
Data Analysis and
Regression

Dr. Thomas Robey
October 12 & 13, 2019

Data Analysis
An observation or data point is a single number
(scalar) or a vector of numbers. An example of a
vector of numbers is the x, y, and z coordinates in a
three dimensional coordinate system. If the data point
is a measurement then there is measurement error in
determining the data point. For example, reading a
thermometer might well result in a whole number and
be accurate to +/- 0.5 degrees. While measurement
error is simple to understand there are many other
types of error. Thus, each data point can be
understand to have an associated uncertainty.

A set of scalar data points is a group of numerical values.
There are a few mathematical characteristics of a set of
numbers.

The average or mean is given by

x̄ =
1
n

n

∑
i

xi

The median is given by the value in the middle when the
set is ordered with an odd quantity. For even it is the
average of the middle two numbers.

The standard deviation is a measure of the variability of
the set of data and is given by

σ =
1

n − 1

n

∑
i

(xi − x̄)2

Rules of thumb*

• Expectation, average, mean - 7 or 8 data points
• Standard deviation, linear model, expected range -

13 data points
• 1% (rare) events - hundreds of data points

*For data that is normally distributed. Other distributions
will require more.

How much data is enough?

• Observation - Experimental data or measurement.
Expressed as a row vector d = [d1, …, dn].

• Model - A mathematical function.

We talk about fitting a model to the observations. One
way is to “eyeball” the fit but generally a more
automatic and rigorous approach is used.

Models
In a previous slide, the model was a line

f(x) = mx+b

but the model can be any function. Sometimes the
problem suggests the function (e.g. elliptical orbit).
There are approaches for the case when the function is
unknown but this requires a lot of data and subjects
the results to a lot more questioning. But sometimes
the function that is found to provide the best fit can
suggest a theoretical underpinning.

Norms
A norm ||x|| is a non-negative number where ||x|| = 0 if
and only if x = 0. A norm must also have ||kx|| = |k| ||x||
and the triangle inequality ||x + y|| ≤ ||x|| + ||y|| (the legs
of a triangle cannot be shorter than the direct distance
or hypotenuse).

Common norms:

||x||1 = ∑ |xi|
||x||2 = (∑ xi2)½
||x||∞ = max |xi|

A data outlier is a data observation which lies much
further from the model than the other data points.
Which norm is least sensitive to an outlier?

If we consider a two dimensional space where x = [3, 4]
then we have

||x||2 = (32 + 42)½ = 5

For Euclidean geometry this is simply the Euclidean
distance.

Error
If we add an error term we have f(x) + e where then for
each data point we have

ei = di - f(xi)

Then we have ei, i=1, …, n where there are n data
points. This is an error vector. How do we know if this
error vector is “small?” First we have to be able to
compare the size of vectors.

Least Squares Method
The Least Squares Method is just choosing the
parameters for the function such that ||e||2 is minimized.
• Linear problem
• Easy to solve
• Usually adequate fit

Fits using the Method of Least Squares can be sensitive
to data outliers. The Method of Least Squares is often
used where there are better alternatives because it is
easy to use and widely accepted.

R Statistical Software
R is a free statistical analysis software package available
for Windows, Mac and Linux (see Appendix).

Binary distributions are available for Windows and Mac
OS X at https://cran.r-project.org/. Many Linux
distributions have R available in the package
management systems or check the link above.

https://cran.r-project.org/

Mexican Wolves Model
For this example we will construct a pseudo-model of the
Mexican Wolf population. Our model produces an estimate
of the wolf population sometime in the future. To construct
our model we randomly select a mean and standard
deviation. The mean is somewhere between 30 and 150
wolves. Using R

> mymean = runif(1, 30, 150)
> mystddev = runif(1, .7, 2.3) * mymean
> samples = round(rnorm(1000, mymean, mystddev))

The samples vector contains data generated by the model
which is a normal distribution. The model does not capture
much about the physical environment of the wolves but we
know a lot about what data the model should produce.

Each student will now have their own model of the
Mexican wolf population. The instructor may want to
write down the values of mymean and mystddev for each
student and then remove them

> rm(mymean)
> rm(mystddev)

The student then runs his/her model one time

> samples[1]

This gives the number of wolves. The student should
now write down their analysis of the results of their
model. How likely is it that the wolves will survive?

Now run the model multiple times. samples[2] gives the
second run. To get the results of ten runs type
samples[1:10]. Does the interpretation of the model
change as data is added?

> n = seq(1, 50, 1)
> ave = c()
> for (i in 1:50) {ave[i] = mean(samples[1:i])}
> plot(n, ave)

What is your estimate for the average? How many
samples does it take to get a good estimate?

Now repeat this using the standard deviation. The
standard deviation is a measure of the variability of the
output.

> n = seq(1, 100, 1)
> stddev = c()
> for (i in 1:100) {stddev[i] = sd(samples[1:i])}
> plot(n, stddev)

What is your estimate of the standard deviation? How
many samples did it take to get a realistic estimate?

Now calculate the probability that the wolf population goes
extinct.

> n = seq(1, 250, 1)
> prob = c()
> for (i in 1:250) {prob[i] = 100.0 * sum(samples[1:i] <= 0)/i}
> plot(n, prob)

What is your estimate of the probability that the wolf
population goes extinct? How many samples did it take to
get a reliable estimate of the probability? Lower
probabilities will generally take more data. Why is this?

Now compare your estimates with mymean, mystddev
and for the probability

> 100.0*pnorm(0, mymean, mystddev)

How close were your estimates?

Advanced example
A probability density function (pdf) describes the
likelihood of a value. The first step is to plot the
histogram and compare the shape to types of pdfs. If all
values are equally likely then it is a uniform
distribution. Test scores usually form a normal
distribution (bell curve). Often looking at the domain
gives a clue. If the domain is from [0, inf] then the log
normal distribution may be a better choice than the
normal distribution which has a range of [-inf, inf]. The
data for this example is a set of test scores.

> scores <- read.table(“/<path>/scores.txt”)
> hist(scores$V1, 20)

Least squares is not a good measure of fit for fitting
probability distribution functions to data. If you have a fi
data point from the tail of the data then the fitted pdf has
pi = 0; this says there is no possibility of that value ever
happening but it happened. ei = pi - fi is a small part of
the overall error vector and the 2-norm so it is very
possible the fitted pdf using least squares will have this
happen. It may not be important if the problem does
not care about the tails of the pdfs. But there are
measures instead of using norms that can give better
results. The MASS module for R uses a maximum
likelihood estimation to fit a probability density function
to a set of data.

> library(“MASS”)
> fitdistr(scores$V1, ‘normal’)

 mean sd
 85.9200000 11.5811744
 (1.2207630) (0.8632098)

> x = seq(1, 120, 1)
> n = (1/11.5811744*sqrt(2*3.1415))*exp(-
((x-85.92)^2)/(2*11.5811744^2))
> plot(x, n, “l”)

The normal distribution is

The domain of the normal distribution goes from [-inf,
inf]. Is this realistic? Note that the plot of the normal
distribution shows values greater than 100 are common.
The beta distribution has the domain [0, 1] and can
mimic the normal distribution and many other
distributions.

To fit this we need to supply starting guesses for alpha
(shape1) and beta (shape2). We also need to divide our
test scores by 100 to get them into the domain [0, 1].

> starter = list(‘shape1’=10, ‘shape2’=10)
> fitdistr(scores$V1/100, ‘beta’, starter)

y = Cxα−1 (1 − x)β−1

> x = seq(0, 1, 0.01)
> beta = (x^(10.1983895-1))*((1-x)^(1.7475886-1))
> plot(x, beta, “l”)

Do you think that the normal distribution or the beta
distribution is a better fit for the test scores? Why?

Consider the case where we have two data points of two
dimensional data. If we fit a linear model to the two data
points what is the result? Since two points determine a
line, the line exactly describes the data. In general, a
model with m - 1 parameters will exactly describe n data
points. Is this a good idea?

Two Dimensional Data Points

The sum of square errors (SSE) is (||e||2)2. How do we
choose the degree of the polynomial, m, in the model?
One way is to compute

(||em||2)2/(n - m -1)

and continue increasing m as long as the amount
decreases significantly. What is the value of this when
the degree of the polynomial exactly fits the data points?

Coefficient of Determination

The coefficient of determination is a measure of how
well the model fits the data. For a linear regression model

R2 = { (1 / n) * Σ [(xi - ave(x)) * (yi - ave(y))] / (σx * σy) }2

• The coefficient of determination ranges from 0 to 1
• R2 = 0 means the model has no predictability for the

data
• R2 = 1 means the model perfectly predicts the data

A common error that is made is using a high R2 to say that
the model is the right model. Some data sets are easy to
get a high R2 and others are not.

Simple Linear Regression
The case where the model is y = b + mx has some rather
simple formulas.

m = (∑ yixi - ∑yi ∑xi /n)/(∑(xi - ave(x))^2)

b = ave(y) - m ave(x)

The SimpleLinearRegression.pdf in the examples is a
worksheet for calculating a simple linear regression.

We are given some data pertaining to a rocket.

height = [100, 200, 300, 450, 600, 800, 1000]
distance = [253, 337, 395, 451, 495, 534, 574]

Using R

> height = c(100, 200, 300, 450, 600, 800, 1000)
> distance = c(253, 337, 395, 451, 495, 534, 574)

Rocket example

First, calculate using the formulas for simple linear
regression

m = (∑ yixi - ∑yi ∑xi /n)/(∑(xi - ave(x))^2)
m = (1712350 - 3039 * 3450/7)/642143

m = (1712350 - 1497793)/642143
m = 0.3341

b = ave(y) - m ave(x)
b = 434.143 - 0.3341 * 492.857

b = 269.48

f(x) = 269.48 + 0.3341*x

Fitting a linear model

> model1 <- lm(distance ~ height); model1

Coefficients:
(Intercept) height
 269.4661 0.3341

Try fitting a quadratic

> model2 <- lm(distance ~ height + I(height^2)); model2

Coefficients:
(Intercept) height I(height^2)
 200.211950 0.706182 -0.000341

> newh = seq(100, 1000, 10)
> fit2 = 200.211950 + 0.706182*newh - 0.000341*newh^2
> plot(height, distance)
> abline(model1)
> lines(newh, fit2, lty=1)

Repeat for a cubic

> model3 <- lm(distance ~ height + I(height^2) +
I(height^3)); model3
> fit3 = 1.555e+02 + 1.119*newh - 1.254e-03*newh^2 +
5.55e-07*newh^3
> lines(newh, fit3, lty=1)

Would you choose the linear, quadratic or cubic model
for this data? Does the information that this data comes
from a rocket help in your choice?

Can you calculate the following for each of these three
curves? Does this agree with your decision of the best
model?

(||em||2)2/(n - m -1)

Netlogo example
(coffee mug cooling)

Start Netlogo and read in LinearRegression.nlogo. This
model reads in the coffeMugCooling.csv data file. Press
setup and then go. This shows the data and a least
squares fit of a line to the data. The slope and intercept
of the line are displayed. Do you think that a line is the
right model for this data? If not, what would be a good
model?

Using R for the coffee mug cooling example.

> mug <- read.csv(“/<path>/coffeeMugCooling.csv”,
sep=“,”);mug
> time = mug[,1]
> temperature = mug[,2]
> plot(time, temperature)

> model1 = lm(temperature~time); model1

Coefficients:
(Intercept) time
 57.25097 -0.01646

How do these compare to the Netlogo model?

>abline(model1)

> model2 = lm(temperature~time+I(time^2)); model2

Coefficients:
(Intercept) time I(time^2)
 6.027e+01 -2.843e-02 7.827e-06

> t = seq(0, 1530, 10)
> temp = 60.27 - 0.02843*t + 7.827e-06*t^2
> lines(t, temp, lty=1)

Is the linear or quadratic fit a better model for the data?
Why? Are there are other models that might be a better
choice for this problem?

