
Team Thirteen I

Chaos theory and the evolution of
Traffic law
New Mexico

 Super Computing Challenge
April 28, 2008

Team 13
Artesia High School

Team Members:

Phillip DeLaRosa
Alex Sifuentes
J.P. Rivera
Jake Green

Teacher:
Mr. Gaylor

Mentor:
Nick Bennett

Team Thirteen II

Contents

I. Executive Summary III.

II. Introduction III.

III. Model VI.

IV. History VII.

V. Tests and Results VII.

VI. Conclusion IX.

VII. Works Cited X.

VIII. Code XI.

Team Thirteen III

Executive Summary

 The purpose of this project was to model chaos theory, which states that complex systems

evolve from simple sets of rules. We decided to model this in a Java-based traffic simulation.

We hypothesized that the cars would evolve by learning the best paths for reaching their

destinations in this traffic environment.

Introduction

Ian Stewart, Does God Play Dice? The Mathematics of Chaos, stated:
 “The flapping of a single butterfly’s wing today produces at tiny change in the state of the

 atmosphere. Over a period of time, what the atmosphere actually does diverges from what it

 would have done. So, in a month’s time, a tornado that would have devastated the Indonesian

 coast doesn’t happen. Or maybe one that wasn’t going to happen, does.(pg141)”

 This quotation has become a classic statement for explaining “Chaos Theory”. “Chaos

Theory” is the idea, or theory that describes how systems of apparently random data develop

mathematical patterns. “The Chaos Theory” describes apparent anomalies; one such result of

“Chaos Theory” could be to observe how an existing complex system, such as Traffic Law,

evolves from simple rules. The name “chaos theory” could come from the fact that the theory

describes systems that are apparently disordered, but the theory is really about finding the

underlying order in apparently random systems. A prime example of this is when in 1960 a

meteorologist named Edward Lorenz was working on weather predictions. He had developed an

equation to help with his weather predictions and had to use the same equation many times … so

to speed up the process, he had a computer set up with a set of twelve equations to model the

Team Thirteen IV

weather. While the computer program did not predict the weather itself the computer program

did theoretically predict what the weather “might be.” Edward Lorenz had no problems with his

computer generated predictions for almost a year until one day in 1961. Lorenz wanted to review

a particular sequence once again and so, to save time, he started in the middle of the sequence,

instead of the beginning. He entered the number from his printout and left the mathematical

sequence running. When he came back later, the sequence had evolved differently then

expected. Instead of the same pattern as before, it diverged from the original pattern, ending up

with a wildly different pattern. After many tests and much time studying the pattern he

eventually figured out what happened. The computer stored the numbers to six decimal places in

its memory. To save paper, he only had it print out three decimal places. In the original

sequence, the number was .506127, and he had only typed the first three digits .506. By all

conventional ideas at the time, it should have worked. He should have gotten a sequence very

close to the original sequence. In fact most, if not all, scientists consider themselves fortunate if

they are able to attaint measurements with accuracy to three decimal places. Surely the fourth

and fifth decimals, almost impossible to measure using reasonable methods, would have

minimal, not a huge effect, on the outcome of the experiment. Lorenz proved this idea wrong and

while Lorenz was studying the mathematical structure of the data of chaotic behavior, he used

time-series analysis to ferret out hidden details and employed the technique to help produce an

image bearing three dimensions of information. This image (an attractor) soon became extricably

Team Thirteen V

tied to field of chaos (or nonlinear dynamics).

 (A Lorenz-type image (above)… note it resembles a butterfly)

 Within this image, one can detect an underlying fractal pattern. The apparently elliptical

path is that followed by a particle drawing the trajectory in 3D. When this figure was drawn, the

particle was seen looping around one lobe for a while and then jumping over to the other lobe as

it continued looping. The path never retraced itself. (Though it appears to, that is simply a

limitation of the drawing resolution of a computer screen.) This back-and-forth motion continued

until the entire plot was generated. The image looks flat, but the tracing particle moved in three

dimensions, alternately projecting out of the screen and then back in as it orbited the attractor.

 This phenomenon, (“The Butterfly Effect,” named such after Lorenz’s speech,

Predictability: Does the Flap of a Butterfly’s Wings in Brazil set off a Tornado in Texas , in

which he states “While one butterfly's flapping wings could trigger off a tornado in the Lone Star

state, another butterfly's flapping wings could prevent it.”(Lorenz)), is also known as a sensitive

dependence on initial conditions, which can drastically change the long-term behavior of a

Team Thirteen VI

system. A great analogy for this is white water on a rapidly flowing section of a mountain

stream. If you set two leaves in motion next to each other on the upstream side of the white

water, they will most likely be widely separated by the time they reach the down stream side…to

reiterate, in a system like this a small difference in its initial conditions (the position on the

leaves) can result in a large difference in the outcome (Trefil118). Such a small amount of

difference in a measurement might be considered an inaccuracy of the equipment of just white

background noise. Such things are impossible to avoid in even the most isolated lab. With a

starting number of two, the final result can be entirely different from the same system with a

starting value of 2.000001!

 This theory led Team Thirteen (Chaos theory and the evolution of traffic law) to ask the

question: if such patterns could occur in seemingly random data, then could a seemingly

organized system truly be the function of random data? The team then wondered if it was

possible to create a system of order by giving a program, such as one programmed in Java,

almost no data but only a few basic guidelines such as: (1) Don’t allow agents to die (2) Have

agents get from point A to point B. If such guidelines were given, would the basic properties of

chaos theory prove true?

Model

The model is created in Java. It has four classes: car, move, grid, and test. The car class

is used to create car objects. Car objects are objects that move around in the program’s world.

They know how to move, when they collide with other instances of the car class, and how to

decide the shortest path. The move class decides in which direction an instance of the car class

Team Thirteen VII

will move. The grid class holds the data for the world. The test class creates a 10 by 10 world

and places five instances of the car class on the world and decides their destinations. Instance 1

is created at (1, 1) and has a destination of (6, 6). Instance 2 is created at (2, 2) and has a

destination of (7, 7). Instance 3 is created at (3, 3) and has a destination of (8, 8). Instance 4 is

created at (4, 4) and has a destination of (9, 9). Instance 5 is created at (5, 5) and has a

destination of (10, 10).

History

Our team had originally started out as a two person team (Alex S. and Phillip D.)

but two weeks before the “SCC Kick-off” we gained our third team mate (Jake G.) We then

attended the “Kick-off” and learned a lot of programming and got to meet many interesting

people and even the programmer of Mathematica! Once we returned from the “Kick-off” we

gained our fourth and final member of our team (JP R.) With all four of our team finally

assembled we started to ritualistically meet every lunch on Tuesdays, Fridays and at certain

weeks we also meet on Monday afternoons. The team did have its ups and downs however… for

a few months (due to scheduling conflicts and break down in the line of communication) we,

Team 13, almost ceased to exist! However, after many compromises and talks with our “SCC”

teacher (Mr. Gaylor) our team had gotten back on track and was able to finish the project.

Tests and Results

Car 1 Car 2 Car 3 Car 4 Car 5
209 178 287 378 477
290 152 39 73 536
694 104 154 454 754

Team Thirteen VIII

116 389 151 246 633
73 301 669 271 377
65 92 797 511 953
460 29 72 550 219
335 80 1549 66 580
58 120 756 581 189
239 119 96 196 1102
58 76 284 234 668
136 684 407 1019 48
761 284 346 390 220
284 110 592 150 210
123 123 139 316 290
218 276 20 493 169
88 217 465 567 39
414 213 251 880 443
177 78 579 1379 768
118 455 238 501 37
697 60 775 205 1447
280 208 335 294 687
159 76 54 355 376
67 178 2044 251 472
263 183 160 267 609

Team Thirteen IX

Conclusion

We found that the cars did not learn to ultimately develop shorter paths. Thus, our

hypothesis was proven false.

Team Thirteen X

Work citied

 Trefil, James , The nature of science. Boston: Houghton Mifflin Company, (2003): 118-122

 Lorenz, Edward, "Predictability - Does the Flap of a Butterfly's Wings in Brazil Set Off a

 Tornado in Texas?"(Paper presented to the American Association for the Advancement

 of Science, Washington, D.C., December 1972).

Stewart, Ian, Does God Play Dice? The mathematics of chaos. Malden, MA: Blackwell

 Publishers, Inc., 2002

Team Thirteen XI

Code

Package basic;

import java.awt.Point;

import java.util.ArrayList;

public class Test {

 public Test() {

 }

 public static void main(String[] args) {

 Grid grid = new Grid(10, 10, false);

 Car car1 = new Car();

 Car car2 = new Car();

 Car car3 = new Car();

 Car car4 = new Car();

 Car car5 = new Car();

 car1.setOrigin(new Point(1, 1));

 car1.getDestination().add(new Point(6, 6));

Team Thirteen XII

 car2.setOrigin(new Point(2, 2));

 car2.getDestination().add(new Point(7, 7));

 car3.setOrigin(new Point(3, 3));

 car3.getDestination().add(new Point(8, 8));

 car4.setOrigin(new Point(4, 4));

 car4.getDestination().add(new Point(9, 9));

 car5.setOrigin(new Point(5, 5));

 car5.getDestination().add(new Point(10, 10));

 while (!car1.move() | !car2.move() | !car3.move() | !car4.move() | !car5.move()) {

 ArrayList<Car.Result> results = car1.getResults();

 System.out.println(results.get(results.size() - 1));

 results = car2.getResults();

 System.out.println(results.get(results.size() - 1));

 results = car3.getResults();

 System.out.println(results.get(results.size() - 1));

 results = car4.getResults();

 System.out.println(results.get(results.size() - 1));

 results = car5.getResults();

 System.out.println(results.get(results.size() - 1));

 }

 System.out.println(car1.getTotalMoves());

 System.out.println(car2.getTotalMoves());

 System.out.println(car3.getTotalMoves());

Team Thirteen XIII

 System.out.println(car4.getTotalMoves());

 System.out.println(car5.getTotalMoves());

 }

}

package basic;

import java.util.Random;

public enum Move {

 NORTH,

 EAST,

 WEST,

 SOUTH,

 NONE;

 private static Random rng = new Random();

 public static Move getRandomMove() {

 Move result = NONE;

 switch (rng.nextInt(Move.values().length)) {

Team Thirteen XIV

 case 0:

 result = NORTH;

 break;

 case 1:

 result = EAST;

 break;

 case 2:

 result = WEST;

 break;

 case 3:

 result = SOUTH;

 break;

 default:

 result = NONE;

 break;

 }

 return result;

 }

}

package basic;

Team Thirteen XV

import java.awt.Point;

public class Grid {

 private static Grid singleton;

 private Point dimensions;

 private boolean wrapped;

 private int[][] status;

 public Grid(int rows, int columns, boolean wrapping) {

 dimensions = new Point(columns, rows);

 this.wrapped = wrapped;

 status = new int [rows][columns];

 for (int i = 0; i < rows; i++) {

 for (int j = 0; j < columns; j++) {

 status[i][j] = 0;

 }

 }

 singleton = this;

 }

Team Thirteen XVI

 public static Grid getCurrentGrid() {

 return singleton;

 }

 public Point update(Point start, Move move){

 int x = start.x - 1;

 int y = start.y - 1;

 boolean crash = false;

 status[y][x]--;

 switch (move){

 case NORTH:

 if (y == dimensions.y - 1) {

 if (wrapped) {

 y = 0;

 }

 }

 else {

 y++;

 }

 break;

 case EAST:

 if (x == dimensions.x - 1) {

 if (wrapped) {

Team Thirteen XVII

 x = 0;

 }

 }

 else {

 x++;

 }

 break;

 case SOUTH:

 if (y == 0) {

 if (wrapped) {

 y = dimensions.y;

 }

 }

 else {

 y--;

 }

 break;

 case WEST:

 if (x == 0) {

 if (wrapped) {

 x = dimensions.x;

 }

 }

Team Thirteen XVIII

 else {

 x--;

 }

 break;

 default:

 break;

 }

 crash = (status[y][x] > 0);

 status[y][x]++;

 x++;

 y++;

 if (crash) {

 x = -x;

 y = -y;

 }

 return new Point(x, y);

 }

 public void updateIntersection(Point point) {

 int x = point.x - 1;

 int y = point.y - 1;

 status[y][x]++;

 }

Team Thirteen XIX

}

package basic;

import java.awt.Point;

import java.util.ArrayList;

import java.util.Iterator;

public class Car {

 public static class Result {

 private Move move;

 private Point destination;

 private boolean crash;

 public Result (Move move, Point destination, boolean crash) {

 this.move = move;

 this.destination = new Point(destination);

 this.crash = crash;

Team Thirteen XX

 }

 public Move getMove() {

 return move;

 }

 public void setMove(Move move) {

 this.move = move;

 }

 public Point getDestination() {

 return destination;

 }

 public void setDestination(Point destination) {

 this.destination = destination;

 }

 public boolean isCrash() {

 return crash;

 }

 public void setCrash(boolean crash) {

Team Thirteen XXI

 this.crash = crash;

 }

 public String toString() {

 return String.format("Moved %s to (%d, %d). Crashed? %b", move, destination.x,

destination.y, crash);

 }

 }

 private Point origin;

 private ArrayList<Point> destination;

 private ArrayList<Result> results;

 private Point location;

 private boolean arrived = false;

 private int totalMoves = 0;

 public Car() {

 results = new ArrayList<Result>();

 destination = new ArrayList<Point>();

 }

Team Thirteen XXII

 public Point getOrigin() {

 return origin;

 }

 public void setOrigin(Point origin) {

 this.origin = new Point(origin);

 Grid.getCurrentGrid().updateIntersection(origin);

 this.location = this.origin;

 }

 public ArrayList<Point> getDestination() {

 return destination;

 }

 public ArrayList<Result> getResults() {

 return results;

 }

 public Point getLocation() {

 return location;

 }

 public void setLocation(Point location) {

Team Thirteen XXIII

 this.location = location;

 }

 public boolean move() {

 if (!arrived) {

 Move direction = Move.getRandomMove();

 Point tempResult = Grid.getCurrentGrid().update(location, direction);

 Result result;

 boolean crash = false;

 boolean deleting = false;

 Iterator<Result> iterator;

 if (tempResult.x < 0) {

 crash = true;

 tempResult.x = -tempResult.x;

 tempResult.y = -tempResult.y;

 }

 result = new Result(direction, tempResult, crash);

 iterator = results.iterator();

 while (iterator.hasNext()) {

 Result searchResult = iterator.next();

 if (deleting) {

 iterator.remove();

 }

Team Thirteen XXIV

 else {

 if (searchResult.getDestination().equals(tempResult)) {

 iterator.remove();

 deleting = true;

 }

 }

 }

 results.add(result);

 totalMoves++;

 location = tempResult;

 arrived = destination.contains(tempResult);

 return arrived;

 }

 else {

 return true;

 }

 }

 public int getTotalMoves() {

 return totalMoves;

 }

}

	Contents
	 “The flapping of a single butterfly’s wing today produces at tiny change in the state of the

