
IDLE Input
import sys
>>> sys.path.append('E:/Users/Ben/Epi/')
>>> from Epi_Model_4 import *
>>> m1=InfectModel (50000, 100, .1, .2, .3, .4, .5, .6, .4, .5, 6, 14, 20, False, False, False,
False, False, False, .1, .2, .3, .4, .5, .6)
>>> m1.run_steps(25)

Code

Project 2017-2018 ATC - Flu Transmission
Built on Mesa Agent Library from George Mason Univ.
Written by Ben Thorp
ATC-3 Ben Thorp, Alex Baten, Teddy Gonzales
Version 1.1
Added start and stop of contagiousness
Version 1.2
Added HealthCareAccess and HealthLifeStyle
Version 1.3
Added community3 and buses
Version 1.4
Added community4, community5, community6, and age groups

from mesa import Agent, Model
from mesa.time import RandomActivation
import random
from mesa.space import MultiGrid
from mesa.datacollection import DataCollector
import matplotlib.pyplot as plt
from math import exp, expm1

Function that computs the number of infections for graphing
def compute_infections(model):
 total_inf_count = 0
 for cell in model.grid.coord_iter():
 cell_content, x, y = cell
 for human in cell_content:

 if human.infected:
 total_inf_count += 1
 return total_inf_count

Function that computes the number of infections in community 1 for graphing
def compute_infections_c1(model):
 total_inf_count = 0
 for cell in model.grid.coord_iter():
 cell_content, x, y = cell
 for human in cell_content:
 if human.infected:
 if (human.community is 1):
 total_inf_count += 1
 return total_inf_count

Function that computs the number of infections in community 2 for graphing
def compute_infections_c2(model):
 total_inf_count = 0
 for cell in model.grid.coord_iter():
 cell_content, x, y = cell
 for human in cell_content:
 if human.infected:
 if (human.community is 2):
 total_inf_count += 1
 return total_inf_count

Function that computes the number of infections in community 3 for graphing
def compute_infections_c3(model):
 total_inf_count = 0
 for cell in model.grid.coord_iter():
 cell_content, x, y = cell
 for human in cell_content:
 if human.infected:
 if (human.community is 3):
 total_inf_count += 1
 return total_inf_count

Function that computes the number of infections in community 4 for graphing
def compute_infections_c4(model):
 total_inf_count = 0
 for cell in model.grid.coord_iter():
 cell_content, x, y = cell
 for human in cell_content:

 if human.infected:
 if (human.community is 4):
 total_inf_count += 1
 return total_inf_count

Function that computes the number of infections in community 5 for graphing
def compute_infections_c5(model):
 total_inf_count = 0
 for cell in model.grid.coord_iter():
 cell_content, x, y = cell
 for human in cell_content:
 if human.infected:
 if (human.community is 5):
 total_inf_count += 1
 return total_inf_count

Function that computes the number of infections in community 6 for graphing
def compute_infections_c6(model):
 total_inf_count = 0
 for cell in model.grid.coord_iter():
 cell_content, x, y = cell
 for human in cell_content:
 if human.infected:
 if (human.community is 6):
 total_inf_count += 1
 return total_inf_count

Function that computes the number of infections in the bus route for graphing
def compute_infections_b1(model):
 total_inf_count = 0
 for cell in model.grid.coord_iter():
 cell_content, x, y = cell
 for human in cell_content:
 if human.infected:
 total_inf_count += 1
 return total_inf_count

Function that computes the number of infections in the work for graphing
def compute_infections_work(model):
 total_inf_count = 0
 for cell in model.grid.coord_iter():
 cell_content, x, y = cell
 for human in cell_content:

 if human.infected:
 total_inf_count += 1
 return total_inf_count

Function that computes the number of infections in the school for graphing
def compute_infections_school(model):
 total_inf_count = 0
 for cell in model.grid.coord_iter():
 cell_content, x, y = cell
 for human in cell_content:
 if human.infected:
 total_inf_count += 1
 return total_inf_count

Function that computs the immunity for everyone for graphing
def compute_immunity(model):
 total_im_count = 0
 for cell in model.grid.coord_iter():
 cell_content, x, y = cell
 for human in cell_content:
 if human.immunity:
 total_im_count += 1
 return total_im_count

class InfectModel(Model):
 """A Mesa Model to simulate the spread of disease through a home and work environment"""

 # __init__ creates the model
 def __init__(self, N,
 hls_com1, hls_com2, hls_com3, hls_com4, hls_com5, hls_com6, #lowL, highL,
 con_start, con_end_short, con_end_long,
 com1_hca, com2_hca, com3_hca, com4_hca,
 com5_hca, com6_hca, vac_com1, vac_com2,
 vac_com3, vac_com4, vac_com5, vac_com6):
 # N - the total number of humans
 # h - the number of houses or rooms in each environment

 # hls_com1 - the percentage of people in community1
 # that are living a healthy lifestyle
 # hls_com2 - the percentage of people in communtiy2
 # that are living a healthy lifestyle
 # hls_com3 - the percentage of people in communtiy3
 # that are living a healthy lifestyle

 # hls_com4 - the percentage of people in communtiy4
 # that are living a healthy lifestyle
 # hls_com5 - the percentage of people in communtiy5
 # that are living a healthy lifestyle
 # hls_com6 - the percentage of people in communtiy6
 # that are living a healthy lifestyle
 # lowL - a low likelyhood to catch the disease (
 # assosiated with healthy lifestyle)
 # highL - a high likelyhood to catch the disease (
 # assosiated with healthy lifestlye)

 # con_start - when the disease starts to be contagious
 # con_end_short - when the disease stops being contagious with health care
 # con_end_long - when the disease stops being contagious without health care

 # com1_hca - the health care access in community1
 # com2_hca - the health care access in community2
 # com3_hca - the health care access in community3
 # com4_hca - the health care access in community4
 # com5_hca - the health care access in community5
 # com6_hca - the health care access in community6

 # vac_com1 - percentage of vaccinated humans in community1
 # vac_com2 - percentage of vaccinated humans in community2
 # vac_com3 - percentage of vaccinated humans in community3
 # vac_com4 - percentage of vaccinated humans in community4
 # vac_com5 - percentage of vaccinated humans in community5
 # vac_com6 - percentage of vaccinated humans in community6

 self.num_agents = N
 self.grid = MultiGrid(9, 78000, True)
 self.schedule = RandomActivation(self)

 self.community1_hca = com1_hca
 self.community2_hca = com2_hca
 self.community3_hca = com3_hca
 self.community4_hca = com4_hca
 self.community5_hca = com5_hca
 self.community6_hca = com6_hca

 self.con_end_short = con_end_short
 self.con_end_long = con_end_long

 self.vaccinated_com1 = vac_com1
 self.vaccinated_com2 = vac_com2
 self.vaccinated_com3 = vac_com3
 self.vaccinated_com4 = vac_com4
 self.vaccinated_com5 = vac_com5
 self.vaccinated_com6 = vac_com6

 self.healthy_lifestyle_com1 = hls_com1
 self.healthy_lifestyle_com2 = hls_com2
 self.healthy_lifestyle_com3 = hls_com3
 self.healthy_lifestyle_com4 = hls_com4
 self.healthy_lifestyle_com6 = hls_com5
 self.healthy_lifestyle_com5 = hls_com6

 #self.low_likelihood = lowL
 #self.high_likelihood = highL

 # Create N humans for the model
 for i in range(self.num_agents):
 if i% 10000 == 0 :
 print(i)
 a = Human(i, self, con_start)
 self.schedule.add(a)

 #y = random.randrange(self.grid.height)
 self.grid.place_agent(a, (a.community, a.household))

 # Add the agent to a random grid cell
 #if (a.community == 1):
 # x = 0
 #elif (a.community == 3):
 # x = 4
 #elif (a.community == 4):
 # x = 6
 #elif (a.community == 5):
 # x = 7
 #elif (a.community == 6):
 # x = 8
 #else:
 # x = 1

 # Initialize timestep
 self.timestep=0
 #self.day=True
 self.transportation_cycle = 0

 # Initialize the software that collects the data each timestep
 self.datacollector = DataCollector(
 model_reporters={"Community1": compute_infections_c1,
 "Community2": compute_infections_c2,
 "Community3": compute_infections_c3,
 "Community4": compute_infections_c4,
 "Community5": compute_infections_c5,
 "Community6": compute_infections_c6,
 #"Work Place": compute_infections_work,
 #"School": compute_infections_school,
 #"Public Transport": compute_infections_b1,
 "Immunity": compute_immunity,
 "Total Infections": compute_infections,

 }
)

 def step(self):
 # Collects the data for this timestep
 self.datacollector.collect(self)

 self.schedule.step()
 self.timestep+=1
 self.transportation_cycle = (self.timestep % 4)

 # run_steps steps the model forword for "steps" (days/nights)
 def run_steps(self, steps):
 for i in range(steps*4):
 if i%4 == 0:
 s='Day: ' + str(i//4)
 print(s)
 # Quadupling steps makes correct number of day/night/bus cycles
 # Because a day/night cycle takes two timesteps
 self.step()
 inf_data = self.datacollector.get_model_vars_dataframe()
 inf_data.plot()
 plt.show()

class Human(Agent):
 """An agent that represents one human in the model"""
 def __init__(self, unique_id, model, con_start):
 # unique_id - the human's id number
 # model - the Mesa simulation class
 # likelihood - the chance that the infection spreads from one human to another
 # con_start - when the disease starts to be contagious

 # Call the Mesa agent setup
 super().__init__(unique_id, model)

 # Initialize the human variables
 tempa = [1, 2, 3, 4, 5, 6]
 com_size_weights = [.34, .10, .14, .22, .13, .07]
 temp = random.choices(tempa, weights=com_size_weights, k=1)
 self.community = temp[0]
 #self.household=random.randrange(model.grid.height)
 tempb = model.num_agents
 tempc = com_size_weights[(self.community) - 1]
 self.household=random.randrange(int(tempb * tempc * 0.3))
 #self.schoolroom=random.randrange(model.grid.height)
 self.schoolroom=random.randrange(int(model.num_agents/25))
 #self.workroom=random.randrange(model.grid.height)
 self.workroom=random.randrange(int(model.num_agents/100))
 #self.bus_number=random.randrange(model.grid.height)
 self.bus_number=random.randrange(int(model.num_agents/30))

 # Initialize the age to match Albuquerque's age profile
 self.age = self.my_age()

 # Initializes the age bracket
 self.ic = [[0.00061,0.00033,0.00080], [0.00053,0.00032,0.00080],
[0.00057,0.00029,0.00102]]

 self.bracket_youth = 0
 self.bracket_adult = 1
 self.bracket_elderly = 2

 if self.age >= 5 and self.age <= 18:
 self.age_bracket = self.bracket_youth

 elif self.age >= 19 and self.age <= 65:
 self.age_bracket = self.bracket_adult

 elif self.age >= 66 and self.age <= 95:
 self.age_bracket = self.bracket_elderly

 else:
 print ("Something went wrong when assigning ages")

 # Initialize disease variables
 # self.likelihood = likelihood
 #tmp_rnd = random.random()
 #if self.community == 1:
 # if (tmp_rnd <= model.healthy_lifestyle_com1):
 # self.likelihood = model.low_likelihood
 # else:
 # self.likelihood = model.high_likelihood

 #elif self.community == 2:
 # if (tmp_rnd <= model.healthy_lifestyle_com2):
 # self.likelihood = model.low_likelihood
 # else:
 # self.likelihood = model.high_likelihood

 #elif self.community == 3:
 # if (tmp_rnd <= model.healthy_lifestyle_com3):
 # self.likelihood = model.low_likelihood
 # else:
 # self.likelihood = model.high_likelihood

 #elif self.community == 4:
 # if (tmp_rnd <= model.healthy_lifestyle_com4):
 # self.likelihood = model.low_likelihood
 # else:
 # self.likelihood = model.high_likelihood

 #elif self.community == 5:
 # if (tmp_rnd <= model.healthy_lifestyle_com5):
 # self.likelihood = model.low_likelihood
 # else:
 # self.likelihood = model.high_likelihood

 # elif self.community == 6:

 # if (tmp_rnd <= model.healthy_lifestyle_com6):
 # self.likelihood = model.low_likelihood
 # else:
 # self.likelihood = model.high_likelihood
 #else:
 # print ("Something went wrong witht the hls")

 self.con_timer = 0
 self.con_start = con_start

 # change length of disease based on community health care access
 if self.community == 1:
 if model.community1_hca == True:
 self.con_end = model.con_end_short
 else :
 self.con_end = model.con_end_long

 elif self.community == 2:
 if model.community2_hca == True:
 self.con_end = model.con_end_short
 else :
 self.con_end = model.con_end_long

 elif self.community == 3:
 if model.community3_hca == True:
 self.con_end = model.con_end_short
 else :
 self.con_end = model.con_end_long

 elif self.community == 4:
 if model.community4_hca == True:
 self.con_end = model.con_end_short
 else :
 self.con_end = model.con_end_long

 elif self.community == 5:
 if model.community5_hca == True:
 self.con_end = model.con_end_short
 else :
 self.con_end = model.con_end_long

 elif self.community == 6:
 if model.community6_hca == True:

 self.con_end = model.con_end_short
 else :
 self.con_end = model.con_end_long

 else :
 print ("Something went wrong with assinging the healthcare access")

 self.immunity = False
 tmp_rnd = random.random()
 if self.community == 1:
 if (tmp_rnd <= model.vaccinated_com1):
 self.immunity = True

 elif self.community == 2:
 if (tmp_rnd <= model.vaccinated_com2):
 self.immunity = True

 elif self.community == 3:
 if (tmp_rnd <= model.vaccinated_com3):
 self.immunity = True

 elif self.community == 4:
 if (tmp_rnd <= model.vaccinated_com4):
 self.immunity = True

 elif self.community == 5:
 if (tmp_rnd <= model.vaccinated_com5):
 self.immunity = True

 elif self.community == 6:
 if (tmp_rnd <= model.vaccinated_com6):
 self.immunity = True

 else:
 print ("Something went wrong with the self.immunity")

 self.infected = False
 if unique_id==1:
 self.infected=True
 if unique_id==2:
 self.infected=True
 if unique_id==3:
 self.infected=True

 if unique_id==4:
 self.infected=True
 if unique_id==5:
 self.infected=True
 if unique_id==6:
 self.infected=True

 def my_age(self):
 # a = random.randint(6, 95)
 p = random.random()
 if p < 0.25:
 a = 12

 elif p < .88:
 a = 45

 else:
 a = 75
 return a

 def move(self):
 # Placement of the communities rows
community0_row=1
community1_row=2
community3_row=3
community4_row=4
community5_row=5
community6_row=6

 # Placement of the day place rows
 #schoolroom_row=7
 #workroom_row=8

 # Placement of the bus
 #bus_row=0

 # Beginning cycle - Night
 if (self.model.transportation_cycle == 0):
 self.exposure_time = 840

 # Assigns the human to its correct community
 new_position = (self.community, self.household)
if (self.community == 1):

new_position = (community0_row, self.household)
elif (self.community == 2):
new_position = (community1_row, self.household)
elif (self.community == 3):
new_position = (community3_row, self.household)
elif (self.community == 4):
new_position = (community4_row, self.household)
elif (self.community == 5):
new_position = (community5_row, self.household)
elif (self.community == 6):
new_position = (community6_row, self.household)
else :
print ('Incorrect assigned community')

 # Morning Commute
 elif (self.model.transportation_cycle == 1):
 self.exposure_time = 60
 new_position = (0, self.bus_number) #bus_row

 # Day
 elif (self.model.transportation_cycle == 2):
 self.exposure_time = 560
 # This if-statement controls where the ages will go during the 'day'
 if (self.age_bracket == self.bracket_adult): # Ages go to work
 # workroom_row - the work environment
 # self.workroom - the room in the work environment
 new_position = (8, self.workroom) #workroom_row
 else : # Kids go to school
 new_position = (7, self.schoolroom) #schoolroom_row

 # Afternoon Commute
 elif (self.model.transportation_cycle == 3):
 self.exposure_time = 60
 new_position = (0, self.bus_number) #bus_row

 # Error Message
 else :
 print ("Something went wrong with the night/day cyle")

 self.model.grid.move_agent(self, new_position)

def infect_others_old(self):
cellmates = self.model.grid.get_cell_list_contents([self.pos])

if len(cellmates) > 1:
for other in cellmates:
if other.immunity is False:
if other.infected is False:
if(random.random() <= self.likelihood):
other.infected = True

 def infect_others(self):
 cellmates = self.model.grid.get_cell_list_contents([self.pos])
 if len(cellmates) > 1:
 n = len(cellmates)
 for other in cellmates:
 if other.immunity is False:
 if other.infected is False:
 if(random.random() <= (1-(exp(-(self.ic[self.age_bracket][other.age_bracket] *
self.exposure_time))))):
 other.infected = True

 def step(self):
 self.move()
 if self.infected:
 self.con_timer +=1
 if ((self.con_timer >= self.con_start) and (self.con_timer <= self.con_end)):
 self.infect_others()
 else:
 if (self.con_timer > self.con_end):
 self.immunity = False
 if self.community == 1 :
 if self.model.community1_hca == True:
 self.immunity = True
 elif self.community == 2:
 if self.model.community2_hca == True:
 self.immunity = True
 elif self.community == 3:
 if self.model.community3_hca == True:
 self.immunity = True
 elif self.community == 4:
 if self.model.community4_hca == True:
 self.immunity = True
 elif self.community == 5:
 if self.model.community5_hca == True:
 self.immunity = True
 elif self.community == 6:

 if self.model.community6_hca == True:
 self.immunity = True
 else:
 print ("Incorrect Community ID")

 self.infected = False

