall by the densities of

the materials. After a set wait time, it begins to run, and

shows the temperature (Fahrenheit) of each cell (red

=hotter <--->blue =colder). The bottom half shows a line

that cuts through the wall and displays the temperature at

each of the cells it cuts through. The two

black lines show the inside and outside

edges of the wall. There is an approximate

scale on the left-hand side, which will give

rough estimate of the temperatures shown

by the red lines. We also put in a

display of the time (relative to the

run time) and the current outside

temperature (according to the

sinusoidal wave). A sun is shown in daytime between 6 AM and

6PM. A black moon is shown during night hours.

Figure 17 Screenshot

Figure 18 Night/Day
graphic

 Time

 Outside temperature

17

Results

“The true finish is the work of
time, and the use to which a

thing is put. The elements are
still polishing the pyramids.”

~ Henry David Thoreau (1817–
1862)

 In order to chart our results, we read data

out of the program to a CSV file. Since we

estimated that about 5% of wood

is naturally resin, we ran our code with that

value first. The first times we tested a percentage

of resin, we ran one million

 again with ten million iterations. The fewer

iterations, the less time it takes for the program to run; however, a longer run time shows

the long term effects (including night and day) of the material. We recorded both the total

energy that must be added and an energy difference. The total energy is the amoun

energy that must be added to the inside border to maintain a seventy degree temperatu

and continues to add onto itself. The energy difference is the energy needed for

every iteration (although we only record every thousandth). The night and day create a

wave in the energy. The house needs to be heated less in the day and more at night.

 With a five percent resin th

iterations. Occasionally we would run it

t of

re,

ere wasn't much of a difference between the yellow

t).

y

ss.

pine wood and the regular wood. It is just below the wood in the total energy graph (lef

The wave in the total energ

is more subtle than that in

the energy difference

because the change is a

smaller part of what is being

shown and impacts it le

0

2

4

6

8

10

12

0 20 40 60 80 10

En
er
gy
 (1

00
,0
00

 B
tu
)

time (hr)
0

5% Resin Total Energy

wood total

yp total

Figure 19 Five percent resin total energy graph

18

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18

0 20 40 60 80 100

En
er
gy
 (B

tu
)

Time (hr)

 The yellow pine is below the

wood most of the time, most

significantly at the peaks. However, it

actually takes more energy for the

yellow pine when the energy dips.

5% Resin Energy

wood

yp

 We also ran the program with

25% of the wood being resin. This

graph shows the data for one set of

10,000 iterations. The energy of

yellow pine doesn't change until about

2 hours. From then the energy used by

yellow pine drops quite a bit and the

other wood doesn't. There is about 36

Btus by the end of the iteration. There

is quite a difference between this and

the total resin energy (100,000).

0

1

2

3

4

5

6

0 2 4 6 8 10

En
er
gy
 (1

00
,0
00

 B
tu
)

Time(hr)

25% Resin Total Energy

wood total

yp total

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10

En
er
gy
 (B

tu
)

Time (hr)

25% Resin Energy

wood

yp

Figure 22 twenty-five percent resin total energy graph

Figure 21 twenty-five percent resin energy difference graph

Figure 20 five percent energy difference graph

19

Conclusions
Smart Wall Model

 One of the first conclusions we came to was that the melting/freezing point of the

yellow pine was actually too high in some cases. It is not possible for the resin to reach

the point at which a state change occurs easily or often enough if ever. With a substantial

amount of resin (at least 10%) and a 61°F state change point, the yellow pine can make a

difference in the heating of a home. There was not a significant discrepancy between the

5% resin yellow pine and regular wood. We also tested 10% and 25% in which there was

a difference. The difference was thousands of Btus after about one million iterations. We

were not able to run the program enough times to come to many solid conclusions. We do

suspect that it would work better in some climates compared to others. It must be able to

reach the melting/freezing point often enough to let it store energy, but not so long as to

let more heat pass through it.

Model Capabilities

 Our program was successful at modeling the heat transfer and the wall with and

without yellow pine. A real-time display can give you a good idea of how and where the

heat is moving. The studs eventually appear because it is colder where they are and more

heat is flowing out of them then the insulation. The resolution is not very fine, but the

results are still fairly accurate.

20

Teamwork

 There are only two people on our team, so we didn’t have specific roles; the main

exception was the programmer. We both helped to do many parts of the project. We

thought it was easier to c

rather than a larger group

we needed, and we didn’t w

conflicting schedules of more p

and math we both worked throu

together, but sometimes on our o

the programmer, and Jessie

also did a lot of work on the pre

deal of the writing we did at

were able to consult with

 Whenever we

who was present gave the other person a summary of what she had learned. Rachel

worked more with the math and Jessie would learn a basic version of it, rather than

detailed a

oordinate meeting and working together with two members,

. We had all of the skills

ant to deal with the

eople. The research

gh, usually

wn. Rachel was

was our artist, and

sentations. A great

 the same time and

one another.

worked on the project or met with our mentor individually, the one

a

ccount. Jessie would then work on the presentation (poster/keynote) or graphics

report/keynote). We usually met once a week, occasionally more if we had something

pecific

e

ith

Figure 23 Work Breakdown

(

s to work on together. While writing the final report we would often work at home

and email one another what we had written. After emailing and putting it together, w

would review it and send the revised version to the other team mate or go through it w

them when we met. When we got together to work on the final report, we would write,

put in graphics, review, and have fun.

21

Recommendations
Model

 There are several limitations to our program. There are still some bugs in the

program that can make it unstable, usually because of thing like the outside temperature

going too high. We also had wanted to work more with the design of the wall. It is

difficult to change the design (width or placement of the materials) in the program, so we

didn’t get to experiment with different sizes and designs of walls. It is not currently

interactive, so any changes you make are done in the code itself. We also would have

liked to put real temperature and weather histories on the outside and test the wall in an

entire year. Since we were only just learning the language and didn’t have many

expectations, we were able to accomplish most of our goals.

Wall Design

 We would like to test the actual designs of the walls, and be able experiment with

different widths and arrangements of the materials. We are also interested in passive solar

design and putting a design of an entire house together and add in the different

components such as windows, roofs, floors, and doors (3-D). There are many different

aspects of houses that smart design can be effective in saving energy and keeping the

interior comfortable.

22

Bibliography

1. Ashrae Handbook 1977 Fundamentals. New York, New York: America Society
 of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1977.

2. Cooling and Heating: Load Calculation Manual. New York, New York: American
 Society of Heating, Refrigerating and Air Conditioning Engineers, Inc.,
 1979.

3. Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Language.
Englewood Cliggs, New Jersey: Prentice-Hall, Inc., 1978.

4. Kreith, Frank. Principles of Heat Transfer. 1973. Ed. New York, New York:
Intext Educational Publishers, 1973.

5. Mattson, Timothy G., Beverly A. Sanders and Berna L. Massingill. Patterns for
Parallel Programming. Boston, Massachusetts: Pearson Education, Inc., 2005.

6. Kuehnel, Paul. “Yellow Pine”. August 26, 2007.
greenmesh.com/all_posts_from_the_start/home_heatefficiency/

7. “Changes of State”. July 22, 2008.
id.mind.net/~zona/mstm/physics/mechanics/energy/heatAndTemperature/changes
OfPhase/changeOfState.html

8. DoItYourself Inc..”Phase Change Drywall”. March 30, 2008.
www.doityourself.com/stry/phasechangedrywall

9. “Pinus – The Pines”. March 30, 2008
www.ncsu.edu/project/dendrology/index/plantae/vascular/seedplants/gymnosper
ms/conifers/pine/pinus/pinus.html

10. Ministry of Forests and Range. “Ponderosa or Yellow Pine”. March 30, 2008.
www.for.gov.bc.ca/hfd/library/documents/treebook/ponderosapine.htm

11. Oliver, William W., Ryker, Russell A.. “Ponderosa Pine”. September 10, 1998.
www.na.fs.fed.us/SPFO/pubs/silvics_manual/Volume_1/pinus/ponderosa.htm

Acknowledgements
Our Mentor: Bob Robey
Our Family: Peggy Robey, Laura Bohn, Roy Bohn
Our Teacher: LeAnn Salazar
For helping us with the sine wave: Jonathan Robey
For reviewing our proposal: Tom Laub
For reviewing our project: Teri Roberts

23

http://greenmesh.com/all_posts_from_the_start/home_heatefficiency/
http://id.mind.net/%7Ezona/mstm/physics/mechanics/energy/heatAndTemperature/changesOfPhase/changeOfState.html
http://id.mind.net/%7Ezona/mstm/physics/mechanics/energy/heatAndTemperature/changesOfPhase/changeOfState.html
http://id.mind.net/%7Ezona/mstm/physics/mechanics/energy/heatAndTemperature/changesOfPhase/changeOfState.html
http://www.doityourself.com/stry/phasechangedrywall
http://www.ncsu.edu/project/dendrology/index/plantae/vascular/seedplants/gymnosperms/conifers/pine/pinus/pinus.html
http://www.ncsu.edu/project/dendrology/index/plantae/vascular/seedplants/gymnosperms/conifers/pine/pinus/pinus.html
http://www.for.gov.bc.ca/hfd/library/documents/treebook/ponderosapine.htm
http://www.na.fs.fed.us/SPFO/pubs/silvics_manual/Volume_1/pinus/ponderosa.htm

Appendix
#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <unistd.h>
#include "heat.h"

/**

 *HEAT -- 2D Heat Transfer Model
 *Rachel Robey, Los Alamos Middle School
 *Copyright, 2007-08

***********************/

//define pi
#define Pi 3.14
#define change_energy 2.35

/* Display routines */
void display_init(char *displayname, int iwidth, int iheight);
void display_one_d(int matrix_size_y, int matrix_size_x, double **temp,
int my_offset,
 int mysize, double maxscale, double time, double Temp_max, double
Temp_min);
void set_label(char *text);
void display_close(void);
double state_change_temp(double E, double cv, int j, int i);
double state_change_energy(double T, double cv, int j, int i);
/* Memory allocation routines */
double *dvector(int n);
double **dmatrix(int m, int n);
int **imatrix(int m, int n);

double **Mass, **Energy, **Temperature; //state variables
int **Material;
double **qkx, **Energyx, **Temperaturex; //half-step arrays
double **qky, **Energyy, **Temperaturey; //half-step arrays

int main(int argc, char *argv[]) {
 int rank, size;
 int next, prev;
 int i, j;
 int matrix_size_x, matrix_size_y;
 int ntimes;
 int n;
 int mysize;
 int my_offset;
 double deltaX, deltaY; //size of cell

24

 double **temp; //holder array for display
 double deltat = .0005; //hardwired timestep
 double maxScale;
 double time = 0.0; //computer simulation time
 double slavetime, totaltime, starttime; //variables to calculate
time taken for the program to run
 double myTE, TotalEnergy, origTE; //variables for checking
conservation of energy
 double Energy_added = 0.0, Energy_delta = 0.0;
 double Temp_max=65, Temp_min=10;
 FILE *fdata;
 char *desc; //variable for labels
 char string[80];
 char *displayname = ":0";
 enum material{OUTSIDE_AIR, INSIDE_AIR, STUCCO, FOAM, WOOD,
INSULATION, SHEETROCK};
 double Material_density[7]= { .076, .076, 116., 2.2, 32., .85, 50.
};
 //density in pounds/ft cubed
 double Material_specific_heat[7]= { .24, .24, .22, .29, .33, .2, .26
};
 //specific heat in Btu/pound*mass*Farenheit
 double Material_conductivity[7]= { 6.0-0.7, 1.24, .5, .2, .8,
.053/5.5,
 1.78/.625 };
 //conductivity in Btu/hour*inch*Farenheit

 MPI_Init(&argc, &argv);
 //Determine size and my rank in MPI_COMM_WORLD communicator
 MPI_Comm_size(MPI_COMM_WORLD, &size) ;
 MPI_Comm_rank(MPI_COMM_WORLD, &rank) ;
 if (argc > 2 && strcmp(argv[1], "-display") == 0) {
 displayname = (char *)malloc(strlen(argv[2]) + 1);
 strcpy(displayname, argv[2]);
 }

 if (display_on)
 display_init(displayname, 416.25, 675);

 if (rank==0)
 printf("Copyright 2008\n");

 //If the process is 0, determine the matrix size and # of iterations
 if (rank == 0) {
 /*
 printf("Matrix Size X : ");
 scanf("%d",&matrix_size_x);
 printf("Matrix Size Y : ");
 scanf("%d",&matrix_size_y);
 printf("Iterations : ") ;
 scanf("%d",&ntimes) ;//
 */
 matrix_size_x = 22;
 matrix_size_y = 34;
 ntimes = 10000000;
 }

25

 if (rank==0) {
 fdata=fopen("data.csv","w");
 }
 //Broadcast the size and # of itertations to all processes
 MPI_Bcast(&matrix_size_x, 1, MPI_INT, 0, MPI_COMM_WORLD) ;
 MPI_Bcast(&matrix_size_y, 1, MPI_INT, 0, MPI_COMM_WORLD) ;
 MPI_Bcast(&ntimes, 1, MPI_INT, 0, MPI_COMM_WORLD);

 //Set neighbors
 if (rank == 0)
 prev = MPI_PROC_NULL;
 else
 prev = rank-1;
 if (rank == size - 1)
 next = MPI_PROC_NULL;
 else
 next = rank+1;

 mysize = matrix_size_y/size + ((rank < (matrix_size_y % size)) ? 1 :
0);
 my_offset = rank * (matrix_size_y/size);
 if (rank > (matrix_size_y % size))
 my_offset += (matrix_size_y % size);
 else
 my_offset += rank;

 if (debug>=1) {
 printf("my rank is %d and mysize is %d\n", rank, mysize);
 }

 /* allocate the memory dynamically for the matrix */

 Mass = dmatrix(mysize+2, matrix_size_x+2);
 Energy = dmatrix(mysize+2, matrix_size_x+2);
 Temperature = dmatrix(mysize+2, matrix_size_x+2);
 Material = imatrix(mysize+2, matrix_size_x+2);

 qkx = dmatrix(mysize+2, matrix_size_x+3);
 Energyx = dmatrix(mysize, matrix_size_x+1);
 Temperaturex = dmatrix(mysize, matrix_size_x+1);

 qky = dmatrix(mysize+3, matrix_size_x+2);
 Energyy = dmatrix(mysize+1, matrix_size_x);
 Temperaturey = dmatrix(mysize+1, matrix_size_x);
 temp = dmatrix(mysize+2, matrix_size_x+2);

 for (j=0; j<=mysize+1; j++) {
 qkx[j][0]=0.0;
 qkx[j][matrix_size_x+2]=0.0;
 }
 for (i=0; i<=matrix_size_x+1; i++) {
 qky[0][i]=0.0;
 qky[mysize+2][i]=0.0;
 }

 if (rank==0&&debug>=1) {
 printf("Memory allocated\n");

26

 }
 //initialize matrix
 for (j=0; j<=mysize+1; j++) {
 for (i=0; i<=matrix_size_x+1; i++) {
 Material[j][i]= OUTSIDE_AIR;
 }
 }
 for (j=0; j<=mysize+1; j++) {
 for (i=10; i<=matrix_size_x+1; i++) {
 Material[j][i]= INSIDE_AIR;
 }
 }
 for (j=0; j<=mysize+1; j++) {
 Material[j][7]= STUCCO;
 }
 for (j=0; j<=mysize+1; j++) {
 for (i=8; i<=9; i++) {
 Material[j][i]= FOAM;
 }
 }
 for (j=0; j<mysize+1; j++) {
 Material[j][10]=WOOD;
 }
 for (j=0; j<=mysize+1; j++) {
 for (i=11; i<=15; i++) {
 Material[j][i]= INSULATION;
 }
 }
 for (j=1; j<=2; j++) {
 for (i=11; i<=15; i++) {
 Material[j][i]= WOOD;
 }
 }
 for (j=17; j<=18; j++) {
 for (i=11; i<=15; i++) {
 Material[j][i]= WOOD;
 }
 }
 for (j=33; j<=34; j++) {
 for (i=11; i<=15; i++) {
 Material[j][i]= WOOD;
 }
 }
 for (j=0; j<=mysize+1; j++) {
 Material[j][16]= SHEETROCK;
 }
 for (j=0; j<=mysize+1; j++) {
 for (i=0; i<=6; i++) {
 Temperature[j][i]= Temp_max;
 }
 }
 for (j=0; j<=mysize+1; j++) {
 for (i=7; i<=16; i++) {
 Temperature[j][i]= 63.;
 }
 }
 for (j=0; j<=mysize+1; j++) {

27

 for (i=16; i<=23; i++) {
 Temperature[j][i]= 70.;
 }
 }

 for (j=0; j<=mysize+1; j++) {
 for (i=0; i<=matrix_size_x+1; i++) {
 Mass[j][i]= (Material_density[Material[j][i]])/1728.;
 //multiply by 1 foot/12 inches three times to cancel out
units, becomes pounds,mass
 if (yellow_pine){
 if(Material[j][i]==WOOD){
 Energy[j][i]=state_change_energy(Temperature[j][i],
Material_specific_heat[Material[j][i]], j, i);
 }
 else {
 Energy[j][i]= (Material_specific_heat[Material[j][i]
])*Temperature[j][i];
 //specific energy is in Btu/pound,mass
 }
 }
 else {
 Energy[j][i]= (Material_specific_heat[Material[j][i]
])*Temperature[j][i];
 }

 }
 }

 deltaX=1.0;
 deltaY=1.0;
 if (rank==0&&debug>=1) {
 printf("initial values set\n");
 }
 //display initial values
 if (display_on) {
 maxScale=.07;
 desc="wall materials by density";
 set_label(desc);
 display_one_d(matrix_size_x, matrix_size_y, Mass, my_offset,
mysize,
 maxScale, time, Temp_max, Temp_min);
 }
 sleep(10);

 myTE=0.0;
 for (j=1; j<=mysize; j++) {
 for (i=1; i<=matrix_size_x; i++) {
 myTE+=Energy[j][i];
 }
 }
 MPI_Allreduce(&myTE, &origTE, 1, MPI_DOUBLE, MPI_SUM,
MPI_COMM_WORLD);

 if (rank==0&&debug>=1) {
 printf("initial values displayed\n");
 }

28

 //run the simulation for given number of iterations/
 starttime = MPI_Wtime() ;
 for (n = 0; n < ntimes; n++) {
 MPI_Request req[8];
 MPI_Status status[8];

 //Send and receive boundary information
 MPI_Isend(Energy[1], matrix_size_x+2, MPI_DOUBLE, prev, 1,
 MPI_COMM_WORLD, req);
 MPI_Irecv(Energy[mysize+1], matrix_size_x+2, MPI_DOUBLE, next, 1,
 MPI_COMM_WORLD, req+1);

 MPI_Isend(Energy[mysize], matrix_size_x+2, MPI_DOUBLE, next, 2,
 MPI_COMM_WORLD, req+2);
 MPI_Irecv(Energy[0], matrix_size_x+2, MPI_DOUBLE, prev, 2,
 MPI_COMM_WORLD, req+3);

 if (rank==0&&debug>=1) {
 printf("values for energy communicated\n");
 }

 MPI_Isend(Temperature[1], matrix_size_x+2, MPI_DOUBLE, prev, 5,
 MPI_COMM_WORLD, req+4);
 MPI_Irecv(Temperature[mysize+1], matrix_size_x+2, MPI_DOUBLE,
next, 5,
 MPI_COMM_WORLD, req+5);

 MPI_Isend(Temperature[mysize], matrix_size_x+2, MPI_DOUBLE, next,
6,
 MPI_COMM_WORLD, req+6);
 MPI_Irecv(Temperature[0], matrix_size_x+2, MPI_DOUBLE, prev, 6,
 MPI_COMM_WORLD, req+7);

 if (rank==0&&debug>=1) {
 printf("values for temperature communicated\n");
 }
 MPI_Waitall(8, req, status);
 if (rank==0&&debug>=1)
 printf("Communication successful\n");
 //set boundary conditons
 Energy_delta=0.0;
 for (j=0; j<=mysize+1; j++) {
 Energy[j][0]=2.4;
 Temperature[j][0]=(((Temp_max+Temp_min)/2))+((Temp_max-
Temp_min)/2)*(sin((time+360)*Pi/720));
 Temperature[j][matrix_size_x+1]=70.;

Energy_added+=Material_specific_heat[Material[j][matrix_size_x+1]]*70.0
-Energy[j][matrix_size_x+1];

Energy_delta+=Material_specific_heat[Material[j][matrix_size_x+1]]*70.0
-Energy[j][matrix_size_x+1];
 Energy[j][matrix_size_x+1]= (Material_specific_heat[
Material[j][matrix_size_x+1]])*70.0;
 }

 for (i=0; i<=matrix_size_x+1; i++) {

29

 if (my_offset==0) {
 Energy[0][i]=Energy[1][i];
 Temperature[0][i]=Temperature[1][i];
 }
 }
 if (matrix_size_y==my_offset+mysize) {
 Energy[mysize+1][i]=Energy[mysize][i];
 Temperature[mysize+1][i]=Temperature[mysize][i];
 }
 if (rank==0&&debug>=1)
 printf("Boundary conditions set\n");

 //set timestep
 // We should calculate a timestep here
 if (rank==0&&debug>=1) {
 printf("deltat set to %20.1f\n", deltat);
 }

 time+=deltat;
 //For each element of the matrix ...
 if (rank == 0&&debug>=1) {
 printf("Before 1st pass\n");
 }
 //first pass
 //x direction
 for (j = 0; j <= mysize+1; j++) {
 for (i = 1; i<=matrix_size_x+1; i++) {

 qkx[j][i]=-Material_conductivity[Material[j][i-1]
]*(Temperature[j][i-1]-Temperature[j][i])/.5/144./60.
 *deltat+ -Material_conductivity[Material[j][i]
]*(Temperature[j][i-1]-Temperature[j][i])/.5/144./60.*deltat;
 // multiply negative conductivity of material be the
differnce in temperatures, divide by .5 for the distance
 //of heat flow, division by 144 and 60 cancels units
multiply by the time step

 if (Material[j][i]!=OUTSIDE_AIR&&Material[j][i-
1]==OUTSIDE_AIR) {
 //calculate convection and radiation between air and
surface, conductance is in Btu/hr/ft squared/F
 qkx[j][i]-=6.0*deltat*(Temperature[j][i-1]-
Temperature[j][i])/60./144.;
 }
 if (Material[j][i-
1]!=INSIDE_AIR&&Material[j][i]==INSIDE_AIR) {
 qkx[j][i]-=1.46*deltat*(Temperature[j][i-1]-
Temperature[j][i])/60./144.;
 }
 }
 }

 if (rank==0&&debug>=1) {
 printf("First pass x direction complete\n");
 }

 //y direction

30

 for (j = 1; j<=mysize; j++) {
 for (i=0; i<=matrix_size_x+1; i++) {
 qky[j][i]=-Material_conductivity[Material[j-1][i]
]*(Temperature[j-1][i]-Temperature[j][i])/.5/144./60.
 *deltat+ -Material_conductivity[Material[j][i]
]*(Temperature[j-1][i]-Temperature[j][i])/.5/144./60.*deltat;
 //multiply negetive conductivity of material be the
differnce in temperatures, divide by .5 for the distance
 //of heat flow, division by 144 and 60 cancels units
multiply by the time step
 }
 }
 if (rank==0&&debug>=1) {
 printf("First pass complete\n");
 }

 //second pass
 if (rank==0&&debug>=1) {
 printf("Second Pass started\n");
 }
 for (j = 0; j <=mysize+1; j++) {
 for (i = 0; i<=matrix_size_x+1; i++) {
 Energy[j][i] = Energy[j][i]+(qkx[j][i+1]-
qkx[j][i]+qky[j+1][i]-qky[j][i])/Mass[j][i];
 if (yellow_pine){
 if(Material[j][i]==WOOD){
 Temperature[j][i]=state_change_temp(Energy[j][i],
Material_specific_heat[Material[j][i]], j, i);
 }
 else {
 Temperature[j][i]=
Energy[j][i]/(Material_specific_heat[Material[j][i]]);
 }
 }
 else {
 Temperature[j][i]=
Energy[j][i]/(Material_specific_heat[Material[j][i]]);
 }
 }
 }
 if (rank==0&&debug>=1) {
 printf("Second pass complete\n");
 }

 if (rank==0&&debug>=1) {
 printf("Done calculations\n");
 }
 //set temp to ____ and display
 if (debug >= 2) {
 for (j=0; j<=mysize+1; j++) {
 for (i=0; i<=matrix_size_x+1; i++) {
 printf("end of cycle %d %d %lf %lf %lf\n", i, j,
 Mass[j][i], Energy[j][i], Temperature[j][i]);
 }
 }
 }
 if (display_on) {

31

 maxScale=72.0;
 desc="Temperature";
 sprintf(string, "%s iter %d time %.2lf", desc, n,
time);
 set_label(string);
 if (n%display_on == 0) {
 display_one_d(matrix_size_x, matrix_size_y, Temperature,
 my_offset, mysize, maxScale, time, Temp_max,
Temp_min);
 }
 }

 myTE=0.0;
 TotalEnergy=0.0;
 for (j=1; j<=mysize; j++) {
 for (i=1; i<=matrix_size_x; i++) {
 if (isnan(Energy[j][i])) {
 printf("Error -- Energy[%d][%d]=%f\n", i, j,
Energy[j][i]);
 }
 myTE+=Energy[j][i];
 }
 }

 MPI_Allreduce(&myTE, &TotalEnergy, 1, MPI_DOUBLE, MPI_SUM,
 MPI_COMM_WORLD);
 /*
 if(((fabs(TotalEnergy-origTE)>1.0E-
6)||isnan(TotalEnergy))&&check==1){
 printf("Conservation of energy\nEnergy difference:%e\n",
TotalEnergy-origTE);
 printf("Problem occured on iteration %5.5d at time %f.\n", n,
time);
 exit(0);
 }
 */

 if (symmetry_check==1) {
 for (j=1; j<=mysize/2; j++) {
 for (i=1; i<=matrix_size_x; i++) {
 if (Temperature[j][i]!=Temperature[mysize+1-j][i]) {
 printf("Temp %d %d=%lf Temp%d %d=%lf\n", j, i,
 Temperature[j][i], mysize+1-j, i,
 Temperature[mysize+1-j][i]);
 printf("Energy %d %d=%lf Energy %d %d=%lf\n", j, i,
 Energy[j][i], mysize+1-j, i,
 Energy[mysize+1-j][i]);
 }
 }
 }
 }

 //print iteration info
 if (display_on && n%display_on == 0) {
 if (rank == 0) {
 printf(

32

 "Iteration:%5.5d, Time:%f, Timestep:%f Total
energy:%f Energy added: %f Energy delta: %f\n",
 n, time, deltat, TotalEnergy, Energy_added,
Energy_delta);
 fprintf(fdata, "%5.5d, %13.5f, %13.5f, %13.8f\n",
 n, Energy_added, time/60.0, Energy_delta);

 }

 }

 } // End of iteration loop

 //Compute the average time taken/processor/
 slavetime = MPI_Wtime() - starttime;
 MPI_Reduce(&slavetime, &totaltime, 1, MPI_DOUBLE, MPI_SUM, 0,
 MPI_COMM_WORLD);

 //Print the total time taken
 if (rank == 0)
 printf("Energy added %lf Btus Time %lf minutes\n",
Energy_added
 *Mass[j][matrix_size_x+1], time);
 printf("[%d] Flow finished in %lf seconds\n", rank,
totaltime/(double)size);//*/

 if (display_on)
 display_close();

 fclose(fdata);
 //Should free memory allocated with dmatrix call
 MPI_Finalize();
 exit(0);

}

double state_change_energy(double T, double cv, int j, int i) {
 double energy_return;
 if(T<61.){
 energy_return=cv*T;
 }
 else if(T>62.){
 energy_return=cv*(T-1.)+(change_energy);
 }
 else {
 energy_return=cv*61.+((T-61.)*change_energy);
 }

 return(energy_return);
}
double state_change_temp(double E, double cv, int j, int i) {
 double temp_return;
 if(E<(cv*61.)){
 temp_return=Energy[j][i]/cv;
 }
 else if(E>(cv*61.+change_energy)){
 temp_return=(E-change_energy)/cv+1.;

33

 }
 else {
 temp_return=((E-cv*61.)*change_energy)+61.;
 }
 return(temp_return);
}

Graphics

#include <mpi.h>
#define MPE_GRAPHICS
#include "mpe.h"
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <math.h>
#include "heat.h"

#define Pi 3.14

int width=750;
int height=750;
MPE_XGraph graph;
MPE_Color *color_array;
int ncolors=256;
char *label;
void display_init(char *displayname, int iwidth, int iheight){

 int ierr;
 int rank;

 //int ncolors2;

 /* Open the graphics display */

 width=iwidth;
 height=iheight;

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPE_Open_graphics(&graph, MPI_COMM_WORLD, displayname,
 -1, -1, width, height+10, 0);

 color_array = (MPE_Color *) malloc(sizeof(MPE_Color)*ncolors);

 ierr = MPE_Make_color_array(graph, ncolors, color_array);
 if (ierr && rank == 0) printf("Error(Make_color_array): ierr is
%d\n",ierr);

 //MPE_Num_colors(graph, &ncolors2);
 //printf("size of color array is %d\n",ncolors2);

}

34

 void display_close(void){
 MPE_Close_graphics(&graph);
 }

void set_label(char *text)
{
 label=text;
}
void display_one_d(int matrix_size_x, int matrix_size_y, double **temp,
 int my_offset, int mysize, double maxscale, double time, double
Temp_max, double Temp_min)
{
 int i, j;
 unsigned int plot_value;
 char string[60], outside_temp[12];
 int daytime, hourtime, minutetime, am_pm;
 /*double localmax=0;
 double localmin=2000;
 for(j=0;j<=mysize;j++){
 for(i=0;i<=matrix_size_x;i++){
 if(temp[j][i]>localmax)
 localmax=temp[j][i];
 if(temp[j][i]<localmin)
 localmin=temp[j][i];
 }
 }
 printf("localmax %f localmin %f\n", localmax, localmin);//*/
 for(j=1;j<=mysize;j++){
 for(i=1;i<=matrix_size_x;i++){
 int xloc, yloc, xwid, ywid;
 xloc = ((i - 1) * width) / matrix_size_x;
 yloc = ((my_offset + j - 1) * height/2) / matrix_size_y;
 xwid = (i * width) / matrix_size_x - xloc;
 ywid = ((my_offset + j) * height/2) / matrix_size_y - yloc;
 plot_value = ncolors - ((double)ncolors*temp[j][i]/maxscale) +
2;
 //printf("temp[%d][%d]=%lf\n",i,j,temp[j][i]);
 if (plot_value < 2) plot_value = 2;
 if (plot_value > ncolors) plot_value = ncolors;
 //printf("%d %d %d %8.5f\n",i,j,plot_value,temp[i][j]);
 if(isnan(temp[j][i]))MPE_Fill_rectangle(graph, xloc, yloc,
xwid, ywid, MPE_WHITE);
 else if(temp[j][i]<0)MPE_Fill_rectangle(graph, xloc, yloc,
xwid, ywid, MPE_WHITE);
 else if(temp[j][i]>maxscale)MPE_Fill_rectangle(graph, xloc,
yloc, xwid, ywid, MPE_BLACK);
 else MPE_Fill_rectangle(graph, xloc, yloc, xwid, ywid,
color_array[plot_value]);
 }
 }//*/
 //if(debug==1){printf("Color display complete\n");}
 MPE_Fill_rectangle(graph, 0, height/2, width, height, MPE_WHITE);
 MPE_Fill_rectangle(graph, 0, height/2, width, 2, MPE_BLACK);
 for(i=1;i<=matrix_size_x;i++){
 int xloc, xwid;
 xloc = ((i - 1) * width) / matrix_size_x;
 xwid = (i * width) / matrix_size_x - xloc;

35

 MPE_Fill_rectangle(graph, xloc, ((height)-
(((height/2.1))*(temp[1][i])/(maxscale))), xwid, 1, color_array[1]);
 }//*/
 if(strncmp(label, "wall", 4)){
 MPE_Fill_rectangle(graph, .285*width, 0, 1., height, MPE_BLACK);
 MPE_Fill_rectangle(graph, .73*width, 0, 1., height, MPE_BLACK);
 MPE_Fill_rectangle(graph, 0, .5375*height, 15., 1., MPE_BLACK);
 MPE_Draw_string(graph, .01*width, .5375*height, MPE_BLACK, "70");
 MPE_Fill_rectangle(graph, 0, .6037*height, 15., 1., MPE_BLACK);
 MPE_Draw_string(graph, .01*width, .6037*height, MPE_BLACK, "60");
 MPE_Fill_rectangle(graph, 0, .669*height, 15., 1., MPE_BLACK);
 MPE_Draw_string(graph, .01*width, .669*height, MPE_BLACK, "50");
 MPE_Fill_rectangle(graph, 0, .735*height, 15., 1., MPE_BLACK);
 MPE_Draw_string(graph, .01*width, .735*height, MPE_BLACK, "40");
 MPE_Fill_rectangle(graph, 0, .8025*height, 15., 1., MPE_BLACK);
 MPE_Draw_string(graph, .01*width, .8*height, MPE_BLACK, "30");
 MPE_Fill_rectangle(graph, 0, .8675*height, 15., 1., MPE_BLACK);
 MPE_Draw_string(graph, .01*width, .8675*height, MPE_BLACK, "20");
 MPE_Fill_rectangle(graph, 0, .9345*height, 15., 1., MPE_BLACK);
 MPE_Draw_string(graph, .01*width, .9345*height, MPE_BLACK, "10");
 if((((int)time+360)/60/12)%2) {
 MPE_Fill_circle(graph, .85*width, .93*height, 35, MPE_BLACK);
 MPE_Fill_circle(graph, .88*width, .93*height, 30, MPE_WHITE);
 }
 else{
 MPE_Fill_circle(graph, .85*width, .93*height, 35, 60);
 }

 daytime=(int)time%1440;
 hourtime=((int)(time+660.0)/60)%12+1;
 am_pm=hourtime/12%2;
 minutetime=(int)time%60;
 if(am_pm==0){
 sprintf(string,"%d:%02d pm",hourtime,minutetime);
 }
 else{
 sprintf(string,"%d:%02d am",hourtime,minutetime);
 }
 MPE_Draw_string(graph, .835*width, .92*height, MPE_BLACK, string);
 sprintf(outside_temp, "%.2lf", (((Temp_max+Temp_min)/2))+((Temp_max-
Temp_min)/2)*(sin((time+360)*Pi/720)));
 MPE_Draw_string(graph, .835*width, .94*height, MPE_BLACK,
outside_temp);

}

 //if(debug==1){printf("Graph display complete\n");}
 MPE_Fill_rectangle(graph, 0, height, width, height, MPE_WHITE);
 if(my_offset==0)MPE_Draw_string(graph, 0, height+10, MPE_BLACK,
label);
 MPE_Update(graph);
 sleep(wait_time);
}

36

37

	Table of Contents
	Table of Figures
	Executive Summary
	Introduction
	Heat Transfer
	Mathematical Model
	Computational Model
	Code
	Results
	Teamwork
	Recommendations
	Bibliography
	Appendix

