
Detecting Shocks Waves with Artificial Intelligence

Overview

In this project, I want to learn how to code a program to detect shock waves using
artificial intelligence (AI). The problem that I want to solve is finding a way to make the
code as efficient as possible while still being super sensitive and still working as
intended. The reason I picked this topic is because I wanted to do something with
coding and AI. I think 2,500 training iterations will be the best number of times to train
the AI algorithm. The reason I think this is a good number is because 2,500 won’t take
a long time to run in the code and it would give it a lot of training iterations. My
hypothesis for the best number of training iteration is from previous times running the
AI coding and knowledge of the code. I am hoping to learn more about coding and AI
from this project.

Conclusion
My conclusion is that my hypothesis is wrong. The optimal number of training iterations
was 5,000, not 2,500.

�

Fig: How AI works

�

�

Fig: The training data for the AI code and plots of the data

�
Fig: The results from using the AI code

�

�

�

Code
three inputs to a N-node hidden layer to another N-node hidden layer to a single
output

There will be N weights going in, then N weights and then N weights going out of
hidden layer

import numpy as np

import time

def sigmoid(x):

 return 1.0/(1+ np.exp(-x))

def sigmoid_derivative(x):

 return x * (1.0 - x)

class NeuralNetwork:

 def __init__(self, x, y, w0, w1, w2):

 self.input = x

 self.weights0 = w0

 self.weights1 = w1

 self.weights2 = w2

 self.y = y

 self.output = np.zeros(self.y.shape)

 def feedforward(self):

 self.layer0 = sigmoid(np.dot(self.input, self.weights0))

 self.layer1 = sigmoid(np.dot(self.layer0, self.weights1))

 self.output = sigmoid(np.dot(self.layer1, self.weights2))

 def backprop(self, eta):

 # application of the chain rule to find derivative of the loss function with respect to
weights2 and weights1

 D2 = 2*(self.y - self.output) * sigmoid_derivative(self.output)

 d_weights2 = np.dot(self.layer1.T, D2)

 D1 = np.dot(D2, self.weights2.T) * sigmoid_derivative(self.layer1)

 d_weights1 = np.dot(self.layer0.T, D1)

 D0 = np.dot(D1, self.weights1.T) * sigmoid_derivative(self.layer0)

 d_weights0 = np.dot(self.input.T, D0)

 # update the weights with the derivative (slope) of the loss function

 self.weights0 += eta*d_weights0

 self.weights1 += eta*d_weights1 # add \eta in front

 self.weights2 += eta*d_weights2

This is the main program

if __name__ == "__main__":

 # the input values for training

 X = np.loadtxt("X.txt", delimiter=",")

 print(X)

 # the desired outputs

 Yrow = np.loadtxt("Y.txt")

 Y = Yrow.reshape(X.shape[0],1)

 print(Y)

 # initialize the weights

 size = 3 # the number of nodes in the hidden layer

 # to generate input values for the weights

 #W0 = np.random.rand(X.shape[1],size)

 #W1 = np.random.rand(size,size)

 #W2 = np.random.rand(size,1)

 W0 = np.loadtxt("w0.txt", delimiter=",")

 W1 = np.loadtxt("w1.txt", delimiter=",")

 readW2 = np.loadtxt("w2.txt", delimiter=",")

 W2 = readW2.reshape(size,1)

 # create the neural network

 nn = NeuralNetwork(X,Y,W0,W1,W2)

 eta = 1.0

 # calculate start time

 start_time = time.time()

 # train the neural network

 for i in range(1000):

 nn.feedforward()

 nn.backprop(eta)

 # calculate end time

 end_time = time.time()

 # list the outputs

 print(nn.output)

 # time to run the code

 print("Elapsed time was %g seconds" % (end_time - start_time))

 # write weights to a file

 np.savetxt("w0out.txt", W0, fmt="%3.16f", delimiter=",")

 np.savetxt("w1out.txt", W1, fmt="%3.16f", delimiter=",")

 np.savetxt("w2out.txt", W2, fmt="%3.16f", delimiter=",")

 # use the neural network on data

 dataX = np.array([[1,0.7,.3,0],

 [1,0.8,0,0],

 [0.2,0.4,0.8,1.0],

 [0,0,0.9,1.0]])

 # we should get these values

 dataY = np.array([[1],

 [0],

 [1],

 [0]])

 datann = NeuralNetwork(dataX,dataY,W0,W1,W2)

 datann.feedforward()

 print(datann.output)

 Error = np.abs(datann.output-dataY)

 print('error =')

 print(Error)

 print(np.sum(Error))

References

1. ai.google
2. https://www.instructables.com/id/Build-Your-Own-AI-Artificial-Intellige nce-Assistan/
3. images.google  
4. youtube.com  
5. https://www.udacity.com/course/ai-programming-python-nanodegree--nd089

