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1 Executive Summary41

Developing countries often have poor monitoring and reporting of weather and crop health, leading42

to slow responses to droughts and food shortages. Here, new satellite data analysis tools were43

created to monitor crop health in Africa. The method was first tested in Illinois where there is44

reliable, high-resolution crop data. Measures of vegetation health were computed from 120-meter45

resolution MODIS satellite imagery since 2000. The author wrote 4000 lines of python code to46

process 12 terabytes of data. Correlations were computed between corn yields and monthly satellite47

index anomalies for every county and year, and a multivariate regression using every index and48

month (1600 values) produced a correlation of 0.86 with a p-value <1e-6. The high correlations49

in Illinois show that this model has good forecasting skill for crop yields. Next, the method was50

applied to three countries in Africa: Ethiopia, Tunisia, and Morocco for each country’s main crop.51

All three had high correlations with the maximum monthly satellite index during the rainy season,52

at 0.99, 0.97, and 0.73 respectively. The satellite analysis methods and software tools developed53

here can be used to predict crop production two to four months before the harvest, and many54

more months before official crop data is published. Satellite imagery was then processed for every55

African country, and a publicly viewable interactive map displaying real-time crop predictions was56

posted online. This method is unique because it can be applied to any location, crop, or climate,57

making it ideal for African countries with small fields and poor ground observations. The author is58

actively engaged with several international aid organizations that are interested in using this early59

warning system of impending food shortages.60
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2 Introduction61

In the United States, there is exceptional monitoring and reporting of weather and crop health,62

with thousands of weather stations and county-level crop yield data from the USDA that has been63

recorded since 1910 (Hamer et al., 2017; Menne et al., 2012). With this substantial amount of64

publicly available data, crop yields may be predicted based on historical records. However, not65

all parts of the world have open, reliable data (McKinnon, 2016). The availability of weather and66

crop data depends on the government’s ability to collect it, financial resources, and willingness of67

authorities to share it. Lack of data is an especially important problem in developing countries68

where crop yields are less stable and droughts can lead to famines, death, government instability,69

and war. Therefore, there is a major need to monitor crop health in the developing world. Satellites70

provide coverage over the entire earth and certain bands may be used to assess plant health and71

drought conditions. This would enable scientists to monitor risks of food shortages and alert72

governments and international aid organizations in real time.73

Crop yields in developing countries do not benefit from the same level of agricultural technology74

as the US, and therefore have much lower yields. Since 1970, corn yields have doubled in the US75

from 80 bu/acre to 160 bu/acre due to improvements in agricultural technology such as irrigation,76

pesticides, herbicides, fertilizers, and plant breeding (Figure 1a). In developing countries, crop77

yields are both much lower and much more variable than in the US, both geographically and in78

time (Mann and Warner, 2017b). For example, Ethiopia’s corn yield has increased from 15 to 5579

bu/acre since 1960 (Figure 1b), which is still one-third the corn yield of the US. Farmers in poor80

countries lack the financial resources and education to use the advanced technology used by the81

American and European farm industries. Therefore, crop yields in African countries are much82

more susceptible to the dangers of heat waves and droughts.83

Satellite imagery has been extensively used for crop monitoring for decades. The majority of84

these studies are in the United States, where there is an immense amount of yield and production85

data at high resolution. Such data significantly improves agricultural research, but is only affordable86

by developed countries. The US also has large fields of a small number of individual crops, mainly87

corn, soybeans, and wheat. This allows research to be specific to individual crops and locations,88

and uniform crops within each satellite pixel. For example, Johnson (2016) developed algorithms89
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a. b.

Figure 1. Illinois (a) and Ethiopia (b) corn yield over time. Both have improved significantly, but
the yield in Ethiopia is still one-third of the U.S. All plots in this paper were created by the author.

to identify crops in the US from MODIS imagery and analyzed each crop individually. Gao et al.90

(2017) utilized week-by-week plant growth data in Iowa to design a method to monitor the growth91

stages of corn and soybeans from satellite imagery.92

These types of studies are not possible in Africa because there is minimal reporting of crop93

health and yields; farms consist of very small plots of varied crops interspersed with buildings; and94

the continent contains a vast number of different climates, growing seasons, and crops. Despite95

these difficulties, a few studies have examined the climatology of specific countries or regions in96

the developing world. Gissila et al. (2004) correlated seasonal rainfall in Ethiopia with sea-surface97

temperature anomalies in the Indian ocean and the central Pacific. Tadesse et al. (2014) predicted98

NDVI (Normalized Difference Vegitation Index) 1–3 months in the future from multiple indices99

(land cover, standardized deviation of NDVI, etc.) as a means of forecasting droughts. Other studies100

develop models that forecast crop yields. NDVI/yield regressions for cereals at national level have101

been developed for specific countries in northern Africa (Rembold et al., 2013). Mann and Warner102

(2017b) use kebele (district) level data collected by the Ethiopian government, including crop103

damage, elevation, fertilizer use, population density, and road density, to estimate wheat output104

per hectare. I contacted the Ethiopian Central Statistical Agency, Mann, and Warner in an attempt105

to obtain this detailed, high-resolution data. Unfortunately, the Ethiopian government refuses to106

release data, even for agricultural research. Mann and Warner were only able to obtain this data107

under strict conditions and after years of collaboration (Mann and Warner, 2017a). These factors108
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all contribute to the difficulty of developing predictive tools for crop yields in Africa.109

The method of predicting crop yields developed here differs from previous work in the U.S. and110

Africa because it is an overall measure of relative vegetation health compared to the mean climate111

on a per-pixel bases. Unlike previous studies, it may be applied anywhere in the world—it does not112

depend on special tuning for the particular crop, region, or climate of interest. The method was113

created for developing countries where detailed monitoring on the ground simply does not exist,114

but was successfully validated against extensive crop data in Illinois.115

3 Methods116

The overall goal of this research is to create a predictive measure of crops computed from satellite117

data. Python code was written by the author in order to obtain satellite images, mask out clouds,118

calculate vegetation and water indices, compute monthly anomalies since 2000, and correlate the119

anomalies of the satellite indices with crop yield anomalies for every county in Illinois and then120

apply the same method to three countries in Africa.121

MODIS (Moderate Resolution Imaging Spectroradiometer) imagery was obtained from the122

Descartes Labs satellite platform at a resolution of 120 meters (Figure 2a, 2b). MODIS, hosted123

on the satellites Aqua and Terra, has a return time of one day, giving almost continuous imagery124

of every location on earth since 2000. The instruments capture 36 spectral bands ranging from125

wavelengths of 0.4 µm to 14.4 µm (Jenner, 2015).126

Clouds and snow in images can disrupt data and distort values. In order to account for cloud127

contamination, clouds were identified based on the values of the bands blue, red, NIR, and SWIR.128

Pixels with clouds or snowwere not included in monthly averages and images with over 80% clouds129

were thrown out (Figure 2c).130

To measure the health of crops throughout the growing season, three indices were computed:131

NDVI, EVI, and NDWI (Table 1). All three indices range from -1 to 1. Areas containing dense132

vegetation show high NDVI and EVI values, between 0.4 and 0.8, desert sands will register at about133

zero, and snow and clouds are negative. NDVI is sensitive to chlorophyll, which absorbs visible134

light, from 0.4 to 0.7 µm, for use in photosynthesis. In contrast, EVI detects canopy structural135

variations, including leaf area, canopy type, and canopy architecture (Herring and Weier, 2000).136
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a. b.

c.

Figure 2. Snapshots of two MODIS satellite passes over Pike county, Illinois (a, b) and the cloud
mask for the second image (c).

NDWI detects water content. Combined, all three indices complement each other on the detection137

of vegetation changes.138

For every pixel in Illinois, the NDVI, EVI, and NDWI monthly averages and climatologies were139

computed. The climatology is defined as the average over years 2000 through 2016 for each month140

and pixel. Next, the monthly climatology was subtracted from the monthly average for every pixel,141

resulting in the monthly anomaly. The pixels in each county were then averaged together to find142

the monthly anomaly for NDVI, EVI, and NDWI.143

Annual corn yield data was downloaded for every county in Illinois for years 2000 through144

2016 from the USDA (Hamer et al., 2017). Because each county has different growing conditions145

(soil quality, hills, proximity to large water bodies, etc.), the mean was subtracted out of each146

county’s corn yield to find the yield anomaly. Correlations were found between each county’s corn147
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Index Description Formula
NDVI Normalized Difference Vegetation Index NDV I = NIR−Red

NIR+Red

EVI Enhanced Vegetation Index EV I = G ∗ NIR−Red
NIR+C1∗Red−C2∗Blue+L

NDWI Normalized Difference Water Index NDW I = Green−NIR
Green+NIR

TABLE 1. Definitions of indices to measure crop health. NIR is near infrared, L is the canopy
background adjustment that addresses non-linear, differential NIR and red radiant transfer through
a canopy, and C1, C2 are the coefficients of the aerosol resistance term, which uses the blue band
to correct for aerosol influences in the red band.

a. b.

c.

Figure 3. August average NDVI for a drought year (a) and a wet year (b), and the NDVI August
climatology (c).

anomaly and the three satellite indices. To find the best prediction measure possible, a multivariate148

regression was fit to each month and index for a total of 15 variables.149

The samemethodwas then applied to three countries in Africa: Ethiopia, Tunisia, andMorocco,150

and later to every country in Africa. In each country, a box was analyzed where the majority151

of the crops are grown (Figure 12) and was then correlated to national crop production data152

from USDA (2018). A total of 4000 lines of code were written to process twelve terabytes of153
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raw data and produce the graphs. A code repository is maintained at the author’s GitHub site:154

https://github.com/lillianpetersen/CropPredictionFromSatellite2018.155

4 Results156

The method was first validated in Illinois and then applied in Africa.157

4.1 Illinois158

Illinois corn yield is highly correlated with NDVI, EVI, and NDWI. The correlations at the state159

level are extremely statistically significant at 0.9, 0.85, and -.92 respectively (Figure 4). NDVI and160

EVI both have a positive relationship to crop yields, and NDWI is inversely related. Strong NDWI161

in critical growing stages could indicate insufficient evapotranspiriation, resulting in a negative162

correlation.163

In 2012, the central United States was hit by a drought and Illinois had a lower than average164

corn yield and a negative NDVI anomaly. Yields and NDVI anomalies in 2014 were significantly165

higher. These two years are used as examples to show corn yield and satellite anomalies at the166

county level (Figure 5).167

Next, the satellite anomalies were plotted against the corn yield anomaly for every county and168

year, for a total of 1559 points. August has the highest correlations with corn yields at 0.7, 0.71, and169

-.73 for EVI, NDVI, and NDWI respectively (Figure 6). July has less predictive skill than August,170

and the other months are almost uncorrelated with yields (Figure 7). All of July and August’s171

correlations have a P value less than 0.000001 (GraphPadSoftware, 2018), meaning there is less172

than one in a million chance of them occuring through a random process.173

Correlations have been computed with three indices (NDVI, EVI, and NDWI) and five months,174

for a total of fifteen independent variables. In order to create a single predictive measure of corn175

yields, a multivariate regression was fit to every index and every month using a Python machine176

learning library. Figure 8 shows an example of the multivariate regression for two of the variables.177

The multivariate regression improved the individual correlations to 0.86.178
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a. b.

Figure 4. Illinois mean corn yield since 2000 (green) correlated with NDVI (a, blue) and NDWI
(b, blue).
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Figure 5. Corn yield (left), NDVI anomaly (center), and NDWI anomaly (right) by county in
Illinois for the drought year 2012 (top) and for the wet year 2014 (bottom). During the drought
year, there are low yields, low NDVI anomalies, and high NDWI anomalies, while the drought year
is opposite.
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a. b.

c.

Figure 6. Correlations between Illinois corn yield and August average NDVI (a), EVI (b), and
NDWI (c). All correlations are extremely significant with P values of <0.000001. August had the
highest correlations to yields out of all the months.

a. b.

Figure 7. The absolute value of the correlations (a) and slopes of the linear regressions (b) for each
month between Illinois corn yield and NDVI (green), EVI (yellow), and NDWI (blue). July and
August have the highest predictive skill for crop yields which are harvested in October, meaning
there is a two to three month lead time on yield estimates. The red line shows the correlation of the
multivariate regression, which is higher than any individual month.
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Figure 8. An example of the multivariate regression comprised of all three satellite indices and
months. The multivariate regression improved the individual correlations to 0.86.

a. b.

c.

Figure 9. NDVI monthly average for Ethiopia (a), Tunisia (b), and Morocco (c). The annual rainy
season produces high NDVI values and corresponds to the crop-growing months. Ethiopia also has
the corn production overlayed, which has an almost perfect correlation to maximum NDVI at 0.98.
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4.2 Africa179

The high correlations in Illinois show that this model has good forecasting skill for crop yields.180

Next, this method was applied to three countries in Africa: Ethiopia, Morocco, and Tunisia. For181

each country, a box was analyzed where the majority of the crops are grown (Figure 11a).182

In most places in Africa, there is a wet and a dry season. For example, the wet season in183

Ethiopia spans from June to September, and crops are harvested in December. This is known as the184

Meher growing season. Ethiopia’s core agriculture and food economy is comprised of five major185

cereals: corn, teff, wheat, sorghum, and barley. These cereals accounted for about three-quarters186

of total area cultivated and 29 percent of the agricultural GDP in 2005/06 (Taffesse, 2012).187

The wet and dry seasons are evident in the monthly NDVI values for all three countries (Figure188

9). During the wet season, the crops green and the NDVI values spike. During the harvest, the189

values drop. The crop examined in each country was chosen based on the production quantity.190

Corn and sorghum were evaluated in Ethiopia, and wheat was examined in Tunisia and Morocco.191

It was found that Ethiopia and Morocco have the best correlation to the maximum NDVI value of192

the growing season, while Tunisia has the highest correlations to NDWI.193

There was a major drought in Ethiopia in 2015, and 2013 was a very wet year by comparison.194

These vegetation differences can also be seen on the pixel level (Figure 11). The anomalies are195

especially evident in the Rift Valley where most of the crops are grown.196

Ethiopia’s maximumNDVI values, which usually occur in August, are extremelywell correlated197

with grain production, at 0.98 and 0.99 for corn and sorghum respectively (Figures 9a, 10a). That198

is an almost perfect correlation between the crop production harvested in December and satellite199

imagery four months earlier. Tunisia has a correlation of 0.97 andMorocco has a correlation of 0.73200

for wheat (Figure 10b, 10c), showing high predictive skill of satellite indices in all three countries.201
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a. b.

c.

Figure 10. Maximum NDVI value of the growing season (green) with crop production (blue). All
countries have significant correlations ranging from 0.99 to 0.73. Ethiopian producition data for
2017/2018 has not been published because crops are harvested from November to February.

b. c.

Figure 11. The box examined in Ethiopia (a) during a wet year (b) and a dry year (c). The NDVI
anomalies are especially high in the rift valley, where farming is the most dense.
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4.3 Africa: Prediction of Future Crop Production202

Satellite imagery was processed for every African country. First, a box in an agricultural region203

was selected in every one of the 46 countries in Africa and a total of 12 terabytes of daily satellite204

imagery was processed according to the method above. Correlations and linear regressions were205

computed in every country and every crop. Difficulties in finding accurate correlations include:206

• False reporting of production in some countries, due to lack of resources, poor oversight,207

or corruption (e.g. DR Congo, Eritrea, Libya)208

• Multiple growing seasons in central countries (Rwanda, Somalia)209

• Growing seasons across the December - January year boundary (Tanzania, Botswana)210

• Clouds every day for months at a time in central African countries (Gabon, Cameroon)211

• Time delays and misclassification of harvests in October–December, where production is212

incorrectly reported in the following calendar year (Nigeria, Sudan)213

In every African country, correlations were computed between six indices (NDVI, EVI, NDWI,214

averages and anomalies) and for every crop. The highest correlation in each country was examined.215

Despite the above difficulties, two thirds of the correlations are considered to be statistically216

significant (r>=0.75 for five years, Figure 13)217

Satellite imagery was then processed up to the current date for countries that are in growing218

season. Real-time predictions were computed for each of these countries and their heighest219

correlating crop from the linear regressions (Figure 14). Next, an interactive map of the predicted220

production for harvests in the next few months was created and is now publicly viewable through221

https://lillianpetersen.github.io/africa_satellite. Thismap can give governments222

and aid organizations advance notice to see which countries are at the highest risk of a food shortage223

in order to better prepare supplies, transportation, and manpower for a rapid response.224

The author is currently engaged with several international aid organizations who are interested225

in this product, including the International Food Policy Research Institute (IFPRI), the US Dept.226

of Agriculture (USDA), and the Global Agricultural Monitoring (GEOGLAM) group. The author227

has been invited to give hour-long talks to these institutions in Washington, DC.228
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Figure 12. A box was chosen in the densest agricultural region for each country in Africa.

Figure 13. The highest correlations in every country in Africa. Two thirds are considered to be
statistically significant.
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Production Predictions:
March 2018

For countries with height of growing season in October - February

Figure 14. The map displaying the predicted production for every country currently in season
in standard deviations from the average (middle). Surrounding the map are plots showing each
country’s highest correlation (crop and satellite index, green and blue) and predicted production
(pink).
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Figure 15. Farm fields by satellite in Ethiopia and Illinois at the same resolution. The small farm
fields (smaller than a MODIS pixel) and poor ground truth data increase the difficulty of analyzing
and predicting crop yields in Africa.

5 Conclusions229

In this research, a method was developed to use three measures of crop health computed from230

daily MODIS satellite imagery as a predictive tool for crop yields 2–4 months before the harvest.231

The model was first validated in Illinois, where there is high-resolution yield data, by computing232

the linear fit between harvest yields in October (USDA, 2010) and the satellite indices in July233

and August. That is a three month prediction window, which could give farmers and insurance234

companies valuable information on the market months in advance. When a multivariate regression235

was fit to all months of the growing season and all three indices, the correlation peaked at 0.86236

for 1600 data points. Next, the method was applied to three countries in Africa (Ethiopia, Tunisia,237

Morocco), all with different climates and crops. High correlations between maximum satellite238

indices and crop production were calculated in all three countries, with Ethiopia the highest at239

0.99 to sorghum. After this success, satellite imagery was analyzed in every African country,240

and two thirds of the correlations proved to be statistically significant. Real-time crop predictions241

are now computed for every African country and are displayed on an interactive online map at242

https://lillianpetersen.github.io/africa_satellite.243
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Satellite imagery has been used to monitor and predict crop yields since the mid-1990s. How-244

ever, most of these studies are completed in developed countries (e.g. US and Europe) because of245

large amounts of ground truth data and large crop fields. Therefore, the method can be tuned to246

specific crops and growing seasons. In Africa, it is almost impossible to tune the method because247

of numerous crop types, climates, and growing seasons, as well as small farms and little to no crop248

yield data (Figure 15). In the literature, there is no general measure of crop prediction that can be249

applied to any crop, location, or climate. The method developed in this research is unique because250

of its versatility, and has been shown to accuratly predict crop yields across an entire continent.251

It can be applied anywhere because it computes an overall measure of relative vegetation health252

compared to the mean climate on a per-pixel bases.253

In Ethiopia in 2015 and 2016, there was a major drought and food shortage, and eight million254

people were at risk of starvation. However, the Ethiopian government did not have sufficient255

monitoring and reporting of drought and crop conditions during the growing season, “leading to a256

crucial delay in the international response.” (Laing, 2016). The satellite analysis tools developed257

for this project can observe drought conditions as they develop and predict crop failures up to258

four months before the harvest and many more months before the Ethiopian government publishes259

the crop production data. This could give aid organizations advance notice to organize an early260

response to famine. Luckily, 2017 has had much higher NDVI values, indicating healthy crop261

conditions, and hopefully an end to the current crises.262

6 Personal Statement263

The most significant result of this project was creating a predictive system of crop yields for every264

country in Africa two to four months before the harvest. I have been told by researchers in this area265

that my method is unique because it may be applied for any location, crop, or climate. After seeing266

the predictive results of my model, several international aid organizations invited me to visit their267

offices. For example, I will be giving an institution-wide seminar to the International Food Policy268

Research Institute on May 2, which will be advertised to the larger Washington DC metro area. I269

hope that they will be able to use my model in order to better predict future famines and save lives270

through a faster response.271
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