
River Otters
And
Their Effect on
Riverine Ecosystems

New Mexico
Supercomputing Challenge
Final Report
April 2, 2008

Team Number: 59
Los Alamos Middle School

Team Members:

Thomas Henderson
Johnny Jacobs
Steven McCrory
Jack Mockler
Simon Redman
Marie-Luise Schmidt

Executive Summary

We researched the North American River Otter and factors that affect them to put in our

model. Then we narrowed the factors down to two or three. We used three programming

languages to model the otter’s success in their environment. We learned the programming

languages and became better programmers. We hoped to obtain the same results from at least

two of our models, but we did not because none of the models were completed. To the best of

our knowledge, these are the first models that represent river otters in New Mexico.

Introduction

The object of our project is to create a model of the events that would occur if the New

Mexico Department of Game and Fish reintroduced river otters into the Rio Grande

environment. River otters were originally native to New Mexico until they became extinct for

unknown reasons. They have been planning to do this for some time, and were planning to

reintroduce the otters last fall but were delayed. If we could create an accurate model, then we

might be able to advise the New Mexico Department of Game and Fish how, when, and where to

release the otters. We might also tell them the minimum number of otters that can be released

while still achieving success. Since otters are fairly expensive we could allow them to spend the

least amount of money on this project, letting them have more money for other projects. This

would also maximize the profit that otters give to New Mexico.

Problem Statement

Our overall mission is to answer the question: what is the feasibility of reintroducing

river otters into New Mexico?

Description of the problem

Our research problem is to help reintroduce river otters into the central Rio Grande. The

native population of river otters is thought to be extinct. Critics believe that the otters will not

survive in New Mexico, based on the extinction of the native otters. Because the river otters are

extinct, the New Mexico department of game and fish is attempting to reintroduce otters for

economic benefit. They also think the otters will eat invasive species of fish and crayfish. Many

anglers and game fishers are opposed to the idea of reintroducing the otters, because the native

fish populations might be harmed by them.

Our main purpose in this project is to hopefully help the Department of Game and Fish

decide whether or not to reintroduce the otters. To reach this goal we first researched otters and

their prey to get enough information to make a realistic model, possibly in several different

languages. After this we made a model to represent the otters lives in the central Rio Grande.

This will hopefully help determine whether river otters would survive in the central Rio Grande.

For our models we chose an agent based modeling system to model how the otters would

survive in an ecosystem similar to a river based ecosystem. An agent based model is a model

which simulates many objects, or agents that follow a prescribed set of rules that control their

actions. The reason we chose an agent-based model over a mathematical model is that a

mathematical model requires advanced mathematics. Our group is not that skilled in math, so

Figure 1: Possible Otter Introduction Site

probably could not easily learn the mathematics involved in a mathematic model. To prepare for

the model we created a spreadsheet of all the possible agents and simplified to a few for the

models. The spreadsheet is shown in Appendix A. In the spreadsheet we accounted for the

following:

Look at all the factors or “agents” that impact the outcome

Agents considered:

Otters

Fish (both slow fish and fast fish)

Crayfish

Otter competitors (muskrats, raccoons, etc.)

Environment (pollution, vegetation, burrows)

Other Factors

Fish food (insects)

Agent Characteristics

Representation of reproduction

Calculate fish population as otter numbers grow

Determine otter range and population

Track otters age and health

Game fish populations

Invasive fish populations

Crayfish populations

The following programming languages were used:

1) Starlogo TNG

2) Netlogo

3) Java (Madkit)

Team Work

The otter team consists of six members, and working with a team on a project of this size was a

new experience for all the team members. All team members were initially involved in the

research step and all contributed papers and articles from the Internet and other sources, the most

important of which are in the Bibliography.

Most of the team members expressed an interest in modeling and coding and wanted to

opportunity to learn more about different languages and approaches. Four team members,

Thomas, Johnny, Jack and Simon focused on modeling and computers, with Thomas and Johnny

producing the StarLogo TNG models in this report. Jack focused on NetLogo and the NetLogo

model in this report is his. Simon chose the Java/Madkit approach and his model is presented

below.

All team members were involved in the grueling task of creating the final report and, without

serious bodily injury to any of the team members or supporting helpers, managed to create this

document.

Starlogo TNG Model 1

(program blocks can be found in Appendix B page 16)

One of our computer models

was done in Starlogo TNG. We find that Starlogo TNG provides more of a visual representation

of what is going on than other programs such as Netlogo, or Java. Our agents are fast fish, slow

fish, otters, hiding spots, bushes, and trees. The slow fish represent crayfish and other bottom

feeders. The fast fish represent game fish such as trout and bass. The otters eat slow fish and fast

fish. They can also breed with each other. The fast fish breed and the slow fish breed and hide in

the hiding spots. Whenever an agent collides with another agent of the same type it has a fifty-

percent chance of breeding. The otters only breed when they are on land. We make the slow fish

hide by saying that it cannot move when it collides with a hiding spot. The slow fish also shrink

and turn green when they hide. Our model represents a small stretch of a New Mexican river in

which the fish and otters thrive together. Currently, when we run our model for about ten

minutes, the fast fish reproduce until they reach about 100, the otters reach about 50. The slow

fish however stay about the same as when they started due to the fact that when they hide they

never come out from hiding. This is probably the most unrealistic factor in our model.

Figure 3: Number of Slow Fish vs. Time Step

Figure 2: Visual Representation of Model

Some of the factors that we were not able to put in were the effects of time on the agents,

environmental effects, anglers, and otter competitors. Before we can add these factors we will

need more experience in Starlogo TNG. At this point in time, we have a working knowledge of

approximately half the blocks in the program, but there are still many more to learn about.

Figure 5: Number of Otters vs. Time Step

Figure 4: Number of Fast Fish vs. Time Setup

Starlogo TNG Model 2

In our model we have three agents. The first agent is the otters. The next is the fish that

the otters feed on. Third, we have muskrats which compete with the otters for food. Since the

different agents represent different animals, they interact differently with each other. The otters

and muskrats both eat a fish when they collide with it. When any two agents of the same type

collide they breed making more identical agents. When muskrats run into a certain color of

ground, representing a river bank, they dig a burrow, which the otters use to breed.

Our model represents the real world in some ways but not others because of limitations in

the program and our modeling experience. In the real world, there are usually one to two otters

per mile of river. In our model we cannot show this because there are so many fish in one mile of

river that the computer lags and freezes. Otters eat ten fish a day so if our model included time,

we might be able to model a day of an otter’s life, but we do not have enough modeling

experience to include time. Otters also eat only certain sizes of fish. Fish reach a certain size

when they are a certain age, so again we could only model this if we had enough programming

experience to make time in our model. Otters prefer certain fish over others, such as slow fish,

like carp, over fast fish, like trout, because slower fish are easier to catch. We don’t have this in

our model because it would take a long time for us to put in and not have many positive effects

on our model.

If we continue this model next year, there is something we would like to do differently.

We would like to change to a different programming language that has less glitches and can

handle more intensive numbers of agents. If this programming language has improved in any

extensive way by next year we might use it again.

Figure 6: Starlogo TNG Model 2 Results

Netlogo Model

(code can be found in Appendix C, page 17)

In the Netlogo model there are three agents. These agents are carp, trout, and otters.

There are also insects modeled as patches for the fish to eat. All of the agents age and eventually

die. The agents gain energy from eating, and lose energy by moving, and reproducing. All of the

agents reproduce one time per year, but only if they are a certain age. They can have a certain

number of babies each year. The otters eat only when their energy drops below a set value called

“idealhealth”. If their ideal health is reached they do not eat again until it drops below

“idealhealth”. The fish gain weight as they grow older and give more energy to the otter who eats

them the larger they are (Figure 7 shows the plot of fish size as they grow older). Fish eat insect

patches and a larger fish will eat a smaller fish.

Figure 7: Fish Growth Rate in Netlogo Model

Netlogo Model Results

The results of the net logo model are that the fish will die out about four years

after the otters are reintroduced, causing the otters to die as well. These results are almost

certainly not accurate however because the model is not realistic. The otters do not breed the way

they should and the number of fish has to get too high for our computer to handle for the model

to reach an equilibrium. The model also does not have crayfish in it, which are one of the otters

main sources of food. (Figure 8 shows a plot of the agent numbers as time passes in the model).

Figure 8: Netlogo Model Results (4 years)

Netlogo Model Future Work

If we work on this model in the future there are several things we would add to make it

better. For one thing we would add crayfish into the model. This would make it more realistic

and might help to stabilize the model. Another thing we would add would be a more accurate

representation of otter reproduction. This would take some work, but would probably keep the

otter population lower and let more fish survive to breed. One other thing we would add would

be more realistic data. The more realistic the model gets, the better results it gives so it is always

good to add as much data as possible. These are the three main things we would add to our

model.

The Java Model

(code can be found in Appendix D, page 22)

The Java model has some accurate features, but, like all the other models, there are some

problems. One problem is that the area in which the otters and fish live is approximately three

screens long. This means that not everything in the model can be seen at once. However, it has

some advantages. We have decided that one screen is equal to one mile, which allows us to

model three miles of river.

Another problem is that our

computer lags when there are too

many agents in the model. This

means that it will be hard to

accurately model an ecosystem.

One thing that might fix these

problems is scaling the model.

One other problem is that the fish

starve. Even if there are no

predators the fish still die, or at

least dwindle down to very low

numbers from lack of food.

The model currently holds

thirty otters, but does not have the

computing power to hold enough

fish. It outputs the statistics of all

the populations, which makes it

easier to see and graph.
Figure 9: Java Model Screenshot

Conclusion

We have developed models to represent a riverine ecosystem in New Mexico with river otters. To

our knowledge we are the first ones to attempt such simulations. We divided the team into three

sub-groups that each worked on different models. We did this to better validate our results. The

three programming languages that we used were Starlogo TNG, Netlogo, and Java. Starlogo

TNG had superior graphics but bogged down the computer and lagged. Netlogo was much

harder to learn and had less sophisticated graphics, but was able to make a much more

complicated model before it began to lag and hit glitches (which was not a problem in our

Netlogo model). The Java language was the hardest of all to learn but had the potential to make

a much more complicated model. We did not get very far in our Java model because it was so

difficult to learn.

Once we were finished modeling they all needed more work, and we did not come to any

definite conclusion about the otters based on our models. Our models show that the otters and /or

the fish will die within a few years. However, the models are not entirely accurate. Judging by

our research , we still believe they would be able to live in certain places in New Mexico, such as

the central Rio Grande and possibly the Gila River. The models were successful to varying

degrees. We are looking forward to continuing this project next year.

Bibliography

1. Greer, K. 1955. Yearly Food Habits of the River Otter in the Thompson Lakes region, northwestern

Montana, as indicated by scat analyses. The American Midland Naturalist. 54(2) p. 299-313.

2. Hansen, Heidi. 2003. Food Habits of the North American River Otter. Unpublished manuscript.

University of Wyoming. 7 pp.

3. Kroeger, Timm. 2005. Economic Benefits of reintroducing the River otter into rivers in New Mexico.

Prepared for Amigos Bravos, 35 pp.

4. New Mexico Dept. of Game and Fish. 2006. Feasibility Study: Potential for restoration of river otters

in New Mexico. Review Draft. 59 pp.

5. Savage, M. and Klingel, J., 2003. The Case for River Otter Restoration in New Mexico. A Report to

the River Otters Working Group. The Four Corners Institute, Santa Fe, NM. 10 pp.

6. Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo. Center for Connected Learning and

Computer-Based Modeling. Northwestern University, Evanston, IL.

7. Wilensky, U. (1997). NetLogo Wolf Sheep Predation model.

http://ccl.northwestern.edu/netlogo/models/WolfSheepPredation. Center for Connected Learning and

Computer-Based Modeling, Northwestern University, Evanston, IL.

8. Madkit Simulation is based on code by, and copyright to : Fabien Michel

9. Starlogo TNG, http://education.mit.edu/starlogo-tng, MIT Media Laboratory

Acknowledgments:

Our programming mentor: Rueben Guadiana

Our school sponsor: Mrs. Le-Ann Salazar

And to all of our wonderful parents who helped us to complete the challenge marathon

http://education.mit.edu/starlogo-tng

Appendix A. Agent Spreadsheet

Otters Crayfish Tadpoles Insects Amphibians Small mammals Plants Mollusks Algae Bacteria Anglers Pollution Muskrats Beavers Nutrias Cows

Otters no direct effect need research no direct effect bacteria kills kills otters pollution kills Need research Need research

eat each other compete for food compete for food bacteria kills pollution kills need research affect habitat Need research Need research

compete for food compete for food bacteria kills pollution kills need research affect habitat Need research Need research

Crayfish compete for food food for crayfish food for crayfish food for crayfish bacteria kills no direct effect pollution kills need research affect habitat Need research Need research

compete for food bacteria kills pollution kills need research affect habitat Need research Need research

Tadpoles compete for food food for tadpoles eat plants?? food for tadpoles bacteria kills no direct effect pollution kills need research affect habitat Need research Need research

Insects food for insects bacteria kills no direct effect pollution kills need research affect habitat Need research Need research

Amphibians bacteria kills pollution kills need research affect habitat Need research Need research

Small mammals bacteria kills no direct effect pollution kills need research affect habitat Need research Need research

Plants no direct effect bacteria kills pollution kills need research Need research Need research

Mollusks 7 bacteria kills pollution kills need research Need research Need research

Algae no direct effect bacteria kills no direct effect pollution kills need research no direct effect Need research Need research

Bacteria no direct effect no direct effect pollution kills need research bacteria kills? Need research Need research

Anglers compete pollution hurts need research affect habitat Need research Need research

Pollution no direct effect pollution kills pollution kills Need research Need research

Muskrats Need research Need research

Beaver Need research Need research

Nutrias Need research

Cows

Slowfish Ffish Bottomfeeders

otters
reproduce,
compete for food

preferred food
for otters

occasional food
for otters

occasional food
for otters, exotic

preferred food
for otters

occasional food
for otters

occasional food
for otters

occasional food
for otters

occasional food
for otters

dens used by
otters, compete
for food and
habitat with
otters,

dens are used
by otters

Sfish

eat each other,
compete for
food, reproduce food for slowfish food for slowfish

occasional food
for slowfish

occasional food
for slowfish food for slowfish food for slowfish kill slowfish

Ffish
eat each other,
reproduce food for fastfish food for fastfish

occasional food
for fastfish

occasional food
for fastfish food for fastfish food for fastfish kill fastfish

reproduce,
compete for food

compete for
food, crayfish
eat tadpoles

amphibians eat
crayfish

sm mammals
eat crayfish

Bottomfeeders
reproduce,
compete for food

food for
bottomfeeders

food for
bottomfeeders

sm mammals
eat
bottomfeeders

food for
bottomfeeders

food for
bottomfeeders

occasionally
kills
bottomfeeders

tadpoles are
amphibians

small mammals
eat tadpoles

reproduce,
compete for food

insects are food
for amphibians

insects are food
for small
mammals

plants provide
habitat for
insects

reproduce,
compete for food

small mammals
eat amphibians

plants provide
habitat for

food for
amphibians

anglers eat frog
legs

reproduce,
compete for food

plants provide
habitat and food

food for small
mammals

compete,
pollination

anglers trample
plants; plants
impede anglers

beavers eat
plants, and use
for houses
(willow,
cottonwood)

reproduce,
compete,

anglers
trample?

beavers eat
mollusks?

reproduce,
compete for food

compete for
habitat, food?

reproduce,
compete for food

reproduce,
compete for food

reproduce,
compete for food

Appendix B: Starlogo TNG Model 1 Program Blocks

Appendix C: Netlogo Code

breed [otters otter]
breed [s-fishes s-fish]
breed [trouts trout]
turtles-own [energy age reptime weight]
globals [year tmpage]
patches-own [countdown]

to setup
 clear-all
 set year 1825
 ask patches [set pcolor blue]
 if insects? [
 ask patches [
 set countdown random insect-regrowth-time
 set pcolor one-of [black blue]
]
]
 set-default-shape otters "turtle"
 create-otters initial-number-otter
 [
 set color brown
 set size .5
 set label-color blue - 2
;; set energy random (2 * otter-gain-from-food)
 set energy idealhealth
 set age 2
 set reptime random 1825
 setxy random-xcor random-ycor
]
 set-default-shape s-fishes "fish"
 create-s-fishes initial-number-s-fish
 [
 set color gray
 set size .3
 set label-color blue - 2
 set energy random (2 * s-fish-gain-from-food)
 set age random 8
 set weight age * 2
 if age > 5 [set weight 10]
 set reptime 1825
 setxy random-xcor random-ycor
]
 set-default-shape trouts "trout"
 create-trouts initial-number-trout
 [
 set color yellow
 set size .3
 set label-color blue - 2
 set energy random (2 * s-fish-gain-from-food)
 set age random 8
 set weight .25 * age
 if age >= 2 [set weight .6 * age + .22]

 set reptime 1825
 setxy random-xcor random-ycor
]
 display-labels
 update-plot
end

to go
 if not any? turtles[stop]
 ask s-fishes [
 move
 eat-baby
 eat-trout-baby
 if insects? [
 set energy energy - .1
 eat-insects
]
 s-fish-reproduce
 get-old
 death
]
 ask otters [
 move-otter
 set energy energy - 1.
 catch-s-fish
 catch-trout
 otter-reproduce
 get-old
 death
]
 ask trouts [
 move
 eat-baby
 eat-trout-baby
 if insects? [
 set energy energy - .1
 eat-insects
]
 trout-reproduce
 get-old
 death
]
 if insects? [ask patches [grow-insects]]
 tick
 update-plot
 display-labels
 show mean [energy] of otters
end

to move
rt random 90
lt random 90
fd random 5
end

to move-otter

rt random 90
lt random 90
fd random 7
end

to move-trout
rt random 90
lt random 90
fd random 9
end

to eat-insects
if energy < 100 [
 if pcolor = black [
 set pcolor blue
 set energy energy + s-fish-gain-from-food
]
]
end

to trout-reproduce
if random-float 100 < reproduce-s-fishes and age > 3 and reptime > year [
 set reptime 0
 hatch 5 [rt random-float 360 fd random 5 set age 0 set reptime 0]
 set energy (energy - 1)
]

end

to s-fish-reproduce
if random-float 100 <= reproduce-s-fishes and age > 1 and reptime > year [
 set reptime 0
 hatch 50 [rt random-float 360 fd random 5 set age 0 set reptime 0]
set energy (energy - 3)
]

end

to otter-reproduce
if random-float 1 < reproduce-otter and age > 2 and reptime > year[
show reptime
show age
set reptime -1825
set energy (energy / 10)
hatch 2 [rt random-float 360 fd 6 set age 0 set reptime 0 set energy idealhealth / 4]
]
end

to catch-s-fish
if energy < idealhealth [
 let prey one-of s-fishes-here
 if prey != nobody [
 if random 7 >= random 5 [
 ask prey [set tmpage weight]
 ask prey [die]

 set energy energy + otter-gain-from-food * tmpage
]
]
]
end

to catch-trout
if energy < idealhealth [
 let prey one-of trouts-here
 if prey != nobody [
 if random 7 >= random 9 [
 ask prey [set tmpage weight]
 ask prey [die]
 set energy energy + otter-gain-from-food * tmpage
]
]
]
end

to eat-baby
if age > 1 and random 100 < 10 [
 let prey one-of s-fishes-here
 if prey != nobody [
 ask prey [set tmpage age]
 if tmpage < 1 [
 ask prey [die]
 set energy energy + s-fish-gain-from-food]
]
]
end

to eat-trout-baby
if age > 1 and random 100 < 10 [
 let prey one-of trouts-here
 if prey != nobody [
 ask prey [set tmpage age]
 if tmpage < 1 [
 ask prey [die]
 set energy energy + s-fish-gain-from-food]
]
]
end

to death
if energy < 0 [die]
if age > 10 [die]
end

to grow-insects
if pcolor = blue [
ifelse countdown <= 0
[set pcolor black
set countdown insect-regrowth-time]
[set countdown countdown - 1]
]
end

to update-plot
set-current-plot "populations"
set-current-plot-pen "s-fish / 100"
plot count s-fishes / 100
set-current-plot-pen "otter"
plot count otters
set-current-plot-pen "trout / 10"
plot count trouts / 10
if insects? [
set-current-plot-pen "insects / 4"
plot count patches with [pcolor = black] / 4

]
end

to display-labels
ask turtles [set label ""]
if show-energy? [
ask otters [set label round energy]
if insects? [ask s-fishes [set label round energy] ask trouts [set label round energy]]
]
if show-age? [
ask turtles [set label round age]
]
end

to get-old
set age age + 5.48e-4
set reptime reptime + 1
end

Appendix D: Java/Madkit Code

/*
 * OtterLauncher.java -TurtleKit - A 'star logo' in MadKit
 * Copyright (C) 2000-2002 Fabien Michel
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */
package turtlekit.simulations.otters;

import turtlekit.kernel.Launcher;

/** Otter simulation launcher

 @author Fabien MICHEL
 @version 1.1 6/12/2000 */

@SuppressWarnings("serial")
public class OtterLauncher extends Launcher {

public static final String SIMULATION_NAME = "OTTER";

/** The launcher. We need this to add agents. */
public static OtterLauncher otterLauncher;
/**
 *
 */
int numberOfprey = 500; // 1000;
int numberOfpredator = 2;
int numberOfInsects = 3000; //This is constant, one dies, one is made.
int predatorVision = 6;
int preyVision = 5;

public OtterLauncher() {
setCyclePause(10);
setSimulationName(SIMULATION_NAME);
setWidth(1000);
setHeight(100);

}

public void setNumberOfprey(int add) {
numberOfprey = add;

}

public int getNumberOfprey() {
return numberOfprey;

}

public void setPredatorVision(int add) {
predatorVision = add;

}
public void setpreyVision(int add) {

preyVision = add;
}
public int getPredatorVision() {

return predatorVision;
}
public int getPreyVision() {

return preyVision;
}
public void setNumberOfpredator(int add) {

numberOfpredator = add;
}

public int getNumberOfpredator() {
return numberOfpredator;

}

public void setNumberOfInsects(int add) {
numberOfInsects = add;

}

public int getNumberOfInsects() {
return numberOfInsects;

}

public void addSimulationAgents() {
otterLauncher = this; // save the launcher.
setCyclePause(10);

for (int i = 0; i < numberOfprey; i++) {//add the prey with the method addTurtle
Fish fish = new Fish(preyVision);
addTurtle(fish);

}
for (int i = 0; i < numberOfpredator; i++) { //add the predator with the method addTurtle

Otter otter = new Otter(predatorVision);
addTurtle(otter);

}

for (int i = 0; i < numberOfpredator; i++) { //add the predator with the method addTurtle
OtterCompetitor otter = new OtterCompetitor(predatorVision);
addTurtle(otter);

}
for (int i = 0; i < numberOfInsects; i++) { //add the predator with the method addTurtle

Insect insect = new Insect();
addTurtle(insect);

}
// add a statistics agent
StatisticsAgent statisticsAgent = new StatisticsAgent();
addTurtle(statisticsAgent);

addViewer(6); // we choose a default viewer with a cell size of 3

}

/** Adds a new otter. */
public void newOtter() {

Otter otter = new Otter(predatorVision);
addTurtle(otter);

}
/** Adds a new fish.. */
public void newFish() {

Fish fish = new Fish();
addTurtle(fish);

}
/** Adds a new insect. */
public void newInsect() {

Insect insect = new Insect();
addTurtle(insect);

}

}

/*
 * Otter.java -TurtleKit - A 'star logo' in MadKit
 * Copyright (C) 2000-2002 Fabien Michel
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 *
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */
package turtlekit.simulations.otters;

import java.awt.Color;

import turtlekit.kernel.Turtle;

/**
 * A Otter
 *
 *
 */

@SuppressWarnings("serial")
public class Otter extends MyTurtle {

public static final String OTTER_ROLE = "otter";

/** We'll start chasing fish when we're half hungry. Since we
 * need to eat two fish per day and this is counted in cycles,
 * half hungry is half a day.
 */
public static final int FISH_HEALTH_ADDER = DAY/10;

/** The vision radius is used to decide how easily the
 * otter can see the fish.
 */
protected int visionRadius;

/** The health of the otter. This is 0-1000 and decrease by one each cycle.
 * a zero otter is a dead otter.
 */
protected int health;

/** The constructor. The vision radius is used to decide how easily the
 * otter can see the fish.
 * @param visionRadius
 */
public Otter(int visionRadius) {

super("live");
this.visionRadius = visionRadius;

}

public void setup() {
// Random generator = new Random();
playRole(OTTER_ROLE);
randomHeading();
setColor(Color.red);
if (countTurtlesHere() > 0) {

fd(10);
}
health = DAY;

}

public String live() {
setHeading(towardsAFish(visionRadius));
// once a year (cycleCount % YEAR), we'll bred.
// For simplicity, if we're not hungry we'll have a 50% chance of producing an otter
// (Males don't reproduce, some females have more than one pup, but some have none)
// Only 2+ year old otters bred
if (cycleCount > YEAR*2 && health >= FISH_HEALTH_ADDER && cycleCount != 0 &&

(cycleCount % YEAR == 0)) {
//if (random.nextBoolean()) { // only works for 50%
if (random.nextInt(2) > 0) { // pick an integer and a max/min

OtterLauncher.otterLauncher.newOtter();
}

}
health--;
if (health <= -WEEK*4) { // we can survive a week without food, if we haven't eaten in a week,

we're dead
return null; // dead

}
move();
cycleCount++; // increment the cycle count, we survived another round
return "live";

}

void move() {
int speed = random.nextInt(5);
if (health < 25) {

speed += 1; // hungry
}
else if (health > 75) {

speed = 1; // why bother to move I'm full
}
//System.out.println("OTTER " + (speed + 1));
if (countTurtlesAt(dx(), dy()) > 0) {

turnRight(50);
}
if (countTurtlesAt(dx(), dy()) > 0) {

turnLeft(100);
}
if (countTurtlesAt(dx(), dy()) == 0) {

fd(speed + 1);
}
else {

turnRight(50);
}

}

/** Move towards a fish. We'll only do this if we're hungry, that is, if health is down a fish. */
double towardsAFish(int radius) {

if (health < FISH_HEALTH_ADDER) { // we won't chase fish unless we're down a fish (this
number could be adjusted. */

for (int i = -radius; i <= radius; i++) {
for (int j = -radius; j <= radius; j++) {

if (!(i == 0 && j == 0)) {
Turtle[] tur = turtlesAt(i, j);
if (tur != null && tur.length > 0 &&

tur[0].isPlayingRole("fish")) { // instead of "instanceof". So fish can be another java class
return towards(tur[0].xcor(), tur[0].ycor());

}
}

}
}

}
return Math.random() * 180;

}

/** Increase our heath, we caught a fish. */
public void caughtFish() {

// two fish per day for optimum health
// we caught one for today, if we go through here twice, then we'll have enough.
// HOWEVER, we won't start trying to catch fish unless we're half way hungry.
health += FISH_HEALTH_ADDER;

}

/** Returns the health. */
public int getHealth() {

return health;
}

}
* Fish.java -TurtleKit - A 'star logo' in MadKit
 * Copyright (C) 2000-2002 Fabien Michel
 * Copyright (C) 2008 Simon Redman
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */
package turtlekit.simulations.otters;

import java.awt.Color;
import java.util.Random;

import turtlekit.kernel.Turtle;

/** A Fish
 */

@SuppressWarnings("serial")
public class Fish extends MyTurtle {

public static final String FISH_ROLE = "fish";

/** We
 * need to eat two bugs per day and this is counted in cycles,
 */
public static final int INSECT_HEALTH_ADDER = DAY/2;

/** the health of the fish. This is zero-1000 and decreases one per cycle but goes
 * up 100 each time an insect is eaten.
 */
protected int health;

/** The vision radius is used to decide how easily the
 * otter can see the fish.
 */
protected int visionRadius;

/** The constructor. The vision radius is used to decide how easily the
 * fish can see the insects.

 * @param visionRadius
 */
public Fish(int visionRadius) {

super("live");
this.visionRadius = visionRadius;

}

public Fish() {
//first behavior to do (here it is the only behavior of this turtle)
super("live");

}

public void setup() {
setRole(FISH_ROLE);
randomHeading();
setColor(Color.white);
if (countTurtlesHere() > 0) {

fd(1);
}
health = DAY; // need to eat at least twice per week

}

/** The behavior, this is called every cycle. */
public String live() {

// if we've been caught, return null which is our death.
if (caught()) {

return null;
}

health--;
if (health <= -WEEK*2) { // we can survive half a week without food, if we haven't eaten in half

a week, we're dead
//return null; // dead

}

// twice a year, we'll bred.
// For simplicity, if we're not hungry we'll have a chance to produce between 0 and 100 fish
// (Males don't reproduce, some females have more than one pup, but some have none)
// Only 2+ year old otters bred
if (health >= INSECT_HEALTH_ADDER && cycleCount != 0 && random.nextInt(500) ==

cycleCount %500) { // (cycleCount % (YEAR/6) == 0)) {
//if (random.nextBoolean()) { // only works for 50%
int offspringCount = random.nextInt(10);
for (int counter = 0 ; counter < offspringCount ; counter++) {

OtterLauncher.otterLauncher.newFish();
}

}

turnRight(Math.random() * 60);
turnLeft(Math.random() * 60);
move();
cycleCount++; // increment the cycle count, we survived another round
return "live";

}

void move() {
Random r = new Random(); // Default seed comes from system time.
int speed = r.nextInt(2);
// int randomizer = r.nextInt(1); // Could be used to futher randomize
// speeds

//System.out.println("FISH " + (speed + 2));
for (int i = 0; i < 4; i++)

if (countTurtlesAt(dx(), dy()) > 0) {
if (Math.random() > .5)

turnRight(Math.random() * 170);
else

turnLeft(Math.random() * 170);
}

// avoid being two on the same patch
if (countTurtlesAt(dx(), dy()) == 0) {

}
fd(speed + 2);

}

/** test if I'm dead. */
boolean caught() {

// this is a double loop. i and j are the coordinates on the screen, so incrementing
// i scans along the X axis. At each point on the X axis, j is incremented so
// the inner loop is scanning the Y axis. So the outer loop scans across, and at
// each point the inner loop scans up and down, so the whole display is scanned
// Ignore the if (true...) line
// The "turtlesAt" finds all the turtles at the given X and Y (i,j)
// but this returns an array, that may be null or have no elements
// if it is not null and has at least one element, then we'll look through for an otter
// (there are probably at least two agents here, the otter and the fish). If we find an
// otter then we're dead (return true).
for (int i = -1; i <= 1; i++) {

for (int j = -1; j <= 1; j++) {
if (true || !(i == 0 && j == 0)) {

Turtle[] tur = turtlesAt(i, j);
Turtle otter = null;
if (tur != null && tur.length > 1) {

for (int counter = 0 ; counter < tur.length ; counter++) {
if

(tur[counter].isPlayingRole(Otter.OTTER_ROLE)) { // instead of "instanceof". So otter can be another java class
otter = tur[counter];

}
}
if (otter != null) {

//System.out.println ("Otter? " + otter);
// if it's really an otter, then we'll indicate that is

caught a fish.
if (otter instanceof Otter &&

((Otter)otter).getHealth() < Otter.FISH_HEALTH_ADDER) {
((Otter)otter).caughtFish();
return true;

}

}
}

}
}

}

//if (cpt > 3) {
// return true;
//} else {
// return false;
//}
// if we escaped the otter then we're still alive!!! ^_^

 return false;
}
double towardsAIncect(int radius) {

if (health < INSECT_HEALTH_ADDER) { // we won't chase an insect unless we're down an
insect (this number could be adjusted. */

for (int i = -radius; i <= radius; i++) {
for (int j = -radius; j <= radius; j++) {

if (!(i == 0 && j == 0)) {
Turtle[] tur = turtlesAt(i, j);
if (tur != null && tur.length > 0 &&

tur[0].isPlayingRole("fish")) { // instead of "instanceof". So fish can be another java class
return towards(tur[0].xcor(), tur[0].ycor());

}
}

}
}

}
return Math.random() * 180;

}
/** Hiding percentage. The percentage depends on how hungry the fish is. If it's full, it'll
 * hide, if it's hungry it'll be more obvious.
 *
 */

 public int hidingPercentage () {
 return INSECT_HEALTH_ADDER-health;
 }

 /** We caught an insect add 100 to the health. */
public void caughtInsect() {

health+= INSECT_HEALTH_ADDER;
}

}
/*
 * Otter.java -TurtleKit - A 'star logo' in MadKit
 * Copyright (C) 2000-2002 Fabien Michel
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */
package turtlekit.simulations.otters;

import java.util.Random;

import madkit.kernel.AgentAddress;
import turtlekit.kernel.Turtle;

/**
 * A Otter
 *
 * @author Fabien MICHEL
 * @version 1.1 17/10/2000
 */

@SuppressWarnings("serial")
public abstract class MyTurtle extends Turtle {

/** The role we are playing. We're assuming only one. */
protected String role;

/** This is the cycle count, it represents how long we've been alive. */
protected int cycleCount;

//OK, here're some totally arbitrary definitions, that may need
tweaking to get it right.

// for now, one cycle = 30 mintes (but the otter only hunts during
daylight, so 12 hours.

/** A Day represented in cycle counts */
public static final int DAY = 1*24; //30*24;

/** A Week represented in cycle counts */
public static final int WEEK = DAY*7;

/** A Year. */
public static final int YEAR = DAY*365;

/** Random number generator for this turtle. */
Random random;

/** Default constructor. */
public MyTurtle() {

super();
random = new Random(); // Default seed comes from system time.

}

/** Required from superclass. */
public MyTurtle(String initMethod) {

super(initMethod);
random = new Random(); // Default seed comes from system time.

}

/** returns the count of this species */
public int getAgentCount() {

AgentAddress[] agents = getAgentsWithRole("Turtlekit", "OTTER",
role);

return agents.length;
}

/** returns the count of this species */
public int getAgentCount(String role) {

AgentAddress[] agents = getAgentsWithRole("Turtlekit", "OTTER",
role);

return agents.length;
}

/** Assume that we are only playing one role. */
public void setRole (String role) {

// I would override this but it's marked as "final" for no good
reason.

playRole(role);
this.role = role;

}

/** Returns the number of DAYS this agent has been alive. */
public int daysAlive () {

return cycleCount/DAY;
}

/** Returns the number of YEARS this agent has been alive. */
public int yearsAlive () {

return cycleCount/YEAR;
}

}
/*
 * OtterLauncher.java -TurtleKit - A 'star logo' in MadKit
 * Copyright (C) 2000-2002 Fabien Michel
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */
package turtlekit.simulations.otters;

import turtlekit.kernel.Launcher;

/** Otter simulation launcher

 @author Fabien MICHEL
 @version 1.1 6/12/2000 */

@SuppressWarnings("serial")
public class OtterLauncher extends Launcher {

public static final String SIMULATION_NAME = "OTTER";

/** The launcher. We need this to add agents. */
public static OtterLauncher otterLauncher;
/**
 *
 */
int numberOfprey = 500; // 1000;
int numberOfpredator = 2;
int numberOfInsects = 3000; //This is constant, one dies, one is made.
int predatorVision = 6;
int preyVision = 5;

public OtterLauncher() {
setCyclePause(10);
setSimulationName(SIMULATION_NAME);
setWidth(1000);
setHeight(100);

}

public void setNumberOfprey(int add) {
numberOfprey = add;

}

public int getNumberOfprey() {
return numberOfprey;

}

public void setPredatorVision(int add) {
predatorVision = add;

}
public void setpreyVision(int add) {

preyVision = add;
}
public int getPredatorVision() {

return predatorVision;
}
public int getPreyVision() {

return preyVision;
}
public void setNumberOfpredator(int add) {

numberOfpredator = add;
}

public int getNumberOfpredator() {
return numberOfpredator;

}

public void setNumberOfInsects(int add) {

numberOfInsects = add;
}

public int getNumberOfInsects() {
return numberOfInsects;

}

public void addSimulationAgents() {
otterLauncher = this; // save the launcher.
setCyclePause(10);

for (int i = 0; i < numberOfprey; i++) {//add the prey with the method addTurtle
Fish fish = new Fish(preyVision);
addTurtle(fish);

}
for (int i = 0; i < numberOfpredator; i++) { //add the predator with the method addTurtle

Otter otter = new Otter(predatorVision);
addTurtle(otter);

}

for (int i = 0; i < numberOfpredator; i++) { //add the predator with the method addTurtle
OtterCompetitor otter = new OtterCompetitor(predatorVision);
addTurtle(otter);

}
for (int i = 0; i < numberOfInsects; i++) { //add the predator with the method addTurtle

Insect insect = new Insect();
addTurtle(insect);

}
// add a statistics agent
StatisticsAgent statisticsAgent = new StatisticsAgent();
addTurtle(statisticsAgent);

addViewer(6); // we choose a default viewer with a cell size of 3

}

/** Adds a new otter. */
public void newOtter() {

Otter otter = new Otter(predatorVision);
addTurtle(otter);

}
/** Adds a new fish.. */
public void newFish() {

Fish fish = new Fish();
addTurtle(fish);

}
/** Adds a new insect. */
public void newInsect() {

Insect insect = new Insect();
addTurtle(insect);

}

}

/*
 * Otter.java -TurtleKit - A 'star logo' in MadKit

 * Copyright (C) 2000-2002 Fabien Michel
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 *
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */
package turtlekit.simulations.otters;

import java.awt.Color;

import turtlekit.kernel.Turtle;

/**
 * A Otter
 *
 *
 */

@SuppressWarnings("serial")
public class Otter extends MyTurtle {

public static final String OTTER_ROLE = "otter";

/** We'll start chasing fish when we're half hungry. Since we
 * need to eat two fish per day and this is counted in cycles,
 * half hungry is half a day.
 */
public static final int FISH_HEALTH_ADDER = DAY/10;

/** The vision radius is used to decide how easily the
 * otter can see the fish.
 */
protected int visionRadius;

/** The health of the otter. This is 0-1000 and decrease by one each cycle.
 * a zero otter is a dead otter.
 */
protected int health;

/** The constructor. The vision radius is used to decide how easily the
 * otter can see the fish.
 * @param visionRadius
 */
public Otter(int visionRadius) {

super("live");

this.visionRadius = visionRadius;
}

public void setup() {
// Random generator = new Random();
playRole(OTTER_ROLE);
randomHeading();
setColor(Color.red);
if (countTurtlesHere() > 0) {

fd(10);
}
health = DAY;

}

public String live() {
setHeading(towardsAFish(visionRadius));
// once a year (cycleCount % YEAR), we'll bred.
// For simplicity, if we're not hungry we'll have a 50% chance of producing an otter
// (Males don't reproduce, some females have more than one pup, but some have none)
// Only 2+ year old otters bred
if (cycleCount > YEAR*2 && health >= FISH_HEALTH_ADDER && cycleCount != 0 &&

(cycleCount % YEAR == 0)) {
//if (random.nextBoolean()) { // only works for 50%
if (random.nextInt(2) > 0) { // pick an integer and a max/min

OtterLauncher.otterLauncher.newOtter();
}

}
health--;
if (health <= -WEEK*4) { // we can survive a week without food, if we haven't eaten in a week,

we're dead
return null; // dead

}
move();
cycleCount++; // increment the cycle count, we survived another round
return "live";

}

void move() {
int speed = random.nextInt(5);
if (health < 25) {

speed += 1; // hungry
}
else if (health > 75) {

speed = 1; // why bother to move I'm full
}
//System.out.println("OTTER " + (speed + 1));
if (countTurtlesAt(dx(), dy()) > 0) {

turnRight(50);
}
if (countTurtlesAt(dx(), dy()) > 0) {

turnLeft(100);
}
if (countTurtlesAt(dx(), dy()) == 0) {

fd(speed + 1);
}
else {

turnRight(50);
}

}

/** Move towards a fish. We'll only do this if we're hungry, that is, if health is down a fish. */
double towardsAFish(int radius) {

if (health < FISH_HEALTH_ADDER) { // we won't chase fish unless we're down a fish (this
number could be adjusted. */

for (int i = -radius; i <= radius; i++) {
for (int j = -radius; j <= radius; j++) {

if (!(i == 0 && j == 0)) {
Turtle[] tur = turtlesAt(i, j);
if (tur != null && tur.length > 0 &&

tur[0].isPlayingRole("fish")) { // instead of "instanceof". So fish can be another java class
return towards(tur[0].xcor(), tur[0].ycor());

}
}

}
}

}
return Math.random() * 180;

}

/** Increase our heath, we caught a fish. */
public void caughtFish() {

// two fish per day for optimum health
// we caught one for today, if we go through here twice, then we'll have enough.
// HOWEVER, we won't start trying to catch fish unless we're half way hungry.
health += FISH_HEALTH_ADDER;

}

/** Returns the health. */
public int getHealth() {

return health;
}

}
* Fish.java -TurtleKit - A 'star logo' in MadKit
 * Copyright (C) 2000-2002 Fabien Michel
 * Copyright (C) 2008 Simon Redman
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */
package turtlekit.simulations.otters;

import java.awt.Color;
import java.util.Random;

import turtlekit.kernel.Turtle;

/** A Fish
 */

@SuppressWarnings("serial")
public class Fish extends MyTurtle {

public static final String FISH_ROLE = "fish";

/** We
 * need to eat two bugs per day and this is counted in cycles,
 */
public static final int INSECT_HEALTH_ADDER = DAY/2;

/** the health of the fish. This is zero-1000 and decreases one per cycle but goes
 * up 100 each time an insect is eaten.
 */
protected int health;

/** The vision radius is used to decide how easily the
 * otter can see the fish.
 */
protected int visionRadius;

/** The constructor. The vision radius is used to decide how easily the
 * fish can see the insects.
 * @param visionRadius
 */
public Fish(int visionRadius) {

super("live");
this.visionRadius = visionRadius;

}

public Fish() {
//first behavior to do (here it is the only behavior of this turtle)
super("live");

}

public void setup() {
setRole(FISH_ROLE);
randomHeading();
setColor(Color.white);
if (countTurtlesHere() > 0) {

fd(1);
}
health = DAY; // need to eat at least twice per week

}

/** The behavior, this is called every cycle. */

public String live() {
// if we've been caught, return null which is our death.
if (caught()) {

return null;
}

health--;
if (health <= -WEEK*2) { // we can survive half a week without food, if we haven't eaten in half

a week, we're dead
//return null; // dead

}

// twice a year, we'll bred.
// For simplicity, if we're not hungry we'll have a chance to produce between 0 and 100 fish
// (Males don't reproduce, some females have more than one pup, but some have none)
// Only 2+ year old otters bred
if (health >= INSECT_HEALTH_ADDER && cycleCount != 0 && random.nextInt(500) ==

cycleCount %500) { // (cycleCount % (YEAR/6) == 0)) {
//if (random.nextBoolean()) { // only works for 50%
int offspringCount = random.nextInt(10);
for (int counter = 0 ; counter < offspringCount ; counter++) {

OtterLauncher.otterLauncher.newFish();
}

}

turnRight(Math.random() * 60);
turnLeft(Math.random() * 60);
move();
cycleCount++; // increment the cycle count, we survived another round
return "live";

}

void move() {
Random r = new Random(); // Default seed comes from system time.
int speed = r.nextInt(2);
// int randomizer = r.nextInt(1); // Could be used to futher randomize
// speeds

//System.out.println("FISH " + (speed + 2));
for (int i = 0; i < 4; i++)

if (countTurtlesAt(dx(), dy()) > 0) {
if (Math.random() > .5)

turnRight(Math.random() * 170);
else

turnLeft(Math.random() * 170);
}

// avoid being two on the same patch
if (countTurtlesAt(dx(), dy()) == 0) {

}
fd(speed + 2);

}

/** test if I'm dead. */
boolean caught() {

// this is a double loop. i and j are the coordinates on the screen, so incrementing
// i scans along the X axis. At each point on the X axis, j is incremented so
// the inner loop is scanning the Y axis. So the outer loop scans across, and at
// each point the inner loop scans up and down, so the whole display is scanned
// Ignore the if (true...) line
// The "turtlesAt" finds all the turtles at the given X and Y (i,j)
// but this returns an array, that may be null or have no elements
// if it is not null and has at least one element, then we'll look through for an otter
// (there are probably at least two agents here, the otter and the fish). If we find an
// otter then we're dead (return true).
for (int i = -1; i <= 1; i++) {

for (int j = -1; j <= 1; j++) {
if (true || !(i == 0 && j == 0)) {

Turtle[] tur = turtlesAt(i, j);
Turtle otter = null;
if (tur != null && tur.length > 1) {

for (int counter = 0 ; counter < tur.length ; counter++) {
if

(tur[counter].isPlayingRole(Otter.OTTER_ROLE)) { // instead of "instanceof". So otter can be another java class
otter = tur[counter];

}
}
if (otter != null) {

//System.out.println ("Otter? " + otter);
// if it's really an otter, then we'll indicate that is

caught a fish.
if (otter instanceof Otter &&

((Otter)otter).getHealth() < Otter.FISH_HEALTH_ADDER) {
((Otter)otter).caughtFish();
return true;

}
}

}
}

}
}

//if (cpt > 3) {
// return true;
//} else {
// return false;
//}
// if we escaped the otter then we're still alive!!! ^_^

 return false;
}
double towardsAIncect(int radius) {

if (health < INSECT_HEALTH_ADDER) { // we won't chase an insect unless we're down an
insect (this number could be adjusted. */

for (int i = -radius; i <= radius; i++) {
for (int j = -radius; j <= radius; j++) {

if (!(i == 0 && j == 0)) {
Turtle[] tur = turtlesAt(i, j);
if (tur != null && tur.length > 0 &&

tur[0].isPlayingRole("fish")) { // instead of "instanceof". So fish can be another java class
return towards(tur[0].xcor(), tur[0].ycor());

}

}
}

}
}
return Math.random() * 180;

}
/** Hiding percentage. The percentage depends on how hungry the fish is. If it's full, it'll
 * hide, if it's hungry it'll be more obvious.
 *
 */

 public int hidingPercentage () {
 return INSECT_HEALTH_ADDER-health;
 }

 /** We caught an insect add 100 to the health. */
public void caughtInsect() {

health+= INSECT_HEALTH_ADDER;
}

}
/*
 * Otter.java -TurtleKit - A 'star logo' in MadKit
 * Copyright (C) 2000-2002 Fabien Michel
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */
package turtlekit.simulations.otters;

import java.util.Random;

import madkit.kernel.AgentAddress;
import turtlekit.kernel.Turtle;

/**
 * A Otter
 *
 * @author Fabien MICHEL
 * @version 1.1 17/10/2000
 */

@SuppressWarnings("serial")
public abstract class MyTurtle extends Turtle {

/** The role we are playing. We're assuming only one. */
protected String role;

/** This is the cycle count, it represents how long we've been alive. */
protected int cycleCount;

//OK, here're some totally arbitrary definitions, that may need
tweaking to get it right.

// for now, one cycle = 30 mintes (but the otter only hunts during
daylight, so 12 hours.

/** A Day represented in cycle counts */
public static final int DAY = 1*24; //30*24;

/** A Week represented in cycle counts */
public static final int WEEK = DAY*7;

/** A Year. */
public static final int YEAR = DAY*365;

/** Random number generator for this turtle. */
Random random;

/** Default constructor. */
public MyTurtle() {

super();
random = new Random(); // Default seed comes from system time.

}

/** Required from superclass. */
public MyTurtle(String initMethod) {

super(initMethod);
random = new Random(); // Default seed comes from system time.

}

/** returns the count of this species */
public int getAgentCount() {

AgentAddress[] agents = getAgentsWithRole("Turtlekit", "OTTER",
role);

return agents.length;
}

/** returns the count of this species */
public int getAgentCount(String role) {

AgentAddress[] agents = getAgentsWithRole("Turtlekit", "OTTER",
role);

return agents.length;
}

/** Assume that we are only playing one role. */
public void setRole (String role) {

// I would override this but it's marked as "final" for no good
reason.

playRole(role);
this.role = role;

}

/** Returns the number of DAYS this agent has been alive. */
public int daysAlive () {

return cycleCount/DAY;

}

/** Returns the number of YEARS this agent has been alive. */
public int yearsAlive () {

return cycleCount/YEAR;
}

}

	Their Effect on
	Riverine Ecosystems
	Introduction

