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Data Analysis
An observation or data point is a single number 
(scalar) or a vector of numbers.  An example of a 
vector of numbers is the x, y, and z coordinates in a 
three dimensional coordinate system.  If the data point 
is a measurement then there is measurement error in 
determining the data point.  For example, reading a 
thermometer might well result in a whole number and 
be accurate to +/- 0.5 degrees.  While measurement 
error is simple to understand there are many other 
types of error.  Thus, each data point can be 
understand to have an associated uncertainty.



A set of scalar data points is a group of numerical values.  
There are a few mathematical characteristics of a set of 
numbers. 

The average or mean is given by
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1
n

n
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The median is given by the value in the middle when the 
set is ordered with an odd quantity.  For even it is the 
average of the middle two numbers. 

The standard deviation is a measure of the variability of 
the set of data and is given by

σ =
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Rules of thumb* 

• Expectation, average, mean - 7 or 8 data points 
• Standard deviation, linear model, expected range - 

13 data points 
• 1% (rare) events - hundreds of data points

*For data that is normally distributed.  Other distributions 
will require more.

How much data is enough?



• Observation - Experimental data or measurement.  
Expressed as a row vector d = [d1, …, dn]. 

• Model - A mathematical function.

We talk about fitting a model to the observations.  One 
way is to “eyeball” the fit but generally a more 
automatic and rigorous approach is used.



Models
In a previous slide, the model was a line  

f(x) = mx+b 

but the model can be any function.  Sometimes the 
problem suggests the function (e.g. elliptical orbit).  
There are approaches for the case when the function is 
unknown but this requires a lot of data and subjects 
the results to a lot more questioning.  But sometimes 
the function that is found to provide the best fit can 
suggest a theoretical underpinning.



Norms
A norm ||x|| is a non-negative number where ||x|| = 0 if 
and only if x = 0.  A norm must also have ||kx|| = |k| ||x|| 
and the triangle inequality ||x + y|| ≤ ||x|| + ||y|| (the legs 
of a triangle cannot be shorter than the direct distance 
or hypotenuse). 

Common norms: 

||x||1 = ∑ |xi| 
||x||2 = (∑ xi2)½ 
||x||∞ = max |xi| 

A data outlier is a data observation which lies much 
further from the model than the other data points.  
Which norm is least sensitive to an outlier? 



If we consider a two dimensional space where x = [3, 4] 
then we have 

||x||2 = (32 + 42)½ = 5 

For Euclidean geometry this is simply the Euclidean 
distance.



Error
If we add an error term we have f(x) + e where then for 
each data point we have 

ei = di - f(xi) 

Then we have ei, i=1, …, n where there are n data 
points.  This is an error vector.  How do we know if this 
error vector is “small?”  First we have to be able to 
compare the size of vectors.



Least Squares Method
The Least Squares Method is just choosing the 
parameters for the function such that ||e||2 is minimized.
• Linear problem 
• Easy to solve 
• Usually adequate fit

Fits using the Method of Least Squares can be sensitive 
to data outliers.  The Method of Least Squares is often 
used where there are better alternatives because it is 
easy to use and widely accepted.



R Statistical Software
R is a free statistical analysis software package available 
for Windows, Mac and Linux (see Appendix).  

Binary distributions are available for Windows and Mac 
OS X at https://cran.r-project.org/.  Many Linux 
distributions have R available in the package 
management systems or check the link above.

https://cran.r-project.org/


Mexican Wolves Model 
For this example we will construct a pseudo-model of the 
Mexican Wolf population.  Our model produces an estimate 
of the wolf population sometime in the future.  To construct 
our model we randomly select a mean and standard 
deviation.  The mean is somewhere between 30 and 150 
wolves.  Using R 

> mymean = runif(1, 30, 150) 
> mystddev = runif(1, .7, 2.3) * mymean 
> samples = round(rnorm(1000, mymean, mystddev)) 

The samples vector contains data generated by the model 
which is a normal distribution.  The model does not capture 
much about the physical environment of the wolves but we 
know a lot about what data the model should produce.



Each student will now have their own model of the 
Mexican wolf population.  The instructor may want to 
write down the values of mymean and mystddev for each 
student and then remove them 

> rm(mymean) 
> rm(mystddev) 

The student then runs his/her model one time 

> samples[1] 

This gives the number of wolves.  The student should 
now write down their analysis of the results of their 
model.  How likely is it that the wolves will survive?



Now run the model multiple times.  samples[2] gives the 
second run.  To get the results of ten runs type 
samples[1:10].  Does the interpretation of the model 
change as data is added? 

> n = seq(1, 50, 1) 
> ave = c() 
> for (i in 1:50) {ave[i] = mean(samples[1:i])} 
> plot(n, ave) 

What is your estimate for the average?  How many 
samples does it take to get a good estimate?





Now repeat this using the standard deviation.  The 
standard deviation is a measure of the variability of the 
output. 

> n = seq(1, 100, 1) 
> stddev = c() 
> for (i in 1:100) {stddev[i] = sd(samples[1:i])} 
> plot(n, stddev) 

What is your estimate of the standard deviation?  How 
many samples did it take to get a realistic estimate?





Now calculate the probability that the wolf population goes 
extinct. 

> n = seq(1, 250, 1) 
> prob = c() 
> for (i in 1:250) {prob[i] = 100.0 * sum(samples[1:i] <= 0)/i} 
> plot(n, prob) 

What is your estimate of the probability that the wolf 
population goes extinct?  How many samples did it take to 
get a reliable estimate of the probability?  Lower 
probabilities will generally take more data.  Why is this?





Now compare your estimates with mymean, mystddev 
and for the probability 

> 100.0*pnorm(0, mymean, mystddev) 

How close were your estimates?



Advanced example
A probability density function (pdf) describes the 
likelihood of a value.  The first step is to plot the 
histogram and compare the shape to types of pdfs. If all 
values are equally likely then it is a uniform 
distribution.  Test scores usually form a normal 
distribution (bell curve). Often looking at the domain 
gives a clue.  If the domain is from [0, inf] then the log 
normal distribution may be a better choice than the 
normal distribution which has a range of [-inf, inf].  The 
data for this example is a set of test scores. 

> scores <- read.table(“/<path>/scores.txt”) 
> hist(scores$V1, 20) 





Least squares is not a good measure of fit for fitting 
probability distribution functions to data. If you have a fi 
data point from the tail of the data then the fitted pdf has 
pi = 0; this says there is no possibility of that value ever 
happening but it happened.  ei = pi - fi is a small part of 
the overall error vector and the 2-norm so it is very 
possible the fitted pdf using least squares will have this 
happen.  It may not be important if the problem does 
not care about the tails of the pdfs.  But there are 
measures instead of using norms that can give better 
results.  The MASS module for R uses a maximum 
likelihood estimation to fit a probability density function 
to a set of data.



> library(“MASS”) 
> fitdistr(scores$V1, ‘normal’) 

      mean          sd     
  85.9200000   11.5811744  
 ( 1.2207630) ( 0.8632098) 

> x = seq(1, 120, 1) 
> n = (1/11.5811744*sqrt(2*3.1415))*exp(-
((x-85.92)^2)/(2*11.5811744^2)) 
> plot(x, n, “l”)

The normal distribution is





The domain of the normal distribution goes from [-inf, 
inf].  Is this realistic?  Note that the plot of the normal 
distribution shows values greater than 100 are common.  
The beta distribution has the domain [0, 1] and can 
mimic the normal distribution and many other 
distributions.

To fit this we need to supply starting guesses for alpha 
(shape1) and beta (shape2).  We also need to divide our 
test scores by 100 to get them into the domain [0, 1]. 

> starter = list(‘shape1’=10, ‘shape2’=10) 
> fitdistr(scores$V1/100, ‘beta’, starter)

y = Cxα−1 (1 − x)β−1



> x = seq(0, 1, 0.01) 
> beta = (x^(10.1983895-1))*((1-x)^(1.7475886-1)) 
> plot(x, beta, “l”)





Do you think that the normal distribution or the beta 
distribution is a better fit for the test scores?  Why?



Consider the case where we have two data points of two 
dimensional data.  If we fit a linear model to the two data 
points what is the result?  Since two points determine a 
line, the line exactly describes the data.  In general, a 
model with m - 1 parameters will exactly describe n data 
points.  Is this a good idea?

Two Dimensional Data Points



The sum of square errors (SSE) is (||e||2)2. How do we 
choose the degree of the polynomial, m, in the model?  
One way is to compute 

(||em||2)2/(n - m -1) 

and continue increasing m as long as the amount 
decreases significantly.  What is the value of this when 
the degree of the polynomial exactly fits the data points?



Coefficient of Determination

The coefficient of determination is a measure of how 
well the model fits the data.  For a linear regression model 

R2 = { ( 1 / n ) * Σ [ (xi - ave(x)) * (yi - ave(y)) ] / (σx * σy ) }2 

• The coefficient of determination ranges from 0 to 1 
• R2 = 0 means the model has no predictability for the 

data 
• R2 = 1 means the model perfectly predicts the data 

A common error that is made is using a high R2 to say that 
the model is the right model.  Some data sets are easy to 
get a high R2 and others are not.



Simple Linear Regression
The case where the model is y = b + mx has some rather 
simple formulas.

m = (∑ yixi - ∑yi ∑xi /n)/(∑(xi - ave(x))^2) 

b = ave(y) - m ave(x)

The SimpleLinearRegression.pdf in the examples is a 
worksheet for calculating a simple linear regression.



We are given some data pertaining to a rocket. 

height = [100, 200, 300, 450, 600, 800, 1000] 
distance = [253, 337, 395, 451, 495, 534, 574] 

Using R 

> height = c(100, 200, 300, 450, 600, 800, 1000) 
> distance = c(253, 337, 395, 451, 495, 534, 574)

Rocket example



First, calculate using the formulas for simple linear 
regression 

m = (∑ yixi - ∑yi ∑xi /n)/(∑(xi - ave(x))^2)  
m = (1712350 - 3039 * 3450/7)/642143 

m = (1712350 - 1497793)/642143 
m = 0.3341 

b = ave(y) - m ave(x) 
b = 434.143 - 0.3341 * 492.857 

b = 269.48 

f(x) = 269.48 + 0.3341*x 



Fitting a linear model 

> model1 <- lm(distance ~ height); model1 

Coefficients: 
(Intercept)       height   
   269.4661       0.3341   

Try fitting a quadratic 

> model2 <- lm(distance ~ height + I(height^2)); model2 

Coefficients: 
(Intercept)       height  I(height^2)   
 200.211950     0.706182    -0.000341 



> newh = seq(100, 1000, 10) 
> fit2 = 200.211950 + 0.706182*newh - 0.000341*newh^2 
> plot(height, distance) 
> abline(model1) 
> lines(newh, fit2, lty=1) 

Repeat for a cubic 

> model3 <- lm(distance ~ height + I(height^2) + 
I(height^3)); model3 
> fit3 = 1.555e+02 + 1.119*newh - 1.254e-03*newh^2 + 
5.55e-07*newh^3 
> lines(newh, fit3, lty=1) 





Would you choose the linear, quadratic or cubic model 
for this data?  Does the information that this data comes 
from a rocket help in your choice? 

Can you calculate the following for each of these three 
curves?  Does this agree with your decision of the best 
model?

(||em||2)2/(n - m -1) 



Netlogo example
(coffee mug cooling)

Start Netlogo and read in LinearRegression.nlogo.  This 
model reads in the coffeMugCooling.csv data file.  Press 
setup and then go.  This shows the data and a least 
squares fit of a line to the data.  The slope and intercept 
of the line are displayed.  Do you think that a line is the 
right model for this data?  If not, what would be a good 
model?



Using R for the coffee mug cooling example. 

> mug <- read.csv(“/<path>/coffeeMugCooling.csv”, 
sep=“,”);mug 
> time = mug[,1] 
> temperature = mug[,2] 
> plot(time, temperature)





> model1 = lm(temperature~time); model1 

Coefficients: 
(Intercept)         time   
   57.25097     -0.01646 

How do these compare to the Netlogo model? 

>abline(model1) 





> model2 = lm(temperature~time+I(time^2)); model2 

Coefficients: 
(Intercept)         time    I(time^2)   
  6.027e+01   -2.843e-02    7.827e-06 

> t = seq(0, 1530, 10) 
> temp = 60.27 - 0.02843*t + 7.827e-06*t^2 
> lines(t, temp, lty=1) 





Is the linear or quadratic fit a better model for the data?  
Why?  Are there are other models that might be a better 
choice for this problem?


