Detecting Shocks Waves with Artificial Intelligence

Overview

In this project, | want to learn how to code a program to detect shock waves using
artificial intelligence (Al). The problem that | want to solve is finding a way to make the
code as efficient as possible while still being super sensitive and still working as
intended. The reason | picked this topic is because | wanted to do something with
coding and Al. | think 2,500 training iterations will be the best number of times to train
the Al algorithm. The reason | think this is a good number is because 2,500 won’t take
a long time to run in the code and it would give it a lot of training iterations. My
hypothesis for the best number of training iteration is from previous times running the
Al coding and knowledge of the code. | am hoping to learn more about coding and Al
from this project.

Conclusion
My conclusion is that my hypothesis is wrong. The optimal number of training iterations
was 5,000, not 2,500.

Sum of all (Weight * Input or Layer)
.
/
\
\
— Output
‘ T~ /
. .

Fig: How Al works

y x1 x3 x4 Smooth

1 1 0 0 0

0 0.25 0.5 1 1

0 0 1 1 0

0.75 0.5 0.25 0 1

0 0 0.25 0.75 1

0 1 1 0.5 1

0 0 1 0 0

0 1 1 0 0

1 0 0 1 0

1 1 0 1 0

0.5 0.5 0.5 0.5 1
1

0.75 QL +

0.5
0.25

Fig: The training data for the Al code and plots of the data

Number of trainings | Time Time Time Time Error at predicting | average time Error
1,000 0.069 0.073 0.064 0.066 0.051 0.068 0.051
2,000 0.128 0.125 0.138 0.124 0.041 0.12875 0.041
3,000 0.192 0.184 0.183 0.181 0.036 0.185 0.036
4,000 0.248 0.237 0.243 0.245 0.032 0.24325 0.032
5,000 0.300 0.295 0.301 0.303 0.029 0.29975 0.029
6,000 0.358 0.362 0.359 0.374 0.027 0.36325 0.027
7,000 0.417 0.417 0.423 0.413 0.026 0.4175 0.026
8,000 0.468 0.486 0.493 0.482 0.025 0.48225 0.025
9,000 0.539 0.532 0.541 0.539 0.023 0.53775 0.023
10,000 0.599 0.604 0.610 0.604 0.022 0.60425 0.022
20,000 1.170 0.017 1.170
100,000 6.047 0.008 6.047
200,000 11.840 0.006 11.840
400,000 24.608 0.0045 24.608
800,000 49.624 0.0033 49.624
1,600,000 93.894 0.0024 93.894
3,200,000 189.536 0.0018 189.536
6,400,000 373.83 0.0013 373.83
12,800,000 764.178 0.00095 764.178

Fig: The results from using the Al code

Time to train the ANN model as a function of the number of

iterations
0.7
O Trial 1 O Trial 2 O Trial3 O Trial 4
o)
0.525 8 o
: 0
§ 0.35 8
£
§ (o]
U
0.175 g
(o]
0
0 2,500 5,000 7,500 10,000

Number of iterations

Total error

Error

0.1

0.01

0.001

0.06

0.045

0.015

Total error at predicting the output values for 4 data sets as a
function of the number of iterations used to train the ANN model

y = 1.1283x-0.43
R? = 0.999
- S,
A
"\
-~
A
A
A
A A
1 100 10,000 1,000,000
Number of iterations
O
O
O
O
O
O
O o
O
O o
0 0.175 0.35 0.525 0.7

Time

Code

three inputs to a N-node hidden layer to another N-node hidden layer to a single
output

There will be N weights going in, then N weights and then N weights going out of
hidden layer

import numpy as np
import time

def sigmoid(x):
return 1.0/(1+ np.exp(-x))

def sigmoid_derivative(x):
return x * (1.0 - x)

class NeuralNetwork:
def __init__(self, x, y, w0, w1, w2):

self.input =x
self.weightsO = w0
self.weights1 = w1
self.weights2 = w2
self.y =y
self.output = np.zeros(self.y.shape)

def feedforward(self):
self.layer0 = sigmoid(np.dot(self.input, self.weights0))
self.layer1 = sigmoid(np.dot(self.layer0, self.weights1))
self.output = sigmoid(np.dot(self.layer1, self.weights2))

def backprop(self, eta):
application of the chain rule to find derivative of the loss function with respect to
weights2 and weights1

D2 = 2%(self.y - self.output) * sigmoid_derivative(self.output)
d_weights2 = np.dot(self.layer1.T, D2)

D1 = np.dot(D2, self.weights2.T) * sigmoid_derivative(self.layer1)
d_weights1 = np.dot(self.layer0.T, D1)

DO = np.dot(D1, self.weights1.T) * sigmoid_derivative(self.layer0)
d_weights0 = np.dot(self.input.T, DO)

update the weights with the derivative (slope) of the loss function
self.weightsO += eta*d_weights0

self.weights1 += eta*d_weights1 # add \eta in front

self.weights2 += eta*d_weights2

This is the main program

if name_==" main__":

the input values for training
X = np.loadtxt("X.txt", delimiter=",")
print(X)

the desired outputs

Yrow = np.loadtxt("Y.txt")

Y = Yrow.reshape(X.shape[0],1)
print(Y)

initialize the weights
size = 3 # the number of nodes in the hidden layer

to generate input values for the weights
#WO0 = np.random.rand(X.shape[1],size)
#W1 = np.random.rand(size,size)

#W2 = np.random.rand(size,1)

WO = np.loadtxt("wO0.txt", delimiter=",")

W1 = np.loadtxt("w1.txt", delimiter=",")
readW2 = np.loadtxt("w2.txt", delimiter=",")
W2 = readW2.reshape(size,1)

create the neural network
nn = NeuralNetwork(X,Y,W0,W1,W2)
eta=1.0

calculate start time
start_time = time.time()

train the neural network

for i in range(1000):
nn.feedforward()
nn.backprop(eta)

calculate end time
end_time = time.time()

list the outputs
print(nn.output)

time to run the code
print("Elapsed time was %g seconds" % (end_time - start_time))

write weights to a file

np.savetxt("wOout.txt", WO, fmt="%3.16f", delimiter=",")
np.savetxt("wiout.txt", W1, fmt="%3.16f", delimiter=",")
np.savetxt("w2out.txt", W2, fmt="%3.16f", delimiter=",")

use the neural network on data

dataX = np.array([[1,0.7,.3,0],
[1,0.8,0,0],
[0.2,0.4,0.8,1.0],
[0,0,0.9,1.0]]))

we should get these values
dataY = np.array([[1],
0],
[1],
[01])
datann = NeuralNetwork(dataX,dataY,w0,W1,W2)
datann.feedforward()
print(datann.output)

Error = np.abs(datann.output-datay)
print(‘error =")

print(Error)

print(np.sum(Error))

References

1. ai.google

2. https://www.instructables.com/id/Build-Your-Own-Al-Artificial-Intellige nce-Assistan/
3. images.google

4. youtube.com

5. https://www.udacity.com/course/ai-programming-python-nanodegree--nd089

