Using Neural Differential Equations to Model
Unknown Dynamical Systems

Team #1003
Los Alamos High School
1300 Diamond Drive
Los Alamos, NM 87544

April 8, 2020

New Mexico
Supercomputing Challenge
Final Report

Team Members: Robert Strauss - robert.strauss@pm.me
Project Mentor: Charlie Strauss

Abstract

To model a system with an ordinary differential equation, the mechanics
of the system, represented by the functional form of the ODE, must be
known. Theoretically, because of the universal approximation theorem,
a neural net could approximate the true ODE and could learn just from
data. This means a system for which we do not have an equation could
be learned from measurements, and then modeled. Even if there is no
ODE that could represent the system, a neural network could approximate
the physics. This is called a neural differential equation, or neural ODE.
The purpose of this project is to test the usefulness of neural ODEs to
model systems with unknown dynamics. The Lotka-Volterra equations of
predator/prey population dynamics are used as an example application.
Solvers for the equations and neural ODE setups are constructed in the julia
programming language. Truth data is generated by solving the equations,
then neural ODEs are trained on this with automatic differentiation and
back-propagation. First a neural ODE is trained to match 2-species
dynamics, then 3-species dynamics with one population hidden from the
net to simulate an unknown term, and finally 3-species dynamics with
the initial population and its evolution fully hidden. Novel neural ODE
architectures are designed for each problem, incorporating a recurrent
channel and an external second neural net to provide an initial condition. In
each case, neural ODEs learn to match testing data with initial conditions
and time spans not used in training. The usefulness of neural ODEs for
modeling unknown dynamical systems is demonstrated successfully.

Contents
[Overview|

2.4 Proposed Solution| oo
2.5 Application: the Lotka-Volterra kquations|.

Experimental Overview|

3.1 Experiment 1: Just Wolves and Rabbits|
3.2 Experiment 2: Hidden Bears|
3.3 Experiment 3: What Bears?|

4_Results]

4. TAINING| . .« v v v v e e e e e e e e e e e e e e e e e e

4.2 Experiment 1: Just Wolves and Rabbits|

A3 Experiment 2: Hidden Bears]
4.4 Experiment 3: What Bears?|. 0oL

E I . [Condisions

|6

Computer Code|

7

Acknowledgements|

w w W

[N RN NG, BTSN

© © oo ®

13

15

15

1 Overview

1.1 Problem Statement

How can we model a dynamic system without a known equation describing it?

1.2 Executive Summary

Ordinary Differential Equations (ODEs) model the state of a system over time
with an input/output “rule” relating the rate of change of the state to its current
value.

ou
5 - (uv t)

Neural Networks are input/output systems that can be trained to mimic the
behavior of any function.

O

(@)

\,/
Q00
C

Q
o}

A neural net can act as the rule for a differential equation, allowing unknown
behaviors to be learned. This is called a neural ODE.

ou

5t =

As an example problem, differential equations of predator/prey populations are
tested with this neural ODE technique.

%:ar—ﬂrw
P
5 = OTw —w

I trained a neural ODE on batches of data from solving the known equations. I
then tested it on data it had never seen before, and over longer time ranges.

,j_'.- : 2 K /
AGATA

I designed my own neural ODE architectures for solving different problems.
These are completely new inventions.

Initial condition
—
Rate of change
dr/dt, dw/dt,
JExt/dt

Neural net

External recurrent channel

My neural ODE designs work as intended - they are able to infer the physics of an
unknown system from data. Thus I have demonstrated the utility of neural ODEs.

2 Introduction

2.1 Motivations and historical context

The goals here are easy to motivate without much mathematics. Physics, for
example, gives the rules of how a physical system evolves in time from an initial
state. Specifically, Newton’s law F' = ma, is a concise statement of the rules
written as a differential equation for the time evolution.

Often we are in the situation of having no idea what the rules/equations are!
For example, the periodic behaviour of a simple pendulum can be measured, but
before Newton, it would not have been known F' = ma governs its oscillations. In
modern times, atmospheric turbulence and ocean waves are examples of systems
we still don’t know the exact differential equations for (only approximations).

A neural net is, in principal, able to represent any mathematical function
[2], and can be trained using observed data. So the inspiration here is to simply
replace the approximate or unknown terms with a neural net, then train it to
act like the missing function using observed data. This is combination of neural
networks and differential equations is called neural differential equations, or
neural ODEs.

Training conventional neural networks, even deep and complex ones, is a so-
phisticated but routine task using back propagation. However back propagation
through a differential equation solver, instead of just the neural net, wasn’t fully
practical prior to very recent innovations. Now that this can be done, neural
ODE training is proving successful and effective.

While related concepts have been around since 1993 [3], the neural ODE was
revived with the debut of the first truly practical software libraries implemented
in Python in 2018 [I] and more fully in Julia in 2019. In fact, the Julia library
is still in alpha and its authors will be publishing what may be the first compre-
hensive peer reviewed high-impact-journal publication in 2020. These have very
recently been dubbed "Universal Differential Equations" [5].

The neural ODE is so new that many fundamental applications have yet
to be explored. In particular, an unknown function in an equation could be
replaced, but the relevant variables describing the system’s state still have to be
known. For example, the state of a simple pendulum (of known mass and length
and gravity) is fully described by two variables: the angle of the pendulum and
how fast the pendulum is traveling. But what if you didn’t know, or could not
measure, all the state variables? Suppose, unbeknownst to you, there was a
second pendulum hiding inside the end of the first pendulum. In that case you
could observe only the erratic wobbles in the outer pendulum’s swing but not
measure the state of the inner pendulum. Without the missing state variables of
the internal pendulum there’s no possibility of writing down the complete set of
differential equations. So it’s no longer a matter of simply filling in an unknown
function with a neural net.

Can we use a neural ODE to learn not just the unknown functions in a
differential equation but also to fill in the missing state variables and their
relevant equations? This work originates a solution to that problem.

I reveal my solution in the context of a well-known toy problem (predator-
prey population dynamics) by extending it into a direction that has not been
previously considered.

2.2 Some Background on ODEs and Neural Networks

The rate of change of a variable is called its differential (with respect to time)
An ordinary differential equation (ODE) relates the rate of change of a variable
to its present value.

For example,

1. The rate of change of a bank account value is the interest rate times the
current bank value.

OMoney

e (Interest) * (Money)

2. The rate of change of the number of people infected with a virus is the
number of people infected times the rate of transmission, minus the number
of infected people times the rate of resolution.

0Sick
ot

= TransmissionRate x Sick — ResolutionRate * Sick

3. Newton’s Law F' = ma says the rate of change of velocity (i.e. acceleration)

is the force divided by the mass.

F

a=—

m

dVelocity F
greecy _ &2 1
ot m (1)

0?Position B E

ot? T m

Let us consider the left hand side of an ODE to always be the differential of
a variable, and the right hand side to be some function of that variable. Any
set of ODEs operating on multiple variables can be rewritten as a single ODE
operating on a vector containing the variables. Let us call the collection of
the variables describing a system the state of the system. Typically, to evolve
a system’s behavior through time this equation is integrated by iterating in
short time steps: the rate of change of the state of the system is calculated by
evaluating the equation, and then state is updated by the amount it changed in
the short interval of time.

For our purposes, a neural network can be thought of as a black box, which
will take in a vector input, and provide a vector output. By the universal approx-
imation theorem [2], a neural network can be trained to return a specific output
vector from a given input vector such that it can approximate any mathematical
function.

2.3 Problem Statement

How can we model a dynamic system without a known equation describing it?
Being able to do this could allow us to model almost any system we do not
currently understand. And what if there are unknown variables at play?

2.4 Proposed Solution

Neural ODEs should be able to infer the rule of a system from data, allowing it
to then be modeled. The second question, of modeling systems with possible
unknown variables at play, has not previously been attempted with a neural
ODE. We hope to do just this with a neural ODE by adding a "recurrent ODE
channel".

2.5 Application: the Lotka-Volterra Equations

We choose the example problem of predator-prey population modeling as an ap-
plication, which are described by the Lotka-Volterra equations . We will refer
to the species in this model as rabbits, which are prey only, and wolves, which

eat rabbits. Bears, which eat both wolves and rabbits, can also be added in a
three-species model . We generate truth data from solving the Lotka-Volterra
equations rather than collecting real population data in the field, which would
be significantly more difficult and restrictive.

The Lotka-Volterra equations are:

or

— =ar — frw
a—w = drw — yw
at 7

Where w is the wolf population, r is the rabbit population, and «, 3, 7, and §
are constants.

Modified for three species, they become:

ar

e =ar — fBrw —erd

ow

= _ - — 3
5 orw — yw — Cwb (3)
ab

5% = nrb + 0bw — b

Where b is the bear population and all Greek letters are constants.

To train the neural ODE we require a set of data representing measurements
of the actual dynamical system state over time. To make this easy, we will
generate the simulated measurements by solving the Lotka-Volterra equations
with various parameter values. The data set will be samples of the continuous
solution at specified time points. We will sample this coarsely for the data
supplied to the neural ODE which we may pretend are measurements from the
field, but for purposes of displaying it we can sample the smooth wave forms as
finely as desired.

To avoid a potential confusion for the reader, we belabor the following point.
This "true" ODE will only be used as a convenient and self consistent way to
generate the data. No part of this "true" equation will be used in the neural
ODE. None of the parameters of the true equation will be supplied to the neural
ODE. And unless stated otherwise we even withhold the initial condition of the
measurement simulation from the neural ODE. Thus once we create the data
the reader could safely forget they ever saw the true ODE. It is not used in any
way in the neural ODE and the only function term in the neural ODE is the
neural net itself. The only purpose of the "true" ODE is to generate data more
easily than acquiring it from the field.

3 Experimental Overview

To make this easier to follow by showing the intermediate steps, the goal is
divided into three stages of problems that build on each other.

1. Can a neural net predict how quickly wolves will eat rabbits?

(a) First, to test if a neural ODE really can learn to model a system
without knowing an equation (just from data), we train a neural
ODE to model a two species predator-prey population system without
giving it any knowledge of the equations.

2. What if there are uncounted bears in the forest?

(a) Next, to test how the neural ODE handles an unmeasured variable,
we add a third species to the system but hide the data for it, except
for the initial population, from the neural ODE.

3. What if we had no idea there were bears in the first place?

(a) Finally, to test how a neural ODE handles a hidden variable problem,
we fully hide the third species from the neural ODE and force it to
model the other two species. It doesn’t have any hint there even is a
third species.

In each case, a "truth" model is created for solving the Lotka-Volterra equa-
tions, then an empty neural net is created and repeatedly integrated over a short
time span and adjusted according to a loss function for training, then tested on
a longer time span.

This was all completed by writing code in the Julia programming language
version 1.0. An ODE function for the Lotka-Volterra equations was written.
Neural networks were created with the Flux package. Differential equations
were solved with the DifferentialEquations package, and back-propagation
through a neural ODE used the DiffEqFlux package.

3.1 Experiment 1: Just Wolves and Rabbits

We aim to test the ability of a neural ODE to learn to model a system governed
by unknown equationsﬂ just from data by training it on solutions from the
2-species Lotka-Volterra equations. Loss is calculated by predicting the time
series by integrating the neural ODE and computing the squared difference to the
true population "measurements" (samples from integrating the Lotka-Volterra
equations). The neural ODE is trained with this definition of loss (and back-
propagates all the way through many iterations of the ODE solver) on batches
of many different initial conditions and time spans. To test what it learned, the

Ithe equations or functional form are never revealed to the neural ODE

neural ODE and Lotka-Volterra equations are solved with an initial condition
not seen in the training set and over a longer period of time than in training.
(This experiment was also done with the 3-species model but the results are
unsurprising and omitted for brevity.)

3.2 Experiment 2: Hidden Bears

We aim to test the ability of a neural ODE to handle an unmeasured state
variable by hiding one of the populations (bears) from it. The "measurements"
or truth data are computed by integrating the true 3-species Lotka-Volterra
equations. The neural ODE also is a 3-species version (it has 3 state-variable
inputs and 3 differential outputs). However, the loss function remains the same
2-species loss function as in experiment 1. Only the squared difference sum for
first two populations (rabbits and wolves) is calculated for loss. The predicted
bear population is ignored in the loss function, because in this case we are
pretending there are no measurements for the bear population (other than the
initial condition, which is changed in experiment 3). The neural ODE is trained
with this definition of loss on batches of many different initial conditions and time
spans. To test what it learned, the neural ODE and Lotka-Volterra equations
are solved with an initial condition not seen in the training set and over a longer
period of time than in training.

The crucial innovation here is the "recurrent ODE channel" we create. This
allows the neural ODE to keep track of unknown variables, which is the key to
it succeeding in this experiment and the next. This is discussed in greater detail
in the discussion section.

However, the recurrent channel was initiated with the initial bear population
in this experiment, so bears are not entirely hidden. In the next experiment,
even this information will be removed. (This experiment is a stepping stone to
the next.)

3.3 Experiment 3: What Bears?

We aim to test the ability of a neural ODE to compensate for a completely
hidden variable without a clue the variable even exists by completely hiding the
population of the bears through time. This is almost the same as the previous
test, except for one key difference. Previously, the recurrent channel of the
neural ODE was initiated with the starting bear population. In this case, we
instead implemented a separate neural network outside of the neural ODE which
receives a short-time section of the wolf and rabbit populations and outputs a
single scalar to initiate the recurrent channel with. The "true" initial value of
the bear population is not involved in the system in any way.

Note that now both of the external neural net and the neural net inside the
recurrent ODE must be trained simultaneously. We are not separately training

Figure 2: Training (Wolves and Rabbits) All: x-axis is time, y-axis is
population. Dots represent the prediction from integrating the neural ODE,
lines represent the true solution to the Lotka-Volterra equations. There are four
plots, each made after different amounts of training. Note that going left to
right (increasing amounts of training) the predictions begin to match the true
solution.

the external net to predict some known bear population; we would not have that
initial bear information since we are pretending we don’t know there are bears
at all. This means we also back-propagate all the way through all iterations of
the solver and neural ODE just to get to training this network.

4 Results

In each of the test cases, after training, the neural ODE successfully matches
testing data quite well. More importantly, despite minor numerical imperfections,
it captured the characteristic behaviours of the wave forms over many cycles of
the oscillations, extrapolating well beyond the short-time intervals of the training
data. Stochastic minimization on batches was used, so different re-runs of the
experiment produced slightly different results. As expected, with more epochs
of training nearly all of solutions converged to the target wolf and rabbit test
data and grew increasingly accurate. This is shown in figure ??. (Occasional
non-convergence is simply an expected pathology of stochastic minimization, not
an alternative solution.)

It should be noted that convergence to the data does not mean convergence
to the same parameter values inside the neural net. The "surprising" outcome,
addressed in the discussion below, is that no experimental run matched the actual
hidden bear data. This is actually quite explainable and logical. Additionally the
"bear" channel (the predicted bear population) produced a different output every
run, so the internal parameters of the model were different. Since the neural
net parameterization changed each re-run so did the ODE they represent, but
all of these ODEs match the rabbit and wolf data, just not the "bear" population.

4.1 Training

Through training, the prediction from integrating the neural ODE goes from
inaccurate and meaningless to matching the true solution of the Lotka-Volterra
equations. The gradual progression of training to match the Lotka-Volterra

10

/_ PR $ I [RY

(a) Testing (Wolves
and Rabbits) The pre-
diction from integrating
the neural ODE matches
the true solution of the
Lotka-Volterra equations,
is over a time span of mul-
tiple periods, and recovers
from perturbations.

(b) Testing (Hidden
Bears) Two of the three
dotted lines match with
the lines, while the third
dotted line has a different
behavior.

(¢) Testing (What
Bears?) The plots have
nonlinear behaviors, with
variable periods and
amplitude. Two of the
three lines match, while
the third dotted line is far
from the corresponding
line.

Figure 3: All: X-axis is time, y-axis is population, lines represent the solution of
the Lotka-Volterra equations, dots represent the prediction from integrating the

neural ODE.

Middle and right: Blue is rabbits, orange is wolves, green is bears, purple dots
are predicted rabbits, yellow dots are predicted wolves, blue dots are predicted

bears,/recurrent variable.

Left: Blue is rabbits, orange is wolves, green dots are predicted rabbits, purple

dots are predicted wolves.

11

equations is shown in figure 2] The neural net is trained by back-propagating
loss found by subtracting the solution of the neural ODE and the Lotka-Volterra
equations. The two are solved from each initial condition in a batch and on the
same time span. To test if the neural network actually learned something rather
than memorizing, the model is applied to an initial condition it hasn’t trained
on and over a longer time span, so it most extrapolate what it knows. The plots
in figure |3| are the results from these tests in each experiment.

4.2 Experiment 1: Just Wolves and Rabbits

Figure [3a) shows the prediction from integrating the neural ODE matches up
with the true solution to the Lotka-Volterra equations almost perfectly. The
neural net was successfully trained through back-propagation through the ODE
solver and successfully learned the Lotka-Volterra equations. The neural ODE
was trained on solutions with much shorter time intervals than that shown in
figure 7?7. The initial condition used in this case is also unique, it did not appear
in the training set. This means the neural ODE truly learned something, as it
was able to match truth data it had never seen before, and extrapolate past the
time interval it had learned in.

4.3 Experiment 2: Hidden Bears

Figure shows the prediction from integrating the neural ODE matches up
with the true solution to the Lotka-Volterra equations in only two of the three
species. The neural ODE still figured out how to model the two species without
knowing the population of the third. The third dotted line shown is actually
data from the recurrent channel. Interestingly, this does not match with the
bear population. Again, the neural ODE was trained on many different initial
conditions and smaller time spans than what it was tested on, yet it still matched
the two species we wanted it to on testing data. In the specific case shown,
the data all looks very periodic. However, the neural ODE also learned the
complicated non-periodic behaviors only describable with a third variable.

4.4 Experiment 3: What Bears?

Figure [3¢ shows the prediction from integrating the neural ODE matches up with
the true solution to the Lotka-Volterra equations in two of the three species, and
has a different behavior in the third. The two species the neural ODE trained for
match almost perfectly. The third dotted line is again data from the recurrent
channel, this time starting at a value chosen by the external neural network.
Interestingly, this does not match with the bear population. The neural ODE
also learned the complicated non-periodic behaviors only describable with a
third variable.

12

5 Discussion and Conclusions

In all of the plots shown in the results, we are comparing the dotted lines
representing the solution to the neural ODE, a sort of prediction, to the truth
data, the solution to the Lotka-Volterra equations. Training was conducted on
batches of solutions from many different initial conditions and of much shorter
time ranges than in training. The fact that the solution to the neural ODE
matches even over much longer time intervals than it trained for, and on an
initial condition not seen in training, proves the neural ODE is generalizing and
learning, not memorizing training data. So neural ODEs can safely be applied
to new scenarios after training on a finite set of measurements.

The third population in the solution to the neural ODE, the bears, does not
match the truth data. At first this seems puzzling because we theorized the
neural ODE would learn to predict the bear population in this channel, but
at closer inspection this makes sense. The third channel is not trained to the
bear population, so the neural ODE may learn to put any information in this
channel it finds useful. In fact, the only way the third channel could match the
bear population is out of sheer luck. There’s no way of it knowing the bear
population, so it is unlikely it will happen to predict it. This third channel we
are calling bears is no longer associated with the bear population at all. It’s
simply an abstract third channel that provides recurrent information.

The enabling innovation of this work is the "recurrent ODE channel". Cru-
cially, this is distinct from a "recurrent channel" in the conventional neural
network sense of the term. This is implemented simply as another output of
the neural ODE which we keep track of, and return back to the neural ODE as
an input later. However, unlike what is normally meant by a recurrent channel,
this "recurrent channel" actually passes through the ODE solver too and is
integrated. The reason we cannot use a conventional, non-integrated, recurrent
neural network internal state is because the solver algorithm itself might jump
back and forth in time; by letting the channel be differential we let the solver
handle the intricate details of the time spacing and order of its calculations, just
as it does for integrating the other normal channels.

The third channel is absolutely required since it would be impossible for
a neural ODE to predict correctly with only the input of two of the three
populations and no other information because the correct output depends on
all three populations. That is for the same Rabbit and Wolf population the
derivative output is a multi-valued function that will differ depending on the
bear population. So, to give the neural ODE more information, we grant it a
sort of "recurrent channel". It is able to put any scalar at one time step into
this channel, and the following time step it will get the integral back as an input,
allowing it to potentially learn to insert some useful information into the channel
so that it may predict the multi-valued output correctly. This setup makes
logical sense because, for a system for which we lack equations, we may not even

13

realize a factor has any effect in the system. This "recurrent channel" acts as an
open slot for variables which we do not know about, but are required for the
prediction of the system.

In the second experiment (training the neural ODE with a "recurrent channel"
to match two of the three species), the channel is initiated with the starting
population of bears. It is true that bears are not fully hidden in this experiment,
but this is fixed in the next experiment. This experiment is really just a stepping
stone to the next one. If you like, you may imagine it as a partially known
variable — you know bears are in a forest affecting the system, but they are
only measured once at the start because it is dangerous to repeatedly count bears.

In a neural ODE, the neural network acts as the rule of a differential equation.
This means to produce a complete prediction through time, the neural ODE
is integrated like an ordinary differential equation, being re-evaluated every
time step. Why not just have a neural net directly predict the entire solution
instead? There are several very important reasons. Doing it this way ensures
the solution will have the properties we expect. An ODE forces the curves to
be continuous no matter how sparsely sampled (not enforced by an ordinary
neural net). We know there is likely some way of describing the system with an
ordinary differential equation, however we don’t know the rule or the variables of
the system. So, enforcing the properties of the system we do know, that it will
be in ODE form, speeds up the process and makes finding the solution easier.
This can also be used to enforce conservation laws. Although in this example
there is no conservation law between wolf and rabbit populations, in other cases
this becomes important. This can also ensure the solution obeys consistent
behaviors. For example, if all the free variables in a system return to a set of
values which they already had, the same behavior should follow now as when it
previously happened. If something happens twice, expect the same outcome each
time. Direct prediction from a recurrent neural network can violate this principle.

Why didn’t we use a parameter-fitting model containing dozens of guesses at
possible mathematical combinations of the input (such as a Taylor series) rather
than an entire neural network to find the rule? Parameter fitting seemingly
has many advantages: much fewer trainable parameters (a parameter fitting
model might have a few dozen while a neural net has thousands), and a readable
outcome telling you which terms were needed and thus giving the functional
form at the end. Recent research has shown that a parameter fitting model just
does not work as well as a neural network for doing this job [B]. It is unclear
why this is, but for now neural ODEs simply work better than parameter-fitting
models, and the best strategy for model inference is to train the neural ODE
then use it to generate additional data for parameter fitting.

14

6 Computer Code

The code and documentation written for this project can be found online
at https://github.com/robertstrauss/nnDiffEq. Code is written in Julia
language version 1.0. Packages used include

7 Acknowledgements

Dr. Charlie Strauss mentored me on coding and advised me on what direction to
take my project while I was developing it. Chris Rackauckas was a very helpful
influence in the online video tutorials he created [4].

References

[1] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud.
Neural ordinary differential equations, 2018.

[2] George Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of control, signals and systems, 2(4):303-314, 1989.

[3] Ken ichi Funahashi and Yuichi Nakamura. Approximation of dynamical
systems by continuous time recurrent neural networks. Neural Networks,
6(6):801 — 806, 1993.

[4] Chris Rackauckas. Chris rackauckas, 2020.

[6] Christopher Rackauckas, Yingbo Ma, Julius Martensen, Collin Warner, Kirill
Zubov, Rohit Supekar, Dominic Skinner, and Ali Ramadhan. Universal
differential equations for scientific machine learning, 2020.

15

https://github.com/robertstrauss/nnDiffEq

	Overview
	Problem Statement
	Executive Summary

	Introduction
	Motivations and historical context
	Some Background on ODEs and Neural Networks
	Problem Statement
	Proposed Solution
	Application: the Lotka-Volterra Equations

	Experimental Overview
	Experiment 1: Just Wolves and Rabbits
	Experiment 2: Hidden Bears
	Experiment 3: What Bears?

	Results
	Training
	Experiment 1: Just Wolves and Rabbits
	Experiment 2: Hidden Bears
	Experiment 3: What Bears?

	Discussion and Conclusions
	Computer Code
	Acknowledgements

