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Introduction 

 The word “trebuchet” sounds like something you would find on a menu in 

a fancy French restaurant.  But this medieval weapon of mass destruction was 

certainly not edible.  Trebuchets were used to break through castle walls from 

about 850-1350 C.E.  Dead livestock or giant rocks were the usual ammunition, 

but sometimes prisoners of war or especially annoying people were added to the 

flying debris.  Other launching devices similar to the trebuchet include the 

catapult and the ballista.  

 The catapult rolled into battle before the trebuchet was even invented, with 

reports that the Greeks and Romans used it around 350 C.E. The catapult had an 

arm with a large cup attached to the far end, where “missiles” were loaded and 

flung over the castle walls.  However, the most successful catapults had slings 

attached to their throwing arms, which allowed the catapult to throw even farther.  

  The catapul  with a sling t

 



 Catapult without a sling 

The ballista was akin to a very large crossbow and was used in warfare for 

shooting arrows and stones. The projectiles would be placed in a groove, and a 

windlass was turned until the string the arrow or stone was attached to stretched 

back.  The workers could then release the projectile at any moment and watch as 

if flew hundreds of feet into an enemy’s ranks.  

 A loaded ballista  

The Trebuchet 

 The trebuchet was the last of these ancient heavy artillery weapons to be 

introduced onto the battlegrounds in Medieval Europe. A trebuchet must be made 

with a sling; otherwise the object being launched would probably fall out and only 



roll about two feet before stopping.  The way the arm swings is the biggest 

difference between the trebuchet and its relatives, the ballista and the catapult.  

The wider end of the arm has a counterweight on in that when released causes the 

tapered end to fly into the air dragging the sling behind it. The sling releases the 

projectile into the air and the object flies away. Trebuchets are also most powerful 

of the three launching machines. 

  

The Trebuchet about to throw a dead horse 

       The trebuchet that our Honors Physics class has built has a 16-foot throwing 

arm and is designed to accept up to 500 pounds in its counterweight.  One of our 

greatest concerns is that there will be  torque pressure on the rotating axle, which 

could snap it in half.  Fortunately, we’ve a 65 pound steel axle that should be able 

to stand this torque.  



     Of course, there’s always the fact that working with 500 pounds of 

counterweight can always conjure up problems of its own. 

 Catapults come in a wide range of strengths and sizes, varying from a 

small slingshot with a rubber band, to a 300-foot long aircraft launcher.  During 

the medieval ages, the catapult was used to attack fortresses and cities.  Due to its 

capability of launching a projectile such a long distance, it was also a very 

effective defensive device.  The three most common types of catapults that were 

used during the medieval ages were the ballista, mangonel, and the trebuchet.    

 The ballista and the mangonel launch their projectiles from the torsion that 

is created by twisting ropes.  The design of the crossbow is very similar to that of 

the ballista.  The Roman mangonel design uses twisted ropes stretched 

horizontally.  A lever arm with a scoop at the end is inserted into the center of the 

ropes.  The projectile object is placed inside of the scoop while the lever arm is 

pulled back against the force of the ropes.  As the arm is released, it flings 

forward and hits a wooden barrier thus causing the projectile to fly forward at the 

enemy.  It was a very effective design, capable of launching 50-60 pound stones 

and destroying towers and castle walls.  A particular flaw in the design of the 

mangonel was that it wasted a large amount of energy upon impact with the 

wooden barrier.   

 The French eventually introduced the near flawless design of the trebuchet 

in the twelfth century.  Unlike the previous catapults, the trebuchet relies on the 

terrestrial gravitation from the counterweight to provide the force rather than 

using torsion obtained from twisted cordage.  The counterweight hangs at one end 



of the beam, opposite of the sling.  The sling is pulled towards the ground while 

the counterweight is raised at the opposite end of the beam.  As the sling is 

released, the counterweight quickly falls towards the ground, flinging the 

projectile and wasting much less energy than the designs of earlier catapults.  

 The trebuchet superseded the previous siege engines for many reasons.  It 

was far more efficient than any other design of its time and wasted very little 

energy.  The problem with earlier catapults was the difficulty that the operators 

faced when the situation called for accuracy.  The trebuchet was consistent and 

easier to customize because the distance that the projectile would be thrown 

depended on the weight of the counterpoise.  The Roman mangonel could throw 

50-60 pound stones but a large trebuchet was capable of throwing a 300 pound 

projectile over 300 yards.  During the years of the plague, armies would use the 

trebuchet to launch diseased bodies over the enemy’s castle walls.  People would 

often dig large ditches around their castles to prevent besiegers from scaling 

ladders to the walls.  Besiegers would solve this problem by launching barrels 

filled with dirt to fill the ditches, allowing them to pass over the ditch and access 

the castle.   

Math Simulations and Actual Data Collection 
     
      We have collected data from two mathematical trebuchet simulators, A Treb 

and Win Treb. While the results from the two simulations are different from each 

other most of the time they are consistent and proportional with each other. (We 

will finishing the testing the trebuchet and compare all of its results to that of the 



simulations as of April 15, 2004.  The following charts reflect the partially 

completed testing.) 

Math Models Versus Actual Distance Thrown, 77.3 Kilogram Counterweight
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Range and Altitude Thrown as Ball Weight Increases, 228.2 Kilogram Counterweight
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A number of simulations were done with the following variables and produced 

elegant curves or straight lines in the resulting charts. 

Length of the short side of the throwing arm 

Length of the long side of the throwing arm 

Length of the sling for throwing a water balloon 

Height of the support columns 

Distance from the throwing arm to the counterweight 

Weight of the counterweight 

Weight of the balloon being thrown 

Both the Win Treb and A Treb simulations showed that the length of the sling 

was a major variable that we could manipulate during construction of the 

trebuchet.  The A Treb simulation separately identified the angle of the release pin 

as being a significant variable. 

Construction of the Trebuchet  
 

 We started our construction with making the “throwing arm.”  This is by 

far the most critical part of the trebuchet, because it is the piece that holds the  

concrete, and is thus burdened with the most weight.  Seeing as how it is the most 

crucial part it is also the part that takes the longest to build.  It was decided that 

we would use three 2 by 9 beams that were sixteen feet long, to create one big 

beam. In order to keep these from coming apart, we used seven 9-½, and as a 

backup, we used gorilla glue.      

         



 

We used the same method of bolts and glue for the ten-foot side supports. 

Our research told us that the perfect throwing arm would weigh nothing, but that 

seemed impossible to us.  We decided that like 60% of America, our beam needed 

to loose weight, although the Atkins diet wouldn’t work for this particular cut 

back.  So, we decided to pull out the saw and cut off two sections on each side of 

the beam. This resulted in the loss of 60 pounds.  Not only does a lighter beam 

have increased efficiency, but it’s a lot easier to carry as well.   

     After we finished with the beam, we began work on the box that would have 

the job of holding 1,200 pounds of concrete. In my opinion this would be the 

worst of the jobs to have.  When building, we used 24-inch 2 by 4’s, and then 

covered the bottom of the box with a square piece of plywood.  This would hold 

the 50-pound square blocks of cement that were stacked inside of the box to give 

us the total weight of 1,000 pounds. We figured that this would be the precise 

weight that we would need to through the seventh out of the school.  

 

Next the box was attached to the throwing arm with a 2 by 36 inch metal pipe.  

This pipe runs through a hole at the end of the throwing arm, and is glued in 

place.  To connect it to the box, we used pipe sleeves that could slide on and off 



the pipe.  Through these pipe sleeves we ran ½ inch cables that were then tied 

around the box. This design is much related to a harness that you might put on a 

dog.  

For the base of the trebuchet we used sixteen 2 by 4’s that were eight feet 

long, and made two boxes that would then be able to fit together to make 16 feet. 

We decided that the width of the base would be 30 inches, because this would be 

wide enough to support the beam.  After the base was constructed, the top was 

covered with plywood so that our sling would be able to slide off of it during 

launches.   

While constructing our fabulous marvel of technology, there were a few 

things that we had to keep in mind.  Altogether, our wondrous piece of work 

weighs about 1,700 pounds, so it would be preposterous to dream of trying to 

have seven teenagers lift it by themselves.  The trebuchet had to be able to break 

down into separate pieces so that each lighter section could be carted to different 

places, and then reconstructed at its destination.  Also, the trebuchet would be 

holding 1,000 pounds of weight, so the supports and beams had to be extremely 

strong.  With these ideas in mind, many of our designs had to change.  For 

example, we constructed the base so that it could break into two pieces.  The 

throwing arm is able to slide on and off the axle, both side supports can be moved 

separately, and the bucket can slide off the axle that it’s on.  This will be crucial 

in the process of moving it. 

The most precarious part of the trebuchet was the pivoting axle of the arm. 

This runs through both side supports and the throwing arm. When designing, we 



were trying to figure out what size axle would be big enough and strong enough 

to hold 1,300 pounds.  It was thought that a 2-inch thick pipe would be able to 

hold the weight.  However, after we ran some calculations, we discovered that the 

weight immobile would weigh about 1,300 pounds; but that same weight in 

movement would create about 3 tons of weight.  This led us to one conclusion: 

“we’re going to need a thicker pipe.”  Little did we know the pipe that our teacher 

ordered was 4 inches thick and weighed about 100 pounds.  So once again our 

previous ideas were forced to change.   

We slid the axle through two holes that were cut into the side supports, 

and, because we knew that the trebuchet would be more efficient if the axle 

stayed still, we wanted to glued one end of it into one of the support beams, but 

for the sake of the poor people who would have to carry it we didn’t glue it in 

place. Next, we made a metal sleeve that fit perfectly over the axle, allowing both 

sleeve and throwing arm to rotate around the axle during launch.  When we used 

the trebuchet we put grease around the axle to minimize friction.  

When you have a structure that is close to 25 ft tall it is pretty hard to take 

just one step back to look at the bigger picture so, we looked at a miniature model 

of our trebuchet; we noticed that it swayed from side to side a lot.  Because of 

this, we decided to add side braces that resemble the flying buttresses in older 

buildings.  Along with the side braces, there are diagonal braces running from the 

vertical support to the base. They are critical in making sure that the swinging 

weight doesn’t make the vertical supports fall over.   



Many trebuchets at the end of the throwing arm have one release pin, 

which is straight out, however our research told us that it is good to have more 

than one pin, all at different angles.  The way that the release pin works is when 

the arm begins to swing the sling is beginning to be thrown, however once it the 

end of the arm reaches a certain point the inertia pulls the loop off the pin. With 

different angled pins the release point will change.  So one pin will make it fire 

more vertical than horizontal, whereas the other one will do the opposite.  

Using one of our simulation programs we determined that the perfect 

launch item would weigh 2 pounds. Unfortunately it is very hard to find a 2-

pound metal ball, so we have decided to improvise. The only thing we could find 

where we could change the weight freely was a water balloon. The problem with 

water balloons is that they change shape as they are being flung. This makes them 

much less aerodynamic, so we decided to freeze them so that they would keep 

their shape. While we were thinking about the freeze processes, we decided that it 

would be helpful if we could somehow get the balloon to leave a trail in the air. 

The solution that we came up will was liquid nitrogen. If we dipped the balloons 

in the nitrogen right before we shot them, they should hypothetically leave a trail.   

Two Construction Flaws 
 

The trebuchet was built in modular sections.  The base was built as one 

module and the support columns built as a second module.  The throwing arm was 

built as a third module while the counterweight box was built as a forth module. A 

major construction flow resulted in the third and fourth modules. 

The support axle was built to have a minimum length in order to reduce 

the amount of stress on placed on it from the throwing arm and counterweight.    



The concern was that the axle could bend under the combined weight if it was 

very long.  The axle had an overall length of 24 inches after construction and an 

effective gap of 15 inches after being placed on the two support columns. 

The box for the concrete blocks was constructed to be 24 inches on a side 

in order to hold 40 pound concrete blocks that measured 12 inches by 12 inches 

on a side.  The concrete blocks then were to be placed in two parallel rows and 

easily added or removed.  It was only when the modules were being assembled 

that we realized that the 24 inch wide box would not be able to swing freely 

between the 15 inch gap of the two support columns. 

The two support columns therefore were modified to spread on diagonals 

rather than remain vertical.  The box was rebuilt of steel with three high density 

concrete blocks used for the counterweights.  Each high density concrete block 

weighs 166 pounds and requires two people to lift into position—difficult but 

possible.  The result was a box that was 13 inches on a side and gap of 24 inches 

at the base of the support columns. 

The second flaw occurred with the throwing arm.  The throwing arm had 

been tapered in order to reduce its weight.  However the taper (see drawing page 

10) introduced a failure point at the angle of the taper.  Although we modified the 

taper to reduce the possibility of failure at this point, we were not successful.  The 

tapered throwing arm broke catastrophically on the second throw of a frozen 

water balloon and when the counterweight had a weight of only 350 pounds. 

A replacement throwing arm therefore has been built without a taper in it.  

This new throwing arm has worked successfully for the initial test throws.  



However the arm now weighs 136 pounds.  A significant amount of weight in the 

counterweight now must be used to overcome the weight of the arm rather than 

contributing energy to the water balloon being thrown. 

Results 
 

A functional trebuchet has now been made with significant engineering 

lessons in the construction of a massive machine.  A careful set of complete 

drawings should have been used instead of proceeding with separate modules.  

However only experience could tell us if the tapered beam would withstand the 

anticipated load.  

 The initial actual data for thrown water balloons shows that both the A 

Treb and Win Treb math simulations significantly over estimate how far a water 

balloon may be thrown.  This may be due to the following factors.  The axle turns 

inside a circular sleeve.  This sleeve has not yet been greased and so a significant 

amount friction may be created while the throwing arm is moving.  A part of the 

energy from the counterweight therefore may be lost to friction. 

 Second, the release pin presently is set at 0 degrees to the horizontal.  The 

documentation for the A Treb math simulation model states the angle of the pin 

will have a major impact on the distance thrown.  A downward angle of about 50 

degrees may result in a significant increase in the distance thrown horizontally.  

The water balloons presently are being thrown in a high parabolic curve.  A 

changed pin angle may result a shallower curve but with greater distance. 

 

 



 

Trebuchet Mathematics 

 Newton’s second law of motion states that force equals mass times 

acceleration. For the trebuchet, because the forces operate on curves, the equation 

is a little different. The equation for the acceleration is:  F * r = Ia and the 

acceleration is actually angular acceleration, to account for the curves. The I in 

the equation is the moment of inertia or. I=Emr^2. The moment of inertia is 

conceptually found by cutting the acceleration of the mass into all of its infinite 

moments or points and find the mass of each point times the distance from the 

center squared then add each of the infinite accelerations to find the inertia, hence 

I=∑*m*r^2.  

The basic motions and forces of the trebuchet are divided into three parts: 

the thrown weight, the throwing arm, and the counterweight. Due to these three 

basic components, the calculations for the inertia of the trebuchet can be 

significantly simplified and broken up into component equations. The throwing 

arm is a beam with a set mass per meter m and a certain length l. The pivot too is 

a factor and is calculated in terms of its distance in meters h from the center of 

gravity of the throwing arm. Assuming that both the counterweight and the 

projectile weight are both focused at exact points at the end of the arm on each of 

their respective sides, the equation for the inertia for the arm with the mentioned 

variables is:  

I=ml^2/12+mh^2 

 The simple equation for the inertia of the projectile is: 



Iprojectile=m*l^2 

 

 Where I is the overall inertia of the projectile, m is the mass of the 

projectile, and l is the length of the projectile arm. Or stated more simply, the 

inertia of the projectile as an isolated system is equal to the mass of the projectile 

multiplied by the length of the projectile arm or that section of the throwing arm 

which is directly applying force to the projectile. 

 The equation for the inertia of the counterweight is as follows: 

Icounterweight=m*l^2 

 As can be seen, the equation for the inertia of the counterweight as an 

isolated system is almost exactly the same as the earlier equation through which 

the inertia of the projectile may be found. The sole difference being that it is in 

terms of the counterweight and not the projectile. 

 Finally, in order to calculate the inertia of he entire trebuchet, and thus be 

able to use the principle of motion, F*R=Ia, the three inertias are combined. All 

forces acting on the trebuchet are pulling down. Trebuchets are engines of war 

that utilize gravity as their power. Though all forces acting on the trebuchet, 

assuming the trebuchet is an isolated system as a whole, are pulling downward, 

the forces can be divided into roughly two categories, the forces that are 

perpendicular to the throwing arm and those forces that are parallel to the 

throwing arm. For the purposes of this essay, we are assuming that friction has no 

effect. Only the perpendicular forces have a readily noticeable effect, as they are 

the ones that pull on the counterweight arm and force it downward in a circle. The 



parallel forces are attempting to push the trebuchet over lengthwise, and as such, 

are not of any use in throwing the projectile. The fulcrum of the trebuchet serves 

to transmit all of these forces throughout the trebuchet, countering the parallel 

forces and transferring the perpendicular forces, rather like a force filter.  

 The equation for the perpendicular force is: 

F⊥=Fsinθ 
 
 Where angle θ is the angle of the fulcrum to the counterweight arm. 
  

The strength of the perpendicular force depends on the distance from the 

point of application to the center of the fulcrum, or the radius of the circle 

described by the trebuchet arm. Thus, the perpendicular force utilizes torque to 

multiply the force of the counterweight.  

 In the original acceleration equation, F*R may now be replaced by 

F*r*sinθ or F⊥*r. Thus the acceleration of the trebuchet is directly related to not 

only the mass of the counterweight and the projectile, but also to the angle of the 

throwing arm in terms of the fulcrum. Once the angle gets to 90, the force peaks 

and all angles there after have increasingly less force, because at 90 degrees the 

counterweight is exactly perpendicular with the ground and gravity will no longer 

be supplying the force at any larger angle. This is because at 90 degrees the 

counterweight is as close to the ground as it is going to get or as close as gravity is 

trying to make it. 

 The final and much simpler equation for acceleration is: 

F*r=F*r*sinθ 
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