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 Supercomputing Challenge Vision 

The Vision of the Supercomputing Challenge is to be a nationally 
recognized program that promotes computational thinking in 
science and engineering so that the next generation of high school 
graduates is better prepared to compete in an information-based 
economy. 

Supercomputing Challenge Mission 

The Mission of the Supercomputing Challenge is to teach teams of 
middle and high school students how to use powerful computers to analyze, model and solve real 
world problems. 

About the Supercomputing Challenge  

The Supercomputing Challenge (the Challenge) is an exciting program that offers a truly unique 
experience to students in our state. The opportunity to work on the most powerful computers in 
the world is currently available to only a very few students in the entire United States, but in 
New Mexico, it is just one of the benefits of living in the "Land of Enchantment." 

The Challenge is a program encompassing the school year in which teams of students complete 
science projects using high-performance computers. Each team of up to five students and a 
sponsoring teacher defines and works on a single computational project of its own choosing.  
Throughout the program, help and support are given to the teams by their project advisors and 
the Challenge organizers and sponsors. 

The Challenge is open to all interested students in grades 5 through 12 on a nonselective basis. 
The program has no grade point, class enrollment or computer experience prerequisites.  
Participants come from public, private, parochial and home-based schools in all areas of New 
Mexico. The important requirement for participating is a real desire to learn about science and 
computing. 

Challenge teams tackle a range of interesting problems to solve. The most successful projects 
address a topic that holds great interest for the team. In recent years, ideas for projects have come 
from Astronomy, Geology, Physics, Ecology, Mathematics, Economics, Sociology, and 
Computer Science. It is very important that the problem a team chooses is what we call "real 
world" and not imaginary. A "real world" problem has measurable components. We use the term 
Computational Science to refer to science problems that we wish to solve and explain using 
computer models.  

Those teams who make significant progress on their projects can enter them in the competition 
for awards of cash and scholarships. Team plaques are also awarded for: Teamwork, Written 
Report, Professional Presentation, Research, Creativity and Innovation, Environmental 
Modeling, High Performance, Science is Fun and the Judges' Special Award, just to name a few. 
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The Challenge is offered at minimal cost to the participants or the school district. It is sponsored 
by a partnership of federal laboratories, universities, and businesses. They provide food and 
lodging for events such as the kickoff conference during which students and teachers are shown 
how to use computers, learn programming languages, how to analyze data, write reports and 
much more. 

These sponsors also supply time on the supercomputers and lend equipment to schools that need 
it. Employees of the sponsoring groups conduct training sessions at workshops and advise teams 
throughout the year. The Challenge usually culminates with an Expo and Awards Ceremony in 
the spring at the Los Alamos National Laboratory or in Albuquerque. During the Covid 
pandemic, three Expo and Awards Ceremonies, as well as two Kickoffs, were held virtually. 

History 

The New Mexico High School Supercomputing Challenge was conceived in 1990 by former Los 
Alamos Director Sig Hecker and Tom Thornhill, president of New Mexico Technet Inc., a 
nonprofit company that in 1985 set up a computer network to link the state's national 
laboratories, universities, state government and some private companies. Sen. Pete Domenici, 
and John Rollwagen, then chairman and chief executive officer of Cray Research Inc., added 
their support.  

In 2001, the Adventures in Supercomputing program formerly housed at Sandia National 
Laboratories and then at the Albuquerque High Performance Computing Center at the University 
of New Mexico merged with the former New Mexico High School Supercomputing Challenge to 
become the New Mexico High School Adventures in Supercomputing Challenge.  

In 2002, the words "High School" were dropped from the name as middle school teams had been 
invited to participate in 2000 and had done well.  

In the summer of 2005, the name was simplified to the Supercomputing Challenge. 

In 2007, the Challenge began collaborating with the middle school Project GUTS, (Growing Up 
Thinking Scientifically), an NSF grant housed at the Santa Fe Institute. 

In 2013, the Challenge began collaborating with New Mexico Computer Science for All, an NSF 
funded program based at the Santa Fe Institute that offers a comprehensive teacher professional 
development program in Computer Science including a University of New Mexico Computer 
Science course for teachers. 
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2022—2023 Challenge Awards 

 
33rd Annual New Mexico Supercomputing Challenge winners  
 

 
 

 
 

First Place
Team 4 La Cueva High School

Machine Learning based Accessible Mobile
App for Act ivit y Recognit ion and Freezing of
Gait  Monitoring in Parkinson's Pat ient s

Team Members: Abitpal Gyawali, Aditya Koushik, Aiden Shoppel,
Amandeep Prasankumar, Venkata Menta

Sponsor: Jeremy Jensen

WONDERFUL
ACHIEVEMENT!

89
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Supercomputing Challenge students across the state have completed their computational projects 
on topics such as Parkinson’s disease, astrophysics, ocean science, fire science, and 
environmental issues. This year the Supercomputing Challenge celebrated their 33rd annual Expo 
and Awards Ceremony on April 24 and 25, 2023 which featured student final presentations, 
judging and tours held at the Los Alamos National Laboratory and an award ceremony held in 
Los Alamos.  
 
In this program, middle school and high school students are mentored by a community of 
volunteer scientists, computer programmers and professors. Several alumni also serve as 
volunteers. The Supercomputing Challenge partners include the New Mexico Consortium, Los 
Alamos National Laboratory, Sandia National Laboratory, Public Service Company of New 
Mexico, Air Force Research Laboratory, Westwind, and most New Mexico colleges and 
universities. A complete list of sponsors and supporters of the Challenge is on the website at 
https://supercomputingchallenge.org/22-23/sponsors.php. 
 
“I am always impressed with the students in our state.  We are so proud to be able to showcase 
their abilities,” said David Kratzer, the executive director of the Supercomputing Challenge. 
 
By participating in the Challenge, students learn to be prepared and successful in any career. 
They learn to be persistent by practicing their computer programming skills, completing 
research, and meeting deadlines to cross the finish line. The Challenge likes to refer to itself as 
an academic marathon, and these students should be recognized as critical thinkers, 
communicators, collaborators, and computer scientists.  
 
Scholarships worth $15,000 were awarded to participating students. Many other awards were 
distributed ranging from $50 per team member for finishing the academic marathon to team 

Third Place
Team 6 Sandia High School

SINGS: A Simple Interact ive
N-body Gravitat ion
Simulator

Team Member: Tristan Eggenberger
Sponsor: Bradley Knockel

CONGRATULATIONS!

85

https://newmexicoconsortium.org/
https://www.lanl.gov/
https://www.lanl.gov/
https://www.sandia.gov/
https://www.pnm.com/
https://www.pnm.com/
https://www.afrl.af.mil/
https://www.westwindcomputerproducts.com/
https://supercomputingchallenge.org/22-23/sponsors.php
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prizes of up to $1000 for 1st and additional prizes for other categories such as teamwork, 
technical writing, programming ability, and community impact. Random drawings were held for 
$50 door prizes. 
 
The Supercomputing Challenge is open to New Mexico middle and high-school students, 
including home-schooled students.  Students work in teams and follow their own interests to 
choose a topic to computationally model. New students interested in becoming involved can 
make plans to start the next academic year, by contacting consult@supercomputingchallenge.org 
 

 
 
Scholarships and Other Awards 
A complete list of all winning student teams. 
https://supercomputingchallenge.org/22-23/expo/AllWinnersList.pdf 
 

Scholarship winners 
 
Scholarships worth $15,000 were awarded at the Supercomputing Challenge Awards Ceremony 
to eight seniors: Isel Arragon, Zachariah Burch, Gloria Engle, Violet Kelly, Daniel Leon, Kiara 
Onemoto, Isaac Rankin, and Ayvree Urrea. 
 
All final reports are online. 
https://supercomputingchallenge.org/22-23/finalreports/submitted.php 
 
 

mailto:consult@supercomputingchallenge.org
https://supercomputingchallenge.org/22-23/expo/AllWinnersList.pdf
https://supercomputingchallenge.org/22-23/finalreports/submitted.php
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More about the Supercomputing Challenge 
“The goal of the yearlong event is to teach student teams how to use powerful computers to 
analyze, model and solve real-world problems,” said David Kratzer, Executive Director.  
“Participating students improve their understanding of technology by developing skills in 
scientific inquiry, modeling, computing, communications, and teamwork.” 
 
The New Mexico Supercomputing Challenge teaches written and oral communication, 
collaboration with peers and professionals, critical thinking including research and coding 
including computer modeling to middle and high school students throughout the state.  Any New 
Mexico middle-school or high-school student, including home-schooled students are eligible to 
participate in the Supercomputing Challenge. Students follow their own interests to choose a 
topic to model. 
 
Teams Finishing the Challenge and submitting final reports: 
 
Team 1, La Cueva High School, An Integrated Approach for Immediate and Long-Term Air 
Quality Regulation and Monitoring in Mexico 
Team Member: Eliana Kai Juárez 
Sponsor: Ashli Knoell 
 
Team 2, Cottonwood Classical and Del Norte High School, For Crying "Drought" Loud 
Team Members: Ayvree Urrea, Kiara Onomoto, Violet Kelly 
Sponsor: Karen Glennon 
Mentor: Flora Coleman 
 
Team 3, McKinley Middle School, 
Best Conditions For Mushrooms And How They Dissolve Trash 
Team Member: Lennon Martinez  
Sponsor: Sharee Lunsford 
Mentors: Karen Glennon, Patty Meyer 
 
Team 4, La Cueva High School, Machine Learning based Accessible Mobile App for 
Activity Recognition and Freezing of Gait Monitoring in Parkinson's Patients 
Team Members: Abitpal Gyawali, Aditya Koushik, Aiden Shoppel, Amandeep Prasankumar, 
Venkata Menta 
Sponsor: Jeremy Jensen 
 
Team 6, Sandia High School, SINGS: A Simple Interactive N-body Gravitation Simulator 
Team Member: Tristan Eggenberger 
Sponsor: Bradley Knockel  
 
Team 7, Sandia Preparatory School,  
Simulating the Creation of Kerosene Using Sunlight Water Vapor and Air 
Team Members: Humdan Qureshi, Patrick Blewett 
Sponsor: Nicholas Aase 
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Team 8, Capital High School, Analyzing the Impact of COVID and its Correlation with Vaccines 
Team Members: Julia Almeida, Leslie Gutierrez, Guadalupe Rojo, LaTrisha Padilla 
Sponsor: Irina Cislaru 
Mentor: Jon Brown 
 
Team 9, Capital High School, A Robotic Fire and Fire Weather Measuring System, Smokey 
Team Members: Zachariah Burch, Isel Aragon, Britny Marquez, Daniel Leon 
Sponsor: Barbara Teterycz 
Mentor: David Ritter 
 
Team 10, Academy For Tech & Classics,  
Predicting Heuristics Related to the Controversiality of a Social Media Post 
Team Members: Henry Tischler, Gene Huntley 
Sponsor: Jenifer Hooten 
 
Team 13, La Cueva High School, Tracking Cislunar Orbits  
Team Members: Hadwyn Link, Ximena Serna, Kylen Reyner 
Sponsor: Jeremy Jensen 
Mentor: Mario Serna 
 
Team 14, Los Alamos High School,  
Mapping Anthropogenic Ocean Litter with an Autonomous Underwater Vehicle 
Team Member: Daniel Kim 
Sponsor: Michela Ombelli 
 
Team 15, Cleveland High School, Artificially made or not? 
Team Member: Layla Barela 
Sponsor: Ashli Knoell 
 
Team 17, New Mexico School for the Arts, Locating Smoke Plumes & Fires Accurately 
Team Members: Deisy Jaramillo, Tania Pizano, Elisea Jackson, Margot Esparza Torres 
Sponsor: Sarah Rowe 
Mentor: Stephen Guerin 
 
Team 18, Media Arts Collaborative Charter School, 
Mental Health Apps And The Need For A Crisis Button 
Team Members: Eduardo Dorado, Ana Sofia Rodriguez, Wyatt Wade 
Sponsor: Tanya Mueller 
 
Team 19, Santa Fe Preparatory School, Genetics of ADHD 
Team Members: Camila Carreon, Greta Swanson, Luke Rand, Nandita Ganesan 
Sponsor: Jocelyn Comstock 
Mentors: Juergen Eckhert, Quinton Flores 
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Team 20, Truman Middle School, Relationship Between Deforestation and Climate Change 
Team Members: Sebastina Puentes, Yahir Prieto 
Sponsor: Natali Barreto Baca 
 
Team 21, Truman Middle School, Amazon Deforestation 
Team Members: Briana Anaya, Kamilah Chavez, Yaritzel Castro 
Sponsor: Natali Barreto Baca 
 
Team 22, Tucumcari High School, 
Using Sensors to Detect and Maintain Distances in the Real World  
Team Members: Aaron Chand, MiKayla Klinger 
Sponsors: Thomas Evans, Morisa Evans 
Mentor: Harry Henderson 
 
Team 24, Tucumcari High School, 
Solid Oxide Fuel Cell Visual Recognition of Images to Show 3d Printed Part Effectiveness 
Team Members: Nolan Ryen, Marcus Lopez 
Sponsor: Thomas Evans 
Mentor: Creighton Edington 
 
Team 25, Justice Code/International/Harrison,  
Sparks vs. Bolts: An Exploration of the Environmental Efficacy of Electric and Gasoline Vehicles 
Team Members: Isaac Rankin, Aileen Ukwuoma, Alexandrina Ukwuoma 
Sponsors: Caia Brown, Becky Campbell, Ryan Palmer 
Mentor: Daniel Fuka 
 
Team 26, Justice Code/International/Harrison, M.E.D.I.C Bot: AI in Healthcare 
Team Members: Chinyere Offor, Mekhi Bradford, Kingsley Walker, Noel Emma-Asonye 
Sponsor: Becky Campbell 
Mentors: William Fong, Justin Schmetterer 
 
Team 27, Monte del Sol Charter School, Stress Anxiety Monitor (SAM) 
Team Members: Gabriella Armijo, Emlee Taylor-Bowlin 
Sponsor: Rhonda Crespo 
Mentor: Mark Galassi 
 
Team 28, Los Alamos High School,  
Developing an Autonomous Aerial Package Transport System 
Team Member: Andres Iturregui 
Sponsor: Allan Didier 
Mentor: Clint Hubbard 
 
Team 29, Tucumcari High School, Wind Turbine Blade Fencing 
Team Members: Sariah Mardo, Rachel Mardo 
Sponsor: Thomas Evans 
Mentor: Creighton Edington 
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Team 35, Justice Code, The Water Robot 
Team Members: Aaliyha Maestas, Jenifer Batista Ortiz, Sara Santiago, Alonda Jimenez Ramirez 
Sponsor: Becky Campbell 
Mentor: Dr. Anthony Lupinetti 
 
Team 36, Justice Code, Deflect Lightning 
Team Members: Alfonso Salas, Estevan Manriquez, Daniel Mason, Leland Martinez 
Sponsor: Becky Campbell 
Mentor: Dr. Anthony Lupinetti 
 
Team 37, Justice Code, TESTING THE EFFICACY OF OUR SUPERSPRAY ON THE ORAL 
MICROBIOME  
Team Members: Valerie Ozigbo, Gloria C. Enga 
Sponsor: Becky Campbell 
Mentor: Dr. Anthony Lupinetti 
 
Team 39, Justice Code, AI Basketball 
Team Members: Frances Emma-Asonye, Praise Ejimkonye 
Sponsor: Becky Campbell 
Mentor: Patty Meyer 
 
Team 40, Justice Code, How Visuals can affect the way people experience sound? 
Team Member: Chibuike Offor 
Sponsor: Becky Campbell 
 
Team 41, Justice Code/International/Harrison, Tsunami Disaster Detection 
Team Members: Kolton Walker, Delight Emma-Asonye, Leilani Baty 
Sponsors: Caia Brown, Becky Campbell, Ryan Palmer 
 
Team 43, Taos High School,  Should we be farming Hemp? 
Team Members: Christopher Muniz, Pedro Escobar, Juan Romo, Orlando Cruz, Jaden Alford 
Sponsor: Tracy Galligan 
 
Team 44, La Cueva High School, Tech Generated Art 
Team Member: Victoria Outkin 
Sponsor: Jeremy Jensen 
 
Team 47, Los Alamos High School, Fire And Water 
Team Member: Andrew Morgan 
Sponsor: Nathanial Morgan 
 
Team 50, St. Thomas Aquinas School, Galaxies Far, Far Away 
Team Member: Catherine Sedillo 
Sponsor: Eric Vigil 
Mentor: James Sedillo 
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Team 51, St. Thomas Aquinas School, Modeling Earthquakes 
Team Member: Ethan Ong  
Sponsor: Eric Vigil 
 
 
 
 
 
 
 
 
 
 
 
 
 

Judges 
 
Ed Angel, Professor Emeritus UNM 
Daniel Appel, BlueHalo, Supercomputing Challenge Alumni 
Joan Appel, Syncronys, Supercomputing Challenge Alumni 
Hussein Al Azzawi, University of New Mexico 
Gennie Barrett, Talking Talons Youth Leadership 
Richard Barrett, Sandia National Laboratory/Retired 
Nick Bennett, TLG Learning 
Hope Cahill, Santa Fe Public Schools 
Yie Sheng Chen, University of New Mexico 
Jesse Crawford, GitLab 
Sharon Deland, Sandia National Laboratories/Retired 
Mohit Dubey, Los Alamos National Laboratory, Supercomputing Challenge alumni 
Creighton Edington, Rural Education Advancement Program 
Daniel Fuka, Virginia Tech University 
Susan Gibbs, Project GUTS 
Stephen Guerin, Simtable 
Christopher Hoppe, Hoppe’s Art Studio, Supercomputing Challenge alumni 
David Janecky, Los Alamos National Laboratory/Retired 
Elizabeth Jimenez, University of New Mexico 
Philip Jones, Los Alamos National Laboratory 
Krisha Kalyanam 
Amy Knowles, New Mexico Institute of Mining and Technology 
Nicholas Kutac, Puget Sound Naval Shipyard, Supercomputing Challenge alumni 
Peter Lamborn, Red Violet 
Maximo Lazo, University of New Mexico 
Scott Levey, Sandia National Laboratories 
Joan Lucas, University of New Mexico-Los Alamos 
Monique Morin, Sandia National Laboratories 
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Ziyi Niu, Eastern New Mexico University 
Joseph Olonia, Central New Mexico Community College 
James Overfelt, Sandia National Laboratories 
Veena Parboteeah, New Mexico Highlands University 
Chris Peterson 
Maureen Psaila-Dombrowski, Los Alamos National Laboratory 
Abdalaziz Raad, University of New Mexico 
Lonnie Rednour, San Juan College 
Dana Roberson, Central New Mexico College 
Thomas Robey, Gaia Environmental Sciences 
Mary Sagartz 
Reffat Sharmeen, Sandia National Laboratory 
Tim Thomas, Sandia National Laboratories 
Michael Trahan, Sandia National Laboratories 
Geoff Valdez, Los Alamos National Laboratory 
Peter Watson, Los Alamos National Laboratory 
James Wernicke, Los Alamos National Laboratory, Supercomputing Challenge alumni 
Uri Wilensky, Northwestern University 
Kaley Woelfel, BlueHalo 
Louise Yakey, Tutors to Teachers 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Do you want to become a supporter of the Supercomputing Challenge? 
Please email us at consult@supercomputingchallenge.org for details. 
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Executive Summary

Parkinson's disease is a progressive neurological disorder that affects movement. It is
caused by the death of cells in the brain that produce a chemical called dopamine, which helps
regulate movement. An extremely evident symptom of Parkinson’s disease is the “Freezing of
gait (FOG) .” This is when an individual’s feet gets “stuck” to the ground, making it difficult or
impossible to take a step. Freezing of gait can be very distressing and significantly impact a
person’s ability to move around and participate in activities. The current diagnosis treatment for
detecting Parkinsons can be time consuming and involves the patient being given a series of
questionnaires that provides insight to doctors regarding whether the patient has the disease. So
in most cases the patient struggles with the disease before necessary medication and attention is
given to the patient, and the problems remain to be persistent as medical professionals are unable
to detect the extent of the disease as the diagnosis has no definitive test and is extremely
vulnerable to misdiagnosis. In consideration of these disadvantages, this project sets an attempt
to solve this problem by using a machine learning model built on a mobile app for activity
recognition and freezing of gait detection enabled by the use of triaxial motors in present mobile
phones. The problem solution is finding a more accessible, accurate and practical way of
identifying Parkinson's disease by detecting freezing of gait via a smartphone app and machine
learning. This app will also allow for an easy, hands-free way to keep track of how many FOG
events occur per day which is a very useful diagnostic marker to identify progression or
regression of disease. With support from the National Science Foundation and in collaboration
with Rexa.Info, UC Irvine Machine Learning Repository released a dataset called the “Daphnet
Freezing of Gait” in 2013. Using this published dataset, we trained an AdaBoost machine
learning model on the dataset, where over 200 FOG episodes were recorded over the course of
the experiment. The model learns based on a sliding window of FOG vs Non-FOG events, with
over 500 statistical features (including fourier transform) being calculated over the windows.
After successful training, an Activity Recognition model built with an XGBoost framework will
use a similar sliding window approach to learn activities based on accelerometer data. The
AdaBoost model with a Random Forest classifier baseline was trained and tested using a 5 fold
cross validation and showed a 87% accuracy in distinguishing FOG windows vs Non - FOG
Windows. The original Daphnet study achieved 73% sensitivity in predicting FOG events, while
our model achieved 77%. Our XGBoost activity Recognition model scored >90% F1 scores in
predicting activities such as walking, jogging, sitting, and standing.The next step taken was to
integrate this study on the app, for the front end React Native(JS) CLI + Expo CLI was used to
provide compatibility for iOS. In the backend Node JS, Express JS and Tensorflow JS were used.
Finally, to obtain the accelerometer data from the phone, expo sensors were used. User testing of
the app and further tuning of the models is still in progress.
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Introduction

Background: Parkinson’s Disease, Freezing of Gait (FOG), Machine Learning Models,

Fourier Transform

- Parkinson’s Disease

1. What is Parkinson’s Disease?

Parkinson's disease is a progressive neurological disorder that affects movement and is

characterized by symptoms such as tremors, stiffness, and difficulty with movement and balance.

It is caused by a loss of dopamine-producing cells in the brain. While there is no cure for

Parkinson's disease, medication and other treatments such as deep brain stimulation can help

manage symptoms and improve quality of life. Identifying early signs is important to allow for

earlier intervention and support.

2. What causes Parkinson’s Disease?

Parkinson's disease is caused by the death of dopamine-producing cells in a region of the brain

called the substantia nigra. The exact cause of this cell death is not yet fully understood, but it is

believed to be a combination of genetic and environmental factors. Research has identified

several genetic mutations that may contribute to the development of Parkinson's disease, but

these mutations are relatively rare and are thought to account for only a small percentage of

cases. Environmental factors such as exposure to certain toxins, head injuries, and infections may

also play a role in the development of Parkinson's disease, although more research is needed to

fully understand these connections.There is also evidence to suggest that inflammation and

oxidative stress may contribute to the development of Parkinson's disease. Inflammation can

damage neurons and disrupt the normal functioning of the brain, while oxidative stress can

damage cells and contribute to the death of dopamine-producing cells in the substantia nigra.

Overall, Parkinson's disease is a complex condition with multiple factors contributing to its
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development. While the exact cause of Parkinson's disease remains unknown, ongoing research

is working towards a better understanding of the condition and potential treatments.

3. What are some common symptoms of Parkinson’s Disease?

Parkinson's disease is a neurological disorder that affects movement, and the symptoms can vary

from person to person. However, some of the most common symptoms of Parkinson's disease

include:

- Tremors: Uncontrollable shaking or tremors in one or more limbs, typically starting in

one hand or arm.

- Bradykinesia: Slowness of movement, making everyday activities such as getting dressed

or brushing teeth more difficult.

- Rigidity: Stiffness and resistance to movement in the limbs or trunk.

- Postural instability: Difficulty with balance and coordination, leading to falls.

- Freezing of gait: Brief episodes where the person's feet seem to get "stuck" to the ground,

making it difficult to take a step.

- Changes in speech: Difficulty with speaking clearly or softly, slurring of words, or a

monotone voice.

- Micrographia: Small, cramped handwriting.

Other symptoms may include fatigue, depression, anxiety, sleep disturbances, constipation, and

loss of sense of smell. It's important to note that not all individuals with Parkinson's disease will

experience all of these symptoms, and the severity and progression of symptoms can vary

widely.

Freezing of Gait

1. What is Freezing of Gait?

Freezing of gait (FOG) is a common symptom of Parkinson's disease that affects a person's

ability to initiate and continue walking. FOG is characterized by a sudden and brief inability to
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move the feet, making it feel like the person's feet are glued to the ground. It can occur when

starting to walk, turning, or approaching an obstacle.

FOG is a complex symptom that can be caused by a combination of physical and cognitive

factors. Physical factors include muscle weakness, poor balance, and rigidity, while cognitive

factors can include anxiety, distraction, or hesitation. FOG can be particularly distressing for

people with Parkinson's disease, as it can lead to falls and reduced mobility.

Figure 1

2. How can Freezing of Gait be detected?

Accelerometers are devices that can detect changes in movement and are commonly found on

most smartphones. They can be used to detect freezing of gait (FOG) by measuring changes in

movement patterns associated with FOG episodes. One way accelerometers can be used to detect

FOG is by analyzing the gait pattern during normal walking and comparing it to the pattern

during FOG episodes, which is performed by our machine learning model. During FOG, there

may be a sudden decrease in the amplitude and frequency of lower limb movements. This

reduction in movement can be detected by an accelerometer placed on the foot or leg.
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- Ensemble Methods

1. What are Ensemble methods?

Ensemble methods are a set of machine learning techniques that combine multiple models to

improve the accuracy and robustness of the predictions. Ensemble methods work by combining

the predictions of several models, either through a voting system, weighted average or stacking,

in order to produce a single more accurate prediction. Ensemble methods are especially useful in

situations where the data is noisy or uncertain, as they can help to reduce the impact of errors or

biases in individual models.Some of the most popular ensemble methods include bagging,

boosting, and random forests. Bagging involves building multiple models on different subsets of

the training data, and then averaging their predictions. Boosting, on the other hand, trains

multiple models sequentially, with each model attempting to correct the errors of the previous

model. Random forests combine the ideas of bagging and decision trees, by building an

ensemble of decision trees on random subsets of the data. Ensemble methods have become

increasingly popular in recent years, and are widely used in a variety of applications, including

image and speech recognition, natural language processing, and recommendation systems.

Figure 2
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2. What is ADABOOST?

AdaBoost, short for Adaptive Boosting, is a machine learning ensemble algorithm that combines

weak learners to create a strong learner. In AdaBoost, weak learners are simple models that

perform slightly better than random guessing, such as decision trees with a small number of

levels or simple regression models. AdaBoost iteratively trains these weak learners on the same

dataset, with more emphasis on the samples that were misclassified by the previous model. This

allows the subsequent models to focus more on the difficult samples that were misclassified,

thereby improving the overall accuracy of the ensemble. During the training process, AdaBoost

assigns weights to each sample in the dataset, with more weight given to the misclassified

samples. In each iteration, the weak learner is trained on the weighted data, and a new weight is

assigned to the model based on its accuracy. The final prediction of the ensemble is a weighted

sum of the predictions of each individual model. AdaBoost is known for its high accuracy,

robustness, and ability to handle complex datasets with high-dimensional feature spaces. It has

been successfully applied to a wide range of applications, such as computer vision, natural

language processing, and bioinformatics.

Figure 3

3. What is XGBOOST?

8



XGBoost stands for "Extreme Gradient Boosting," and it is a popular open-source machine

learning algorithm for solving classification and regression problems. It is based on the gradient

boosting framework and has gained popularity due to its speed, performance, and flexibility. The

main idea behind XGBoost is to create a series of decision trees that can be used for making

predictions on new data. Each decision tree is trained on a subset of the training data and the

features are selected based on their importance in improving the performance of the model. The

output of the decision trees is then combined in a way that maximizes the overall performance of

the model.XGBoost has several key features that make it popular among data scientists and

machine learning practitioners. These include:

- Speed: XGBoost is designed to be fast and efficient, making it suitable for large-scale

datasets.

- Regularization: XGBoost has built-in regularization techniques such as L1 and L2

regularization to prevent overfitting and improve the generalization performance of the

model.

- Handling missing values: XGBoost can automatically handle missing values in the data

without the need for imputation techniques.

- Interpretability: XGBoost provides information on feature importance, which can help in

understanding the underlying data patterns.

Figure 4
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1. What are Random Forests?

Random Forests is a machine learning algorithm used for classification, regression, and other

tasks. It is an ensemble learning method that combines multiple decision trees to create a more

accurate and robust model. Random Forests works by building multiple decision trees on

randomly selected subsets of the data and features. Each decision tree is trained on a random

subset of the training data and a random subset of the features. The final prediction is then made

by taking the majority vote (in classification) or the average (in regression) of the predictions of

all the individual trees.

The main advantage of Random Forests is that it reduces overfitting by averaging the predictions

of multiple trees. This makes it less sensitive to noise and outliers in the data, and less prone to

overfitting compared to a single decision tree. Random Forests can also handle missing data and

perform well with high-dimensional datasets. It can be used for both supervised and

unsupervised learning tasks, such as classification, regression, clustering, and anomaly detection.

Figure 5

4. What is Fourier Transform
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The Fourier transform is a mathematical technique that allows us to convert a signal or a function

from its time or spatial domain to its frequency domain. In other words, it decomposes a complex

signal or function into its constituent sinusoidal components. This transformation is named after

Joseph Fourier, a French mathematician who discovered it in the early 19th century.

The Fourier transform is an important tool in time series forecasting because it can help identify

the underlying periodicities and trends in a time series. By analyzing the frequency components

of a time series using Fourier transform, we can identify patterns such as seasonality or cyclical

behavior that are not immediately apparent from the raw data.Once the frequency components of

a time series have been identified, various techniques can be used to model and forecast the time

series based on those components. For example, one approach is to decompose the time series

into its seasonal and trend components using techniques such as seasonal decomposition of time

series (STL) or the Holt-Winters method. The Fourier transform can be used to extract the

seasonal component of the time series, which can then be modeled and forecasted separately.

Another approach is to use Fourier analysis to identify the dominant frequencies in the time

series and then use that information to build a forecasting model. This approach is often used in

signal processing and can be applied to time series data as well. In summary, the Fourier

transform is important in time series forecasting because it helps identify the underlying patterns

and periodicities in the data, which can be used to build more accurate forecasting models. By

using the Fourier transform as a tool for feature extraction and analysis, we can gain deeper

insights into the structure of the time series and develop better forecasting models.
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Figure 6 (Shows the following fourier transform or base sinusoid of the signal produced)

5. What is the Fast Fourier Transform?

The Fast Fourier Transform (FFT) is an algorithm that computes the Discrete Fourier Transform

(DFT) of a sequence, which is a mathematical transformation that converts a signal from the time

domain into the frequency domain. In simpler terms, the FFT is a way of analyzing a signal to

determine the frequency components that make it up. For example, if you have an audio signal of

a person speaking, the FFT can be used to determine the different frequencies of sound waves

that make up that speech signal.

The FFT can be used in time series forecasting to identify and extract useful patterns from the
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data in the frequency domain. This can be particularly useful for identifying cyclic patterns or

seasonality in the data.

Here are the steps to use the FFT in time series forecasting:

2. Preprocessing: The first step is to preprocess the time series data by removing any trends

or seasonal components that can interfere with the frequency analysis. This can be done

using techniques such as differencing or seasonal decomposition.

3. Compute the FFT: The next step is to compute the FFT of the preprocessed time series

data. This will transform the data from the time domain to the frequency domain.

4. Identify the dominant frequencies: The FFT will produce a frequency spectrum that

shows the various frequencies present in the data and their respective amplitudes. The

analyst can identify the dominant frequencies by examining the frequency spectrum and

selecting the frequencies with the highest amplitudes.

5. Forecasting: Once the dominant frequencies have been identified, they can be used to

create a forecast by extrapolating the pattern into the future. This can be done by creating

a sinusoidal function with the identified frequency and amplitude and projecting it into

the future.

6. Validation: Finally, it is important to validate the forecast by comparing it to actual data.

This can be done by comparing the forecasted values to the actual values and calculating

the forecast error.

Overall, the FFT can be a powerful tool for time series forecasting as it allows analysts to

identify and extract useful patterns from the data in the frequency domain.
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Figure 7 (The following illustration shows 8 data points being split into two groups of 4 points

each. Each set goes through an algorithm that analyzes the data points in terms of frequency

domains. which represent the signal in the frequency domain. The magnitude and phase of

each data point is representative of the amplitude and phase of a corresponding frequency

component in the signal. The DFT can then be effectively calculated using the FFT algorithm.

The algorithm enables the use of the predictable nature of sinusoids and how they overlap to

make the necessary computation)
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Purpose

Finding a more accessible and practicable way of monitoring Parkinson's disease by detecting

freezing of gait and user activities via a smartphone app and machine learning.

Materials

● Daphnet FOG dataset

(https://archive.ics.uci.edu/ml/datasets/Daphnet+Freezing+of+Gait)

● WISDM Activity recognition dataset (https://www.cis.fordham.edu/wisdm/dataset.php)

● React Native (JS) CLI + Expo CLI

● Node JS

● Express JS

● Tensorflow JS

● Expo Sensors

● Python Flask

● Google Cloud Engine
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Methods

- Creating the FOG model

Step 1: Loading the Dataset

The first step of the project was to train two models, the AdaBoost and XGBoost models, in

being able to make accurate predictions from the Activity Recognition and Daphnet Freezing of

Gait Dataset. From both datasets, upper thigh acceleration was recorded from three axes. The

dataset used to train the model consisted of accelerometer data from subject 5 of the study

sampled from three axes at the ankle, thigh, and trunk. Only the UHF (Upper leg thigh

acceleration - horizontal forward acceleration [mg]), UV (Upper leg thigh acceleration - vertical

[mg]) , and UHL (Upper leg thigh acceleration - horizontal lateral [mg]) acceleration data could

be used to train the model, however, since the WISDM activity recognition dataset consisted of

values only measured from the thighs.

Figure 8: Daphnet dataset
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The dataset also consisted of a Time column which was measured in milliseconds (ms) where

acceleration values were recorded every 15 ms over the course of 36 minutes (duration of the

experiment). The final and most important column is the “Annotation” column, where a 0

indicates that a given acceleration reading did not occur during a FOG event (No-FOG) and a 1

indicates that the acceleration reading occurred during a FOG event.

Step 2: Training the model

After the FOG dataset was loaded in, feature calculation was performed through the tsfresh

python library, which automatically uses a sliding window through the dataset to compute over

1000 features. In order to prevent high dimensional input data, only a certain number of the

original features could be selected for training the model. Most Calculated features showed a

negligible correlation with the occurrence of FOG events, so r > 0.1 was used as the filter to

acquire slightly correlated features with FOG activity. In total, 593 features were calculated and

would be used to train the model.

Because the data was a time series dataset in nature, classical machine learning

techniques could not be used to predict groups of collective anomalies or FOG events. Because

of this, a sliding window (Figure 9) with a size of 50 data points (50 acceleration values) would

scan through the dataset and the tsfresh library would compute features over each window of

data. Examples of a few of the features calculated are sum of acceleration values, mean

acceleration in the window, median acceleration, standard deviation of acceleration, kurtosis, etc.

These features would be computed for UHF, UV, and UHL accelerations (x,y, and z axis). A

window size of 50 was decided since it resulted in highest model accuracy when compared to

other window sizes below 66. A window size of 66 would be a window of approximately 1

second of acceleration data (66*15), which would also mean that there would be a 1 second

latency period between model prediction and live data collection. 1 second or 66 rows was

decided as the max window size (a larger number would result in a greater latency), and 50 rows

was the smallest number that seemed to show the best model performance. Another variable that

had to be decided was if a window would be labeled as a FOG or Non-FOG event. Based on

extensive testing and experimenting, it was found that a threshold of 0.4 seemed to show the best

model performance (If 40% of annotations in the window are a 1, then the entire window would
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be classified as a FOG window). This variable has the greatest influence on model prediction, so

further tuning of this parameter upon testing of the app is a future goal.

Figure 9: Example of sliding window

After all sliding windows were compressed into a single row or data value, the final dataset

ultimately had 1356 rows where each row represents a window of 50 rows of the original data.

After the scikit learn min-max scaler was applied to normalize each column of the data between

values of 0 and 1, an AdaBoost model with a random forest baseline classifier was trained on the

data. The model would be validated through a 5-fold cross validation and a LOOCV (Leave one

out cross validation) as described in the results.

- Creating the Activity Recognition Model

Step 1: Loading the Dataset

The WISDM activity recognition dataset was loaded into the jupyter notebook file with the

pandas module. The dataset consisted of ~1,000,000 rows of triaxial thigh accelerometer data

from 36 users as shown by Figure 10.

Figure 10
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The “activity” column consisted of annotation for 6 possible activities the user was engaging in:

Walking, Jogging, Sitting, Standing, going upstairs and going downstairs (Figure 11 and 12).

Because the goal of creating the activity recognition model was to determine when the FOG

model should be activated, the model needed to be able to accurately predict when a user is

walking/jogging vs sitting/standing.

Figure 11 and 12

Step 2: Training the model

The process for training the model was similar to the FOG model. Because this dataset was

sampled at 50 ms, a 15 row window size had to be created in order to produce the same

prediction time (0.75 seconds) for both FOG model and activity recognition model (FOG: 50
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rows * 15 ms vs Activity Recognition: 15 rows * 50 ms). The process of feature engineering was

slightly different from the FOG model.

First, 18 simple statistical features were calculated for each axis on the 15-row sliding

window as the entire dataset was scanned (18*3 = 54 features). These statistical features

condensed accelerometer data from 15 rows into 1 value for each of the three axes of

acceleration. The calculated features were mean acceleration, standard deviation, average

absolute deviation, minimum acceleration, maximum, difference of maximum and minimum

values, median, median absolute deviation, interquartile range, negative values count, positive

values count, number of values above mean, number of peaks, skewness, kurtosis, energy,

average resultant acceleration, and signal magnitude area. Finally, the fast fourier transform and

power spectral density functions were applied to each window and all above features were

recalculated from the new arrays. After the feature engineering, Figure 13 shows the final dataset

before training the model, where each row in the below dataset represents a window of 15 rows

in the original dataset. In total 156 features (excluding label column) were engineered from the

original triaxial acceleration values.

Figure 13

The above dataset was normalized with the min max scaler and was used to train an XGBoost

model to make multiclass predictions of a user’s activity based on the 156 provided features. The

model’s accuracy was evaluated through a 5-fold cross validation test.
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App Creation

Terminology

Front-end: Frontend is the portion of the app that is shown to the user. It consists of the User

Interface (UI) and must be able to handle user inputs; front-end handles all the interactions with

the user.

Back-end: Backend of an app is the portion of the app that handles data computation, data

storage, and any other logical processes that allow the app to operate. In other words, the

back-end handles the logic of the application, and does not interact with the user.

API (Application Programming Interface): APIs are essentially the connection between the

front-end and the back-end of the application. It allows these two components to communicate

with one-another through a series of requests and responses.

Objective of the Application

The table below demonstrates what each component of the app must be able to do:

Front-end Back-end API

- Be able to read and
collect iPhone
accelerometer data

- Be able to send the
collected
accelerometer data to
the back-end

- Have a consistent UI
that allows the user to
navigate the app
smoothly

- Be able to interact
with the back-end

- Be able to receive
accelerometer data
from the front-end
through an API

- Be able to feed in the
received
accelerometer data
into a machine
learning model and
obtain a prediction

- Be able to send the
model prediction to
the front-end through

- Create a stable
connection between
the front-end and the
back-end

- Be able to send
accelerometer values
from the front-end to
the back-end

- Be able to send
predictions from the
back-end to the
front-end
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through an API an API

Step 1: Front-end Prototype - Choosing the Software

The first step of creating a front-end for the application is to decide which software to use to

make the application. There are several main questions that go into deciding the software:

- What platform will the application run on? Android? iOS?

- Will the application be available on all major platforms?

- What kind of tools are present in the application?

- What kind of tools does the application need access to?

We wanted the application to be available on all major platforms (most notably iOS and

Android). In addition to that, the application must be able to read and store accelerometer values

of the cell-phone. React Native, a software built by facebook for app development, fulfilled both

of these major requirements. In addition to fulfilling these two requirements, our team also had

prior experience with React JS (the Javascript library that React Native is built on), allowing us

to build the application without having to learn a new language.

Collecting accelerometer values of the cell phone

In order to collect the accelerometer values of the user’s phone, we used a React Native

library called Expo Sensors. However, Expo Sensors could not be used without implementing the

app using Expo CLI. Therefore, our initial prototype of the app was built using Expo CLI.

However, in order for our application to fully function, we must be able to send this

accelerometer data to our backend through an API. Since we used a local computer to run the

backend server (through local host) during development, our server was hosted under HTTP

protocol, rather than a more secure HTTPS protocol. However, due to Apple's security protocols,

requests to insecure sites (such as those not protected by HTTPS) are blocked. This can be

avoided through changing the application’s metadata. However, this change of metadata could

not be done through Expo CLI due to its high level nature. This problem was fixed through

creating a project through the command line command “create-react-native-app”, which allowed
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projects to incorporate both React Native CLI and Expo CLI. This essentially allowed us to

maintain access to the phone’s accelerometer data while enabling control over the application’s

metadata.

The code below creates an exception to Apple's security protocol, allowing the application to

connect to my computer locally.

<key>NSAppTransportSecurity</key>

<dict>

<key>NSAllowsArbitraryLoads</key>

<true/>

<key>NSExceptionDomains</key>

<dict>

<key>{Domain}</key>

<dict>

<key>NSIncludesSubdomains</key>

<true/>

<key>NSExceptionAllowsInsecureHTTPLoads</key>

<true/>

<key>NSExceptionRequiresForwardSecrecy</key>

<true/>

</dict>

</dict>

</dict>

Accelerometer values are collected as follows:

- Accelerometer values are collected every 15 milliseconds

- At each instance of collection, acceleration in the x-axis, y-axis, and z-axis are stored in

their respective list
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- After a certain amount of accelerometer data is collected, the arrays of x-axis

acceleration, y-axis acceleration, and z-axis acceleration are sent to the backend through a

POST request, and the array is cleared

This overall process is shown in the pseudo code below:

x_list = []

y_list = []

z_list = []

data_length = {model’s ideal length of data}

//app is running

//DeviceMotion handles the accelerometer value events

DeviceMotion.addListener((accelerometer_data)=>{

x_list.push(accelerometer_data.x)

y_list.push(accelerometer_data.y)

z_list.push(accelerometer_data.z)

if x_list.length == data_length

POST Request —> body: [x_list, y_list, z_list]

})

This allows for the prototype of the front-end with essentially all the necessities of the

application.
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Step 2: Back-end Prototype - Choosing the Software

As aforementioned, the backend of the application will handle the application’s

interactions with the machine learning model. This includes preparing the accelerometer data for

model input, which mainly consists of computing the features of the accelerometer data (these

features are the inputs to the models). Both the activity recognition model and the FOG detection

models utilize complex statistical methods to compute the features. Therefore, it is in our best

interest to use a language such as Python, that has the tools necessary to compute these features.

In addition to that, the original model was trained on features computed using Python libraries,

so in order to minimize the chances of errors in the code, we decided to use Flask (a Python

Back-end library) to create our backend. This would allow us to mimic the original method of

feature engineering.

Overall Process (Backend) :

The overall process for the backend is as follows:

1) Input arrays (x-list, y-list, z-list) are converted from JSON to a python array

2) The features are computed for the array (for both the activity recognition model and the

FOG detection model)

3) Predictions are made by the model

4) These predictions are sent to the frontend as a response to the original POST request

Step 3: Testing

We tested the application on two main components: prediction when the user is still and

when the user is walking. The inefficiencies of setting up a controlled experiment to test the

application’s detection of upstairs (walking upstairs) and downstairs (walking downstairs)

discouraged us from testing these two types of predictions. In order to test still and walking, we

recorded the accuracy of the application’s predictions when the user is still (sitting and standing

still) for three minutes, and accuracy of the predictions when the user is walking continuously for

three minutes. We perform several trials of these tests (2~3). Through these testing periods, the
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iPhone (our testing device) was put inside a pocket, located on the upper thigh. These tests were

conducted in a house to make sure the conditions of testing were realistic.

Window Size 15 50

Accuracy - Still 98% 100%

Accuracy - Walking 79% Data Collection in Progress

Points of Errors → Errors mostly occurred during these conditions:

- Fast paced walking – errors seldom occurred when the user was walking faster, in which

the model would predict the user was walking. This most likely occurred from the fact

that the training data was taken from older patients.

- Turning – although errors during moderate turns did not occur often, sharp turns would

often cause the model to predict the user was jogging

Although the data collection is in progress for measuring the accuracy of walk predictions for the

window size of 50, from what we have gathered so far, the accuracy has been between mostly

around 85%, showing a significant increase from the 79% with the window size of 15.

Google Cloud App Engine

After enough tests have been performed and the model has been tuned, the app will be

run on the google cloud app engine. This will allow for the application to be easily scalable, and

will also allow the application to bypass Apple's security guidelines regarding secure domain

connections. Figure 14 shows the predicted logic of the application after development.

Progress

So far, the application can do the following:

Front-end Back-end API
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- Be able to read and
collect iPhone
accelerometer data

- Be able to send the
collected
accelerometer data to
the back-end

- Be able to interact
with the back-end
through an API

- Be able to receive
accelerometer data
from the front-end
through an API

- Be able to feed in the
received
accelerometer data
into a machine
learning model and
obtain a prediction

- Be able to send the
model prediction to
the front-end through
an API

- Create a stable
connection between
the front-end and the
back-end

- Be able to send
accelerometer values
from the front-end to
the back-end

- Be able to send
predictions from the
back-end to the
front-end
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Figure 14: Overview of App - Application Flowchart
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Results

Exploratory Data Analysis (EDA)
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Figures 15-18

Figures 15-18 show matplotlib generated graphs of the triaxial accelerometer data for the first

400 samples of the signal. Visually, accelerometer data while the user is walking/standing have

higher amplitudes and frequency than data from sitting/standing.
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Figures 19-21

Figures 19-21 show the distribution of signal data for 3 axes with each activity hue, to see if

there was an obvious pattern in accelerometer data between different activities. It is observed that

there is very high overlap in the data among activities like Upstairs, Downstairs, Walking,

Jogging and Standing on all the axes. Sitting appears to have distinctive values along the y-axis

and z-axis.
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Model Training with Fourier Transform

Figure 22

Figure 22 shows a fourier transform applied to the time series dataset. The DC component is the

first value and is usually high, but the frequency signal is symmetrical about the center (around

the 7th accelerometer value). As mentioned before, 18 key features were extracted from the

second half of the fourier transform (mean, median, mode, etc) since the DC component is high

and should be discarded.

Model Testing - FOG Model

Figure 23
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The FOG model was tested with a 5 fold Cross validation performed in Python. Data is typically

split using the train test split (70% of the data used to train models, and the other 30% used to

test the model accuracy) in classical problems, but splitting the data with a train-test split has

more bias and can lead to overfitting, so k-fold splits the data in a different manner (Figure 23).

K-fold cross validation involves splitting data into k equal folds (Figure 23). The first k-1 folds

are used for training, and the remaining are used for testing. This is repeated for all k-folds, and

the mean of the accuracies of each k-fold is returned. The 5-fold CV calculates sensitivity,

specificity, F1 score, MCC, and accuracy. Sensitivity measures the ability of the model to predict

FOG windows. Specificity measures the ability of the model to predict Non-FOG windows or be

able to distinguish FOG from Non-FOG. The equations are shown below.

Equation 1: Sensitivity and Specificity measurements

F1 score is the harmonic mean of precision and recall, which measures the balance between the

two metrics. It provides a single number to summarize the overall performance of a model. MCC

(Matthews correlation coefficient) measures the correlation between predicted and actual binary

classifications, taking into account true positives, true negatives, false positives, and false

negatives. It ranges from -1 (completely incorrect) to 1 (perfectly correct), with 0 indicating no

correlation. The equations for each are shown below.
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Equation 2: F1 and MCC measurements

Accuracy 0.87

F1 Score 0.82

Sensitivity 0.77

Specificity 0.91

Table 1 and Figure 24: Model Performance

Table 1 and Figure 24 show the performance of the AdaBoost model in predicting FOG windows

vs Non-FOG windows (windows of accelerometer data annotated during FOG events). The

scores are the average of the model’s performance for each fold during the 5-fold CV. The model

seems to have slightly outperformed the Daphnet study in predicting FOG events, as the

sensitivity of 77% is greater than the Daphnet reported sensitivity of 73%. The model also shows

a fairly high accuracy of 87% in predicting FOG events. In addition to 5-fold CV, another

method of cross validation was used to test the model called LOOCV

(Leave-One-Out-Cross-Validation). LOOCV is a technique used for assessing the performance

of an MLmodel, particularly in cases where the data sample size is relatively small. In LOOCV,

the model is trained on all but one data point in the dataset, and then the performance of the

model is evaluated on the one data point that was held out. This process is repeated for each data

point in the dataset, and the performance of the model is averaged across all the held-out data
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points.This method of cross validation more accurately represents the model’s performance in

the real world, where it is trained on the entire dataset and only makes predictions on a single

data point. However, the method is also computationally expensive (since the model has to be

tested on every datapoint) so was only used to evaluate the model.

Macro Average Weighted Average

Accuracy 0.88 0.88

F1 Score 0.85 0.88

Sensitivity 0.85 0.88

Specificity 0.84 0.88

Table 2 and Figure 25: Model

Performance

Upon LOOCV, the model

performed well with a large

improvement in sensitivity

(88%) and an improvement in

accuracy of 88%.
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Activity Recognition Model

Figures 26 - 27

Figures 26 and 27 show the 5-fold cross validation results for the sensitivity of the XGBoost

Activity Recognition model in distinguishing walking, jogging, sitting, and standing. The model

showed an average 5-fold CV sensitivity of 88, 86, 99, 97 % for predicting walking, jogging,

sitting, and standing respectively. This model was also tested at 3 different window lengths (15,

50, and 100) to identify the best window length. The average F1-score across 5-folds for the

model in predicting each activity is shown in Figure 28.
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15 rows 50 Rows 100 Rows

Jogging 92.2 93.6 93.6

Sitting 95 94 93.2

Standing 92.6 93.4 92.2

Walking 83.4 89 93

Figure 28 and Table 3

Based on Figure 28, a higher window size clearly shows a higher F1 score when predicting

walking. However, for other activities, window size seems to have a negligible effect on model

performance. Table 3 shows that the model shows a high F1 score (>90%) for predicting all

activities when trained on windows of 50 and 100 rows and a high F1 score in all activities

except walking when trained on windows of size 15.
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Conclusions and Discussions

This project successfully created a robust machine learning pipeline with an integrated

and scalable iOS prototype application for activity recognition and Freezing of Gait (FOG)

monitoring in Parkinson’s Patients. Upon LOOCV and 5-fold cross validation, the AdaBoost

machine learning model achieved an 87 and 88% accuracy respectively in classifying FOG

events in the training dataset. The Activity Recognition Model with an XGBoost model

framework achieved F1 scores of 93, 94, 93.4, and 89 in classifying jogging, sitting, standing,

and walking respectively.

Further development of this app will benefit Parkinson’s Patients by providing an

accurate and reliable method of diagnosis via monitoring of Freezing of Gait, and will allow a

user to keep track of daily FOG events to determine the severity of their disease symptoms.

There are a few limitations with the project: 1) The use of a sliding window without overlapping

windows may decrease model accuracy, since overlapping windows ensures that every

subsequent row in the transformed dataset has some information from the data in the previous

window as well. 2) The FOG model’s accuracy can still be improved, and an active learning

approach may be required for more accurate FOG detection for a specific user. 3) Only data from

one subject from the original Daphnet dataset was used to train the FOG model, since the model

performed poorly ( < 70% accuracy) with other data or with combinations of subject data. 4) The

use of smaller sliding windows (n <50) may improve app latency but may not always be able to

capture the full duration of FOG events, which are usually much longer. 5) App development is

still in a preliminary stage, and a UI is still yet to be created.

In the future, we plan on implementing an active learning approach where a user can

manually input data on recorded FOG events to improve the model’s predictive accuracy and to

have the model learn the patterns of FOG in a specific user. In this study, only a baseline model

to predict FOG was created and active learning may be required for more accurate detection of

FOG. In addition, user testing of the app is in progress as of now, and real-life app testing data

will be collected by our presentation day. Finally, the creation of an app user interface is still in

progress.
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EXECUTIVE SUMMARY 
This project explores the possibilities of pairing an autonomous underwater vehicle (AUV) with 

a deep-learning computer vision model for marine debris mapping. A cost effective, 3D-printed 

AUV with a motorized ballast system was designed to collect underwater footage continuously 

at various depths for several weeks. A simulated underwater environment using hardware-in-

the-loop (HIL) procedures was used to test and evaluate the AUV. A trash detection machine 

learning model was developed to analyze the footage for underwater litter. To assess the 

accuracy and capabilities of the trash detection model, footage from various underwater 

vehicles was compiled and run through the model, yielding five areas of highly concentrated 

ocean debris at depths of 500-800 meters below the surface. This study highlights how many 

pieces of marine debris - undetectable by satellite data – can be mapped and categorized with 

the proposed AUV and trash detection model.  

KEYWORDS: Autonomous underwater vehicle; Hardware-in-the-loop; Tracking and mapping; 

Marine debris; Real-time object detector; Machine learning. 
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1. INTRODUCTION 
The use of plastics in the past 65 years has significantly outpaced the use of all other materials. 

Of the 8.3 billion metric tons of plastic ever produced, only 2500 metric tons are currently in 

use (Geyer et al., 2017). These plastics are the most dominant type of litter found in our oceans 

and contribute to the 244,000 metric tons of marine debris (Parker, 2022). 

This issue has already caused substantial ecological and economic problems. An estimated 845 

million people are at risk of iron, zinc, or vitamin A deficiency because of declining fish 

populations (Golden et al., 2016) and global ecosystem delivery systems are projected to lose 

$500-$2500 billion in value of benefits (Beaumont et al., 2019) because of global plastic 

accumulations.  

Currently, quantitative assessments of marine litter are primarily done through satellite 

imagery. For example, the MARLISAT project combines orbital imagery and machine learning 

algorithms to detect plastic along beaches and oceans (Petersen, 2022). Although this method 

has given a clear view on concentrations of surface-level plastic, about 40% of plastics in the 

ocean are less dense than seawater (Andrady, 2011), leaving them undetectable through 

satellite imagery.  

One of the largest garbage patches in the world, the Great Pacific Garbage Patch, was mapped 

using a fleet of 18 vessels and 642 surface nets (Lebreton et al., 2018). This method created a 

comprehensive understanding of the largest garbage patch in the world but required vast 

resources and manpower for a single assessment. The ceaseless movement of ocean debris 

requires continuous observation, but the use of large resources for one measurement is not 

sustainable. Therefore, advanced marine debris detection systems with autonomous 

capabilities are needed for the effective mapping of marine debris.  

The purpose of this study is to design and develop an autonomous underwater vehicle (AUV) 

and a trash detection machine learning (ML) model to assist in marine litter quantification. The 

AUV is capable of surveying and capturing footage of different marine environments at various 

depths for long distances, while gathering other seminal metrics such as temperature and 

salinity data. Unlike satellites, AUVs allow for metrics to be collected at various depths, and 

contrary to current surface net and trawl quantification methods, AUVs are cheap and require 

very little manpower. The ML model analyzes the post-deployment footage from the AUV for 

litter, which is used to build a comprehensive map of marine debris.  

Using this method, the performance and capabilities of the engineered AUV are evaluated and 

open-sourced underwater video datasets are analyzed to create a model of ocean litter off the 

coast of Kamaishi, Japan. Using the ML model, the possibility of using AUVs to collect data on 

the scope of marine debris was assessed. 
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2. METHODOLOGY 

2.1 Design of AUV 
The AUV is modeled after an underwater glider - a robotic vehicle suited for data collection in 

remote locations at a low cost. Underwater gliders do not have propellers or engines; they 

utilize changes in buoyancy to move up and down which creates lift to propel the vehicle 

forward. This method allows for the glider to operate for days, weeks, or even months 

autonomously before being recovered for data.  

The AUV was first designed in computer-aided design (CAD), and 3D-printed. Each component 

of the AUV was a separate, modular design, which was then assembled onto a steel rod 

backbone. The entire assembly then slid into a 102 mm×914 mm clear PVC tube and was sealed 

with an O-ring endcap. Each of the 3D-printed modules was manufactured in polylactic acid 

(PLA), with high infill to increase the density of the vehicle. Since the inner printed parts are 

independent from the outer PVC tube, none of the inner components required water proofing. 

By assembling the AUV primarily with 3D printed components, the design allowed for 

modularity and repeatable manufacturing of parts – all at a very low cost.  

The AUV was assembled using the 3D printed parts and had a width of 10.16 centimeters, a 

wingspan of 0.72 meters, and a length of 1.08 meters. Initially, the mass of the vehicle was 

insufficient to sink, thus 3.63 kg of copper plated lead weights were added to the interior of the 

AUV to make it neutrally buoyant, giving it a final mass of 6.63 kg. 

The AUV control board, the circuit board that operates the vehicle, was first designed, and 

developed in electronic computer-aided design, then outsourced for fabrication by JLCPCB. 

Once the bare printed circuit board (PCB) was fabricated, individual integrated circuits were 

soldered using reflow. The microcontroller used on the control board was the Teensy® 4.1 

(Teensy 4.1, 2020), featuring the Arm® Cortex-M7 (Cortex-M7, 2014) at 528 MHz and 1024 KB 

of memory. The software that operated the control board was developed in C++ and a 

complementary graphical user interface (GUI) was developed in Typescript. 

2.2 Trash Detection Model  
The trash detection model was built on YOLOv5, an open-source ML framework. The dataset 

used to train the neural network was the Trash ICRA-19 dataset (Fulton, 2019), which contained 

5700 annotated images of underwater trash. Training was performed on a Google Colab server 

with a NVIDIA Tesla T4 with 16GB of memory and 2560 CUDA cores. A total of four different 

neural networks were trained and evaluated to find the best-suited model for trash detection. 

Table 1 summarizes the four different models. Once the models were trained, validation and 

deployment of the models was performed on a local server featuring the NVIDIA 1650Ti with 

4GB of memory and 896 CUDA cores. 
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Table 1. The four models trained for trash detection. The model that showed the highest 

accuracy is then used for trash detection. 

Model Parameters (millions) FLOPs @ 640 pixels (billions) 

YOLOv5n 1.9 4.5 

YOLOv5s 7.2 16.5 

YOLOv5m 46.5 49.0 

YOLOV5l 86.7 109.1 

3. RESULTS AND DISCUSSION 

3.1 Component Design for AUV 
The AUV consists of four key components: a ballast tank to control buoyancy, a microcontroller 

system to control and operate the vehicle, aluminum wings to push the vehicle forward when 

rising and sinking, and a camera module to collect video footage of the surroundings (Figure 1). 

 

Figure 1. The AUV with its key components. 

3.1.1 Ballast System 

The buoyant force, 𝐹𝐵, exerted on the vehicle is equivalent to the weight of the volume of 

water displaced by the vehicle. If the buoyant force is greater than the weight of the vehicle, 

𝐹𝑊, the vehicle floats. If the weight of the vehicle is greater than the buoyant force, the vehicle 

sinks. The AUV controls its weight by using a ballast tank. By pulling in water from its 

surroundings, the AUV increases in weight and can sink, and by pushing that water out, the AUV 

can then float. 
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For the AUV in this study, the ballast system utilizes a 550 mL syringe with a plunger driven by a 

stepper motor (Figure 2C). A threaded rod is connected to the stepper motor (Figure 2A) which 

pushes the syringe plunger in and out. The high accuracy of the stepper motor allows for fine 

tune adjustments to the amount of water in the tank to be controlled with very low power 

consumption. However, unlike servo motors, stepper motors provide no positional feedback, 

thus a limit switch is added to the end of the plunger’s range of motion. By pulling the plunger 

until the limit switch is pushed (Figure 2B), the position of the plunger can be determined. The 

ballast assembly was able to pull in 450 mL of the 550 mL capacity, allowing for an additional 

0.450 kg of water to be added to the AUV. 

 

Figure 2. The AUV’s ballast system. 

To test the ballast system, the AUV was placed in a tub of water and was programmed to 

continuously fill and empty the ballast tank to sink and float. Initially, the AUV was too buoyant 

to sink, so an additional 308 g of lead was added to the rear of the AUV, for a final mass of 

6.629 kg. Lead was chosen due to its high density and relatively low cost. The lead was copper 

plated to reduce the environmental and safety hazards associated with it. After the addition of 

the extra weight, the AUV was able to control its buoyancy with the ballast system and 

repeatedly float and sink (Figure 3). 
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Figure 3. Field test of the AUV’s ballast system. 

3.1.2 AUV Control System 

To read sensor data, control and navigate the AUV, and perform telemetry, a custom printed 

circuit board was designed and assembled (Figure 1B). At its core, the control system has a 528 

MHz microcontroller unit that runs the AUV control software and controls all aspects of the 

vehicle. 

To calculate the orientation and relative speed and position of the vehicle, the control board 

features an accelerometer, gyroscope, and magnetometer.  

The board also includes a total dissolved solids (TDS) sensor to calculate external solute 

concentrations. The TDS sensor calculates the concentration of solutes within the AUV’s 

environment by measuring the current across two electrodes providing 3 V AC power at 50 Hz. 

The excitation source is alternating instead of direct current to prevent the sensor from 

polarization by preventing the buildup of charged particles on the electrodes. Since the 

conductivity of water increases as temperature increases, a thermistor is installed next to the 

TDS probe to calculate a more accurate reading.  

To collect data needed for marine litter mapping, a GPS and external pressure sensor are all 

connected to the board. These two sensors allow for the location and depth of any detected 

litter to be identified. All data collected from these sensors are then logged onto a microSD 
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card. The ballast tank is controlled through a stepper motor, which the control system operates 

using a stepper motor driver.   

Since most radio frequencies greater than 1 MHz do not work at distances greater than 10 

meters underwater (Qureshi, 2016), the control board allows for wired connections through the 

serial peripheral interface (SPI) or inter-integrated circuit (I2C) protocols. Although not 

implemented, connections to external modules on the surface (using tethered buoys) would 

allow for telemetry and GPS data to be transmitted and received. The SPI and I2C interfaces 

also allow for other additional components to be added to the AUV framework, such as 

auxiliary sensors or cameras.  

 

Figure 4. The components of the control board (top) and the labeled ECAD model of the control 

board (bottom) 

3.1.3 Camera System 

Although the main control board allows for an external camera module to be connected, image 

processing and logging are very CPU and memory intensive operations, thus a separate module 

was added to collect footage of the AUV’s surroundings. The ESP32-S microcontroller with the 

OV2640 2-megapixel camera was chosen to collect footage of the AUV’s surroundings (Figure 
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1C). The 32-bit ESP32 microcontroller runs at 240 MHz and features 2 cores and 520 KB of RAM, 

which is sufficient to capture video footage continuously and save to a microSD card. The small 

size of the module (27mm × 49mm) allows for multiple camera units to be setup within the 

AUV, which can provide multiple camera angles. 

3.1.4 AUV Control Software 

Although the control system and camera system provided the hardware to operate the AUV, 

respective software had to be developed to run the control system. The software controls 

everything from the stepper motors to drive the ballast tank to the data collection and logging. 

The AUV control software is written in C++ and had two key aspects: sensor data collection and 

data logging/telemetry. 

3.1.4.1 Sensor Data Collection 

The AUV had seven key sensors that collected data about the state of the vehicle. The TDS 

sensor measures the number of solutes in the environment in conjunction with an external 

temperature and pressure sensor, while an accelerometer, gyroscope, magnetometer, and GPS 

were used to measure orientation and provide an estimate of the AUV’s position.  

To calculate the external solute concentration with the TDS sensor based on temperature, the 

temperature compensated reading, 𝜙𝑇  must be first calculated: 

                                                        𝜙𝑇 = (
𝐴𝑠∗𝑉𝑅𝐸𝐹

1023
) 1.0 + 0.02(𝑇 − 25)                                              (1) 

where: 

• 𝐴 is the raw analog reading from the TDS sensor. 

• 𝑉𝑅𝐸𝐹 is the reference voltage of the microcontroller. 

• 𝑇 is the temperature in degrees Celsius measured by the thermistor. 

This is necessary because the conductivity increases as temperature increases. The solute 

concentration can then be calculated by 

                                 𝑆𝑇 = 0.5 ∗ [133.42 ∗ 𝜙𝑇
3 − 255.86 ∗ 𝜙𝑇

2 + 857.39 ∗ 𝜙𝑇]                            (2) 

where: 

• 𝑆𝑇 is the solute concentration in g/mL at temperature 𝑇 

Temperature readings from the thermistor not only help provide a more accurate TDS 

measurement but can also be used to measure rising ocean temperatures throughout multiple 

AUV deployments. The temperature is first calculated by measuring the resistance of the 

thermistor by calculating the voltage drop:  
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                                                  𝑅𝑇 = (𝑉𝑅𝐸𝐹 − 𝑉𝑡ℎ𝑒𝑟𝑚) ∗ 𝑅𝑘 ÷ 𝑉𝑡ℎ𝑒𝑟𝑚                                                  (3) 

where: 

• 𝑅𝑇 is the resistance of the thermistor in ohms at temperature 𝑇. 

• 𝑉𝑅𝐸𝐹 is the reference voltage of the microcontroller. 

• 𝑉𝑡ℎ𝑒𝑟𝑚 is the voltage measured across the resistor. 

• 𝑅𝑘 is the known resistance in the voltage divider. 

The temperature can then be calculated with the Steinhart-Hart equation as: 

                                                𝑇 = 𝐴𝑐 + 𝐵𝑐 ln(𝑅𝑇) + 𝐶𝑐[ln 𝑅𝑇]3 − 273.15                                         (4) 

where: 

• 𝐴𝑐, 𝐵𝑐, and 𝐶𝑐 are the Steinhart-Hart coefficients varying on the type of thermistor used. 

• 𝑇 is the temperature measured in degrees Celsius. 

External pressure readings provide accurate measurements of the depth of the vehicle. The 

pressure transducer outputs a simple analog output directly proportional to the pressure of the 

environment. The accelerometer, gyroscope, and magnetometer, (collectively referred to as 

the inertial measurement unit or IMU here) are each separate devices that provide readings to 

the microcontroller through the I2C communication protocol. For positioning, the AUV utilizes 

GPS data for absolute positioning and the IMU for localization. The GPS module provides 

horizontal positioning up to 2.5 m in accuracy at 10Hz while the IMU provides accurate 

horizontal positioning through dead reckoning. Using GPS, pressure measurements, and the 

IMU, the position of the AUV in all three dimensions can be estimated. The IMU is also used to 

calculate the orientation of the vehicle using the Madgwick algorithm (Madgwick, 2010). The 

Madgwick algorithm fuses accelerometer, gyroscope, and magnetometer readings to provide a 

low-drift estimation of the AUV’s orientation. 

3.1.4.2 Data logging and Telemetry 

During deployment, data is serialized onto a microSD card in the JSON format. A converter was 

also developed in C++ to convert the JSON data into more easily readable formats, such as CSV. 

Data is transmitted to an external GUI through the universal asynchronous receiver-transmitter 

(UART) protocol. The GUI is built in Typescript-React and provides live data feeds from the 

sensors and allowed for control over the AUV’s ballast system. The GUI allows for extensive 

control of the vehicle’s ballast system and provided critical information such as vehicle 

orientation, external pressure, and battery voltage. Telemetry could be sent wirelessly through 

a tethered buoy but is sent directly through a wire directly connected to the control board 

during AUV testing.  

3.2 Hardware-In-The-Loop 
After designing and assembling the AUV and its respective software, the platform required 

extensive testing to evaluate its effectiveness. Unfortunately, many garbage patches exist in the 
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middle of the ocean and the means of testing this application is geographically restricted. To 

overcome this challenge, a method called hardware-in-the-loop (HIL) was adopted to test the 

AUV. HIL testing simulates reality by feeding real signals through the platform while test and 

design iteration take place. HIL allows for comprehensive testing of complex systems through 

many of possible scenarios without spending time and money associated with real-world tests 

(NI, 2022).  

Data from the open-sourced Slocum glider from Teledyne Webb Research was fed through the 

software while simulating underwater conditions (Figure 5). The data from this dataset included 

1.139 megabytes of latitude, longitude, depth, pressure, temperature, and salinity data 

collected from May 25, 2018, to July 16, 2019. Although the AUV continuously read from the 

onboard sensors, the readings from the sensors were overridden with data from the dataset. 

While the data was fed through the system, the AUV performed its normal operations, such as 

ballast tank control, telemetry, sensor data reading and logging, and underwater footage 

collection. These tests evaluated the functionality of the sensors and mechanical aspects of the 

AUV, while also testing the abilities of the software and control board to operate the AUV. 

  

Figure 5. Salinity data from the HIL test in grams per liter (left) and the temperature data from 

the HIL test in degrees Celsius.  

3.3 Trash Detection Model 
The trash detection model locates and classifies litter in an image or video using a deep neural 

network. For each image or frame of a video, the model outputs a predicted bounding box 

surrounding the piece of litter. Once the AUV is recovered, the footage and sensor data are run 

through this model. If a piece of litter is detected, the model then extracts the respective depth 
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and GPS data, which can be used to build a comprehensive map of ocean litter. The trash 

detection model trained in this study only has one class – meaning that it can detect if there is 

trash or no trash within a certain image. Training was done on the Trash ICRA-19 Dataset 

(Fulton, 2019) which contained 5700 images of underwater trash, each of which were 

annotated with a ground truth bounding box which enclosed the litter within the image.  

3.3.1 Training 

Before the model could be deployed, it needed to first be trained on a large dataset. For 

training, four different convolutional neural networks (CNNs) were used: YOLOv5n, YOLOv5s, 

YOLOv5m, and YOLOv5l (Jocher, 2023). To evaluate the best model to use for trash detection, 

several metrics were measured throughout the model training. The model that exhibited the 

best metrics would be chosen as the final detection model. 

In machine learning, true positives, 𝑇𝑃, are predictions that the model made correctly. False 

positives, 𝐹𝑃, are outcomes where the model incorrectly predicted that trash was detected. 

False negatives, 𝐹𝑁, on the other hand, are instances where trash was present, but the model 

did not predict litter at that position.  

Using these metrics, the precision and recall of the model can be calculated. Precision is defined 

as: 

                                                                        𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                           (5) 

Precision gives the proportion of positive identifications that were correct. By contrast, recall 

gives the proportion of actual positives that were identified correctly, and is defined as: 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                              (6) 

For each of the images the model inferences, it returns a confidence score which shows the 

probability of trash being within the bounding box. If the confidence score is greater than the 

confidence threshold, a value set by the user, the object is classified as trash. Thus, the 

confidence threshold affects the ratio of true positives, false positives, and false negatives, and 

therefore causes a tradeoff between precision and recall. Typically, a high-precision model will 

have a lower recall and vice versa. Therefore, to evaluate the model, a different metric, called 

mean average precision, 𝑚𝐴𝑃, must be used. 𝑚𝐴𝑃 accounts for both precision, recall, and 

differing confidence thresholds giving an intuitive measure of the accuracy of a model. To 

calculate mean average precision, first, the average precision, 𝐴𝑃, for each class of the model is 

calculated. 𝐴𝑃 is defined as: 
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 ∫ 𝑝(𝑟)𝑑𝑟
1

0
                                                                          (7) 

where: 

• 𝑝(𝑟) is the precision and recall function, giving us the precision of the model at a 

specific recall, 𝑟 

Thus, a model that can detect 5 different categories (classes) will have 5 𝐴𝑃 values. To calculate 

the mean average precision, the mean of the 𝐴𝑃 values is calculated.  

                                                                  𝑚𝐴𝑃 =
1

𝑛
∑ 𝐴𝑃𝑘

𝑘=𝑛
𝑘=1                                                                   (8) 

where: 

• 𝐴𝑃𝑘  is the average precision of class k. 

• 𝑛 is the number of classes. 

Since the trash detection model only has one class, the mean average precision of the model is 

equivalent to the average precision. Although mean average precision gives an overall 

quantification of the performance of the model based on precision and recall, another metric, 

loss, is also needed to measure the accuracy of the bounding boxes produced by the model. 

Loss consists of three parts: classification loss, localization loss and objectness loss (Liu, 2016). 

Localization loss measures differences between the predicted and ground truth bounding box 

coordinates, while confidence loss measures the probability of object presence or absence 

within a predicted bounding box. Classification loss is a measure of the model’s ability to 

predict the correct class. However, since the trash detection model only has a single class, this 

metric is negligible. Localization loss, 𝐿, is defined as: 

    𝛾𝑐 ∑ ∑ 𝕝𝑖𝑗
𝑜𝑏𝑗[(𝑥𝑖 + 𝑥𝑖)2 + (𝑦𝑖 − �̂�𝑖)2]𝐵

𝑗=0 + 𝛾𝑐 ∑ ∑ 𝕝𝑖𝑗
𝑜𝑏𝑗

[(√𝑤𝑖 − √�̂�𝑖)
2

+ (√ℎ𝑖 − √ℎ̂𝑖)

2

]𝐵
𝑗=0

𝑆2

𝑖=0
𝑆2

𝑖=0     (9) 

where: 

• 𝛾𝑐 is the scaling factor for localization loss. 

• 𝑆2 is the number of grid cells in the output feature map (the output of the convolutional 

layers). 

• 𝐵 is the number of bounding boxes predicted for every grid cell. 

• 𝕝𝑖𝑗
𝑜𝑏𝑗

 is the indicator variable that equals 0 unless the 𝑗-th bounding box in the 𝑖-th grid 

cell is responsible for detecting an object, in which case it equals 1. 

• 𝑥𝑖  and 𝑦𝑖 are the coordinates of the center of the predicted bounding box. 

• 𝑤𝑖 and ℎ𝑖  represent the width and height of the predicted bounding box, respectively. 

• �̂�𝑖  and �̂�𝑖 are the coordinates of the center of the ground-truth bounding box. 
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• �̂�𝑖 and ℎ̂𝑖  represent the width and height of the ground-truth bounding box, 

respectively. 

If an object is detected within the box, the objectness loss 𝑂 is: 

                                                        ∑ ∑ 𝕝𝑖𝑗
𝑜𝑏𝑗

 (𝐶𝑖 − �̂�𝑖)
2𝐵

𝑗=0
𝑆2

𝑖=0                                                          (10) 

If an object is not detected within the box, 𝑂 is: 

                                                  𝛾𝑛𝑜𝑜𝑏𝑗 ∑ ∑ 𝕝𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

 (𝐶𝑖 − �̂�𝑖)
2𝐵

𝑗=0
𝑆2

𝑖=0                                                (11) 

where: 

• 𝑆2 is the number of grid cells in the output feature map (the output of the convolutional 

layers). 

• 𝐵 is the number of bounding boxes predicted for every grid cell. 

• 𝕝𝑖𝑗
𝑜𝑏𝑗

 is the indicator variable that equals 0 unless the j-th bounding box in the i-th grid 

cell is responsible for detecting an object, in which case it equals 1. 

• 𝕝𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

 is the complement to 𝕝𝑖𝑗
𝑜𝑏𝑗

. 

• 𝐶𝑖 is the predicted objectness score for the 𝑗-th bounding box in the 𝑖-th grid cell. 

• �̂�𝑖 is the ground-truth objectness label for the 𝑗-th bounding box in the 𝑖-th grid cell. 

• 𝛾𝑛𝑜𝑜𝑏𝑗 is a scaling factor that controls the weight of the no object loss when detecting 

background. 

The final loss of the single class model is the sum of the localization and objectness loss defined 

as: 

𝛾𝑐 ∑ ∑ 𝕝𝑖𝑗
𝑜𝑏𝑗[(𝑥𝑖 + �̂�𝑖)

2 + (𝑦𝑖 − �̂�𝑖)
2]𝐵

𝑗=0 + 𝛾𝑐 ∑ ∑ 𝕝𝑖𝑗
𝑜𝑏𝑗

[(√𝑤𝑖 − √�̂�𝑖)
2

+𝐵
𝑗=0

𝑆2

𝑖=0
𝑆2

𝑖=0

(√ℎ𝑖 − √ℎ̂𝑖)

2

] + ∑ ∑ 𝕝𝑖𝑗
𝑜𝑏𝑗

 (𝐶𝑖 − �̂�𝑖)
2𝐵

𝑗=0
𝑆2

𝑖=0 + 𝛾𝑛𝑜𝑜𝑏𝑗 ∑ ∑ 𝕝𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

 (𝐶𝑖 − �̂�𝑖)2𝐵
𝑗=0

𝑆2

𝑖=0              (12) 

The loss function was calculated on the training images and on a separate validation dataset 

that was not used during training. By comparing the training loss with the validation loss, the 

model can be evaluated for overfitting. In general, if the validation loss is greater than the 

training loss, the model is overfitting because it has learned to predict only the training data too 

closely. 
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In short, mean average precision measures the ability of a ML model to detect objects and loss 

measures the model’s ability to minimize the difference between ground-truth and its 

predictions. Figure 6 and Table 2 show the different metrics of each of the four CNNs that were 

trained throughout the 200 epochs for which the model was trained.  The YOLOv5l model 

exhibited the highest mean average precision and the lowest training and validation loss, while 

not showing significant signs of overfitting.  

 

Table 2. Best and average mean average precision, training loss, and validation loss for each 

neural network model. The percent difference defines the difference between the best training 

and validation loss metric. 

 YOLOv5s YOLOv5n YOLOv5m YOLOv5l 

mAP (best) 0.706 0.720 0.759 0.774 

mAP (average) 0.548 0.554 0.612 0.616 

Training loss (best) 0.105 0.105 0.105 0.105 

Training loss (average) 0.059 0.059 0.056 0.056 

Validation loss (best) 0.105 0.105 0.105 0.105 

Validation loss 
(average) 

0.059 0.059 0.056 0.056 

Percent difference 
(best training vs. best 
validation) 

0.000 0.000 0.002 0.000 
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Figure 6. Mean average precision at intersection over union threshold 0.5 throughout the 200 

epochs each model was trained on (top). Training loss of each model throughout 200 epochs 

(middle), and the validation loss of each model throughout 200 epochs (bottom). As the model 

trains for more epochs, it slowly improves by increasing the mean average precision and 

decreasing the loss.  

 

3.3.2 Trash Detection Model Deployment 

Since the AUV was tested using hardware-in-the-loop, it produced no real footage to run 

through the trash detection model. To evaluate the abilities of the model, open-source footage 

was collected from the Japan Agency of Marine-Earth Science and Technology (JAMSTEC) 
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HYPER-DOLPHIN submersible. The model detected a total of 174,734 litter objects at depths of 

500-800 m below the surface. Objects were considered trash if the confidence score was 

greater than the confidence threshold, set at 0.4. Figure 7 shows the model inferencing a frame 

from the submersible and the detected objects from the model deployment.  

 

Figure 7. A: Location of the footage collected from the submersible off the coast of Kamaishi. B: 

Raw footage from the submersible. C: Inferenced image after being processed by the YOLOv5l 

trash detection model. D: Areas of debris detected by the model and the relative density of 

litter in each area represented by color. 

4. CONCLUSIONS 
This study shows an engineered AUV along with the training and deployment of a trash 

detection model. As shown by the HIL tests, the AUV can accurately read sensor data and 

process footage while navigating underwater, and the high precision of the computer vision 

model can seamlessly detect and analyze litter within underwater footage. The development of 

both a prototype AUV and novel trash detection computer model indicate that this system 

would be a viable method to quantify and map litter concentrations across our world’s seas.  
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The AUV demonstrated an ability to collect sensor data and operate in underwater conditions, 

while the trash detection model found 174,000 debris objects underwater at depths 

undetectable to satellites and surface net analysis.  

An exploration into replacements to the external parts of the AUV (the outer shell of the vehicle 

in contact with the environment) could yield better materials to handle salty ocean conditions 

and the use of more durable plastics for 3D printed parts could give the vehicle a more robust 

design. However, the biggest improvement is for more testing and evaluation to be done on the 

vehicle. Further tests in local bodies of water or even in the ocean could yield important flaws 

within the vehicle design. Furthermore, I hope to implement usage of the accelerometer 

onboard the AUV to track the forces of ocean currents to track the movement of debris, rather 

than just the position.   

Currently, the trash detection model has only one classification level – whether trash is in the 

image or not. By using a more comprehensive dataset during training, the model would be able 

to classify different types of debris (e.g., plastic, metal, glass). Furthermore, by tuning 

hyperparameters within the existing model (number of epochs, learning rate, and model 

architecture), the mean average precision and loss of the model can be improved.  
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APPENDIX A 
Symbol Description 

AUV Autonomous Underwater Vehicle 

CAD Computer-aided-design 

CNN Convolutional Neural Network 

ECAD Electrical computer-aided-design 

GUI Graphical user interface 

HITL Hardware-in-the-loop 

I2C Inter-integrated circuit 

IMU Inertial measurement unit 

ML Machine Learning 

PLA Polylactic acid 

PVC Polyvinyl chloride 

SPI Serial peripheral interface 

TDS Total dissolved solids 

UART Universal asynchronous receiver-transmitter 

𝐴𝑐 Steinhart-Hart coefficient 

𝐴𝑃 Average precision 

𝐴𝑃𝑘  Average precision of class 𝑘 

𝐴𝑠 Analog reading  

𝐵 Number of bounding boxes predicted for every grid cell 

𝐵𝑐 Steinhart-Hart coefficient 

𝐶𝑐 Steinhart-Hart coefficient 

𝐶𝑖 Predicted objectness score for the 𝑗-th bounding box in the 𝑖-th grid cell 

�̂�𝑖 Ground-truth objectness score for the 𝑗-th bounding box in the 𝑖-th grid 
cell 

𝐹𝐵 Buoyant force 

𝐹𝑁 False negative 

𝐹𝑃 False positive 

𝐹𝑊 Weight force 

ℎ𝑖  Height of the predicted bounding box 

ℎ̂𝑖  Height of the ground-truth bounding box 

𝕝𝑖𝑗
𝑜𝑏𝑗

 Indicator variable that equals 0 unless the 𝑗-th bounding box in the 𝑖-th 
grid is responsible for detecting an object, in which case it equals 1 

𝕝𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

 Complement to 𝕝𝑖𝑗
𝑜𝑏𝑗

 

𝑚𝐴𝑃 Mean average precision 

𝑛 Number of classes 

𝑝(𝑟) Precision value at recall level 𝑟 

𝑅𝑘 Known resistance in the voltage divider 

𝑅𝑇 Resistance at temperature 𝑇 

𝑆𝑇 Solute concentration in g/mL at temperature 𝑇 

𝑆2 Number of grid cells in the output feature map 
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𝑇 Temperature reading in degrees Celsius 

𝑇𝑃 True Positive 

𝑉𝑅𝐸𝐹 Microcontroller reference voltage 

𝑉𝑡ℎ𝑒𝑟𝑚 Voltage measured across the thermistor 

𝑤𝑖 Width of the predicted bounding box 

�̂�𝑖 Width of the ground-truth bounding box 

𝑥𝑖  X coordinate to the center of the predicted bounding box 

�̂�𝑖  X coordinate to the center of the ground-truth bounding box 

𝑦𝑖 Y coordinate to the center of the predicted bounding box 

�̂�𝑖 Y coordinate to the center of the ground-truth bounding box 

𝜙𝑇  Temperature compensated TDS reading at temperature 𝑇 

𝛾𝑐 Scaling factor for localization loss 

𝛾𝑛𝑜𝑜𝑏𝑗 Scaling factor that controls the weight of the no-object loss 
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Abstract & Executive Summary

In this paper we describe an astrophysical simulation code SINGS, the Simple Interactive

N -body Gravitation Simulator, which has been designed to accurately model a wide range

of astrophysical systems, ranging from simulations of planetary motion to cosmological sim-

ulations of structure formation. SINGS provides support for both collisionless and collisional

particles, the latter of which employ impulse-based collision methods. SINGS provides vari-

ous parallel force code and integration schemes, allowing for a high degree of customisability.

In addition to the integration and force codes provided by SINGS, the code also provides

a rudimentary programmatic framework for the creation of simulation scenarios, which can

then be compiled to a simulation snapshot. These simulations can also be diagnosed at the

moment of a single snapshot. The simulation snapshots may also be independently analysed

by the user, employing a simple struct based layout suitable for analysis. In this report, we

detail these various components of SINGS and evaluate their performance and accuracy.

SINGS overall is still in its infancy as a tool. The program we detail, while indeed

powerful, should not be seen as an alternative or improvement upon existing mainstream

N -body codes like AREPO (Springel, 2010) or GADGET-4 (Springel, Pakmor, et al., 2021).

Our code uses OpenMP for parallelisation, which is unable to harness the full power of su-

percomputers running node-based architectures like more advanced codes. To do so would

entail the use of OpenMPI and a radical change in the architecture of the program. An-

other feature missing from SINGS is a parallel Cloud-In-Cell (CIC) Particle-Mesh (PM) code

utilising Fast Fourier Transforms (FFTs) to compute the gravitational potential across the

whole simulation, an additional order O(N logN) model to complement Barnes-Hut. How-

ever, implementing the model proved difficult given the existing SINGS architecture, which

also presented significant difficulties in parallelising the Cooley-Tukey algorithm used for the

FFTs. This meant that by the Supercomputing Challenge deadline we could not finish a

complete implementation. As a result, the version of SINGS we present does not include

the CIC PM code. There are a myriad of other features, such as the implementation of a

more realistic collisional gas modeling code (such as SPH) and the inclusion of a Hubble

parameter to support analysis of ΛCDM cosmologies, that we could not implement which

we discuss in Section 7. As SINGS is intended to be open source on release under GPLv2,

we invite others to collaborate in fleshing out the software. Overall though, SINGS in its

current form is a fully functional 3 dimensional N -body code with impressive capabilities

on supported hardware, with large simulations with particle counts in excess of 1,000,000

having been successfully demonstrated.
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1 Introduction

Simulations of astrophysical simulations have proved to be an invaluable tool in the various

realms of astrophysics. Numerical simulations have been used to understand the formation

of planetary systems, the interactions between galaxies and galaxy clusters, and the large

scale structural evolution of the universe. The rapid improvements in computer processing

capabilities and the development of faster, more elaborate calculation schemes has allowed

for exceptionally complex astrophysical simulations.

Prior to the advent of astrophysical simulations, study of large stellar objects like globular

clusters, galaxies, and galaxy clusters were limited to the static frames viewable in the night

sky. While information about the expansion of the Universe (Hubble, 1929), and to some

extent, dark matter (Zwicky, 1933), questions regarding the nature of galaxy collisions and

structure formation, among others, were impractical to be put to numerical analysis given

the O(N2) order of the computations involved.

Even some of the earliest and rudimentary astrophysical simulations like those of Holm-

berg (1941) and White (1976) demonstrated their power as a tool to validate and understand

the implications of various astrophysical models. The former simulated the collision between

two galaxies of stars by use of a clever setup involving lightbulbs in place for particles, the

nature of which allowed the lowering of the calculation order from O(N2) to O(N). Through

manual computation, the dynamics of galaxy collisions was modeled for the first time, the

spiral structures of the two galaxies being torn apart in the interaction, as many particles

were flung on escape trajectories. The latter was a computational simulation, thus able to

overcome the O(N2) order of the direct method, and demonstrated the evolution of galaxy

clusters approximated with 700 particles evolving under cosmic expansion.

The introduction of more advanced force calculation techniques such as the so-called tree

(Appel, 1981) and mesh codes (Eastwood and Roger Williams Hockney, 1974) with order

O(N logN) allowed for the investigation of even more complex astrophysical phenomena.

This progress culminated in the Millenium Run (Springel, White, et al., 2005) wherein

21603 particles were simulated in a (500 Mpc)3 cube, in effect modelling the evolution of

the universe from shortly after the big bang to the present. Today, even more ambitious

cosmological simulations like AbacusSummit (Maksimova et al., 2021) simulate simulation

spaces hundreds of mega-parsecs across, with trillions of particles. These simulations provide

key insight into the evolution of the early universe, regions with high redshift z > 10 that

are not easily accessible to direct observation.

With a clear motivation for developing these codes, we now present our work in creating

the code which can run simulations of scientifically useful resolution and magnitude: SINGS
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2 General Physics

2.1 Formulation of Gravity

The general formula we’ll use for calculating the forces between two particles i and j we’ll

derive from Newton’s law of Universal Gravitation

F = G
mimj

r2ji
(1)

where F is the magnitude of the force between two particles i and j, G is the gravitational

constant, mi and mj are the masses of the respective particles, and rji is their common

distance. This formula can itself be derived as the derivative with respect to position of the

gravitational potential energy U

U = −G
mimj

rji
(2)

Our first point of modification will come from the introduction of a softening parameter

ε. Close range interactions will be prone to gross violation of the conservation of energy, as

rij → 0, the computed forces will diverge. While ε will reduce the accuracy of the simulation,

for appropriate values this error is both negligble on large scales and increases the likelihood

of energy preserving interactions. We can introduce ε into U as such,

U = −G
mimj√
r2ji + ε2

(3)

and taking
d

dr
[U ] to get F ,

F = Grji
mimj

(r2ji + ε2)
3
2

(4)

What we’ve just described is an implementation of Plummer softening (Dyer and Ip,

1993), and this will serve as our generic force calculation formula when calculating the direct

forces between two particles. For the general force calculation methods we’ll discuss later

we’ll still use this Plummer softened force model, unless we have ε = 0, in which case we’ll

use (1). This is because both are essentially computationally equivalent in featuring a single

square root.

We also can analyse the relative error δ between the two predicted F at a constant rji.

Defining δ(ε) by

δ(ε) =

∣∣∣∣Fplummer − Factual

Factual

∣∣∣∣ (5)
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and considering that Fplummer < Factual for all ε ̸= 0 we can remove the absolute value by

negating the expression, expanding and simplifying to produce

δ(ε) = 1−
r3ji

(r2ji + ε2)
3
2

(6)

The relationship between the error, force computed by (4), and the actual force from (1) is

shown in Figure 1.

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1: A plot illustrating how the force computed by the Plummer model and Newton’s law,
along with the the relative error ε, using absolute units where rji = mi = mj = G = Factual = 1

2.2 Modelling Collisions

In modelling the collisions between two objects, we make use of an impulse based model.

That is, when two collisional particles i and j have collided, we compute an impulse on

each of the particles J along the collision normal vector n̂, which we’ll consider to be the

collisional normal vector on i from j. If we consider the change in the momentum for the
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two particles, we can set up a simple system

∆P⃗i = miv⃗
′
i −miv⃗i (7a)

∆P⃗j = mjv⃗
′
j −mjv⃗j (7b)

Given that J is going to conserve the momentum of the particles, we can modify (7) to yield

Jn̂ = miv⃗
′
i −miv⃗i (8a)

−Jn̂ = mjv⃗
′
j −mjv⃗j (8b)

or, rearranging and solving for v⃗′
i and v⃗′

j

v⃗′
i = v⃗i +

Jn̂

mi

(9a)

v⃗′
j = v⃗j −

Jn̂

mj

(9b)

Assuming a perfectly elastic collision (that is, one with a coefficient of restitution ϵ = 1),

we can produce the equation

v⃗′
rel · n̂ = −v⃗rel · n̂ (10)

where v⃗′
rel and v⃗rel is the relative velocity vector between i and j from i after and before the

collision, respectively. The expression v⃗′
rel · n̂ may also be expressed by

v⃗′
rel · n̂ = (v⃗′

i − v⃗′
j) · n̂ (11)

Substituting in the values for v⃗′
i and v⃗′

j from (9) and expressing v⃗′
rel in terms of v⃗rel from

(10) and simplifying produces

−v⃗rel · n̂ = v⃗rel · n̂+ Jn̂(
1

mi

+
1

mj

) · n̂ (12)

along with multiple regions and solving for our impulse

J = −2
v⃗rel · n̂
1
mi

+ 1
mj

(13)

This equation for our impulse magnitude we can now finally use to derive new velocity



8 Tristan Eggenberger

vectors for i and j using the formulas we set up in (8)

v⃗′
i = −2

(v⃗i − v⃗j)

1 + mi

mj

+ v⃗i (14a)

v⃗′
j = 2

(v⃗i − v⃗j)

1 +
mj

mi

+ v⃗j (14b)

Notice that the collision normal vector n̂ is not present in our final equation. The final order

of business is to tackle when collisions themselves happen. For that we use the same octree

that we describe in 3.2. We search up the tree starting from a given particle and search up

the tree a number of layers n, and if the criterion r < ε is satisfied—where r is the distance

between two particles in the neighboring nodes and ε is the plummer softening parameter

from 2.1—we compute the new collision velocities and run a single timestep to update their

position until they are no longer colliding with any particles.

3 Force Calculation

3.1 Direct Method

With the general form for the magnitude of forces between two particle pairs, we can apply a

force vector F⃗ji to i, that is the force vector on i from j, by multiplying our force magnitude

by the normal vector which points from i to j

F⃗ji = Grji
mimj

(r2ji + ε2)
3
2

r⃗j − r⃗i
|⃗rj − r⃗i|

(15)

where r⃗j and r⃗i are the position vectors of j and i respectively. Applying this same step to

(1) and noting that rji = |⃗rj − r⃗i|, we can produce the following softened and unsoftened

force equations:

F⃗ji = G
mimj

(r2ji + ε2)
3
2

(⃗rj − r⃗i) (16a)

F⃗ji = G
mimj

r3ji
(⃗rj − r⃗i) (16b)

Now that we have formulae for computing the force vector applied to i from j, we can
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use Newton’s second law to derive the acceleration vector a⃗i

a⃗i =

N∑
j ̸=i

F⃗ji

mi

(17)

Inserting in (16a) and (16b) yields the following set of equations

a⃗i =
N∑
j ̸=i

G
mj

(r2ji + ε2)
3
2

(⃗rj − r⃗i) (18a)

a⃗i =
N∑
j ̸=i

G
mj

r3ji
(⃗rj − r⃗i) (18b)

where (18b) provides an exact a⃗i and (18a) a softened one. These two equations are the

backbone of the direct method implementation in SINGS, which we also use as a reference

to compare the force calculations provided by other methods, particularly Equation (18a)

as it exactly gives particle accelerations. The chief drawback of the direct method is that

computations scale in order O(N2), which for simulations with large N necessitates the use

of other force codes.

3.2 Barnes-Hut

The algorithm described by Barnes and Hut (1986) (hereafter Barnes-Hut) is a hierarchical

tree algorithm that scales with order O(N logN). The Barnes-Hut tree is constructed by

recursively partitioning the simulation space into a sequence of cubes, with each cube con-

taining 8 child cubes representing an octant of the parent cube. These cubes form an octree

structure, where each cube is a node in the octree. We construct the octree starting with

one node representing the whole simulation space, and then partition it in such a way that

each node either 0 or 1 particle, or is itself a parent to more nodes. We call nodes of the first

variety external nodes, and the second internal nodes. The internal nodes store the center

of mass and total mass information of all their internal particles, such that they can be used

for approximate force calculation. A diagram illustrating the construction of a Barnes-Hut

tree is shown in Figure 2.

We then calculate the force on a particle by walking the tree and summing all the ap-

proximate forces. In traversing the tree, we approximate a node as a particle if the relation

l

r
< θ (19)
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n = 0 n = 1 n = 2 n = 3

Figure 2: An illustration of a 2 dimensional Barnes-Hut tree down to various depths n. From the
base layer, the space is subdivided until all particles occupy external nodes.

is met, where l is the length of the node, r is the distance from the particle to the node,

and θ is a tuneable accuracy parameter. If a node doesn’t satisfy (19), we expand the node,

testing on its child nodes. If we end up on an external node with a particle we do a direct

particle-particle force calculation before traversing back up through the tree. These steps

are repeated until all internal nodes satisfying (19) and other external nodes are visited.

Larger values of θ will result in larger approximations and thus larger errors, but will also

result in reduced compute times. As θ → 0, computations tend to grow with order O(N2),

and the computations become exactly those of the direct method at θ = 0. The force

calculation errors of Barnes-Hut for various values of θ is shown in Figure 3. as computed

across various SINGS simulations.

■

■

■

■
■

■
■■

■
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■

Figure 3: The average error in computed forces for various θ compared against the direct method

across 100 sims/θ, given by error(θ) =
|F⃗BH(θ) − F⃗Direct|

|F⃗Direct|
.
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Figure 4: A 2 dimensional SINGS 1 simulation of 12,000 particles, modelling the collision between
two galaxies. The frame on the left features the Barnes-Hut tree, the one on the right, the nodes
used in calculating the force on a particle on the far left.

These errors though are more than manageable for carefully chosen values of θ, and allow

us to simulate far larger and more complex systems. Figure 4 features frames from the 2

dimensional SINGS 1 code illustrating the massive reduction in computations enabled by

the Barnes-Hut method.

4 Integration

In this section, we discuss various methods of numerical integration for updating particle po-

sitions and velocities given the acceleration vectors generated by our force codes we describe

in Section 3. Two of the methods we describe are energy-conserving under Hamiltonian me-

chanics, that is, they are symplectic integrators. The others are general integration schemes

which can still maintain high order accuracy for certain choices of timesteps ∆t. Regarding

timesteps, we use a static timestep as opposed to adaptive, particle-specific timesteps for

the purpose of simplicity. Adaptive timesteps allow various particles to take on lower or

higher accuracy timesteps appropriately, which generally results in higher accuracy simu-

lations (Aarseth and Hoyle, 1963). However, the complexity they introduce resulted in us

sticking to fixed particle time steps.

4.1 Euler Methods

The two Euler methods are the simplest methods we include in SINGS for the purpose of

numerical integration. We include a second order version of the standard Euler method,
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where new velocities and positions are derived from

r⃗i+1 = r⃗i + v⃗i∆t (20a)

v⃗i+1 = v⃗i + a⃗i∆t (20b)

where r⃗i, v⃗i, and a⃗i are the position, velocity, and acceleration vectors of a particle at a

timestep i respectively. This method is non-symplectic and has first order error. Given the

low order of the error and its non-symplectic nature, this is generally not recommmended

as an integrator except for stable simulation configurations (such as modelling planetary

orbits.)

The other Euler method SINGS employs is the symplectic (sometimes, the semi-implicit)

Euler method, which computes the updated position vector using the new velocity vector as

such

v⃗i+1 = v⃗i + a⃗i∆t (21a)

r⃗i+1 = r⃗i + v⃗i+1∆t (21b)

Note that the order in which these computations have been made is flipped from (20). While

this method is still of the first order, its symplectic nature makes it ideal for simple and even

relatively complex simulations.

4.2 Runge-Kutta

The Runge-Kutta method is a non-symplectic method in SINGS. It computes functional

derivatives at times between t and t + ∆t, and weights them to produce a prediction for

the function at the next time step. The method we use, the fourth-order Runge-Kutta

method (henceforth RK4) has fourth order error, which makes it quite appealing despite it’s

non-symplectic nature.

If we consider y⃗i to be a vector containing the dependent variables of our system ⟨⃗ri, v⃗i⟩
and f⃗ to be a vector containing the derivatives of y⃗i, we can compute y⃗i+1 for our second
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order system by

k1 = ∆t f⃗(t, y⃗i) (22a)

k2 = ∆t f⃗(t+
1

2
∆t, y⃗i +

1

2
k1) (22b)

k3 = ∆t f⃗(t+
1

2
∆t, y⃗i +

1

2
k2) (22c)

k4 = ∆t f⃗(t+∆t, y⃗i + k3) (22d)

y⃗i+1 =
1

6
(k1 + 2k2 + 2k3 + k4) (22e)

where k1, k2, k3, and k4 are the RK4 weights. In order to compute the various values of f⃗ ,

we propagate each individual particle forward at their old velocity v⃗i at the timesteps which

are specified by the RK4 coefficeints. So while the integrator itself remains O(N) like all the

other integrators, we are having to calculate the force on each particle at those new locations

4 separate times, thus compared to other integrators we’d expect to see compute times at

least 4 times greater.

4.3 Leapfrog Integration

Leapfrog integration is the final integration method provided by SINGS, and is the primary

one used in major astrophysical simulation tools like GADGET (Springel, White, et al.

(2005), Springel, Pakmor, et al. (2021)). The Leapfrog integrator is a 3rd order symplectic

integrator, where with our fixed timesteps we calculate our position and velocity vectors by

r⃗i+1 = r⃗i + v⃗i∆t+ a⃗i∆t2 (23a)

v⃗i+1 = v⃗i +
1

2
(a⃗i+1 + a⃗i)∆t (23b)

This simple scheme allows us to quickly integrate our simulation in a similar time to the

Euler methods, yet with significantly lower computational error provided by the Leapfrog

integrator’s 3rd order accuracy.

5 Computation

Here we detail the specific programming aspects of SINGS, discussing the architecture of the

program, the libraries we used, and specific challenges during development.
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5.1 Why C?

SINGS is programmed entirely in vanilla C using the C99 standard for the Linux kernel.

No external libraries were used with the exception of OpenMP, which we discuss further in

5.3. The reason we chose C to write SINGS was its simplicity and performance. The object

oriented features of other languages like C++ wouldn’t be particularly useful and we felt

would only result in code ambiguity. C provided a simple framework where major program

elements, like the simulation state, particles, and the functions which act on them, boiled

down to passing structs between functions. That simplicity, coupled with the far higher

performance from C being a low-overhead, compiled language made it ideal for the high

computational demands of SINGS.

5.2 Modularity

The basic architecture of SINGS is highly modular, with SINGS execution split into 5 primary

steps, those being:

1. Simulation Initialisation

2. Force Calculation

3. Particle Integration

4. Collision Resolution

5. Simulation Serialisation

In the first step, SINGS reads in a snapshot and parameterfile. The latter of which is

used to build the internal simulation structure, and the former sets the internal simulation

variables that’ll be used. During the force calculation stage, the specified force code is

applied to all the particles in the simulation, and when completed, pass the particles off to

the desired integrator to have their positions updated. Before we pass off the simulation to be

serialised, we resolve any particle collisions via the methods outlined in 2.2. In the last step,

the simulation may be serialised and saved into a snapshot file. This doesn’t necessarily mean

the simulation has concluded, but rather that by user specification in the parameterfile—

specifically snapshot frequency—that the current timestep is one that we output. Large

simulations have snapshots that may take up many gigabytes, and so allowing the user to

choose the rate at which we write those snapshots to the disk paramount, lest we run the risk

of losing a run because of a crash, or filling up the disk if we were to serialise every frame.

Finally. Assuming the simulation still isn’t complete, we revert back to step 2 and propagate
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Figure 5: A flowchart illustrating the large scale architecture of SINGS, in particular the standard
runtime loop between the 5 main execution stages.

the simulation forwards. A graphical representation of this entire process is shown in Figure

5.

A significant advantage in segmenting SINGS execution into these 5 stages is that they

each remain completely compartmentalised. No modification to any one of the discrete parts

of SINGS requires modification of any of the others.

To illustrate this point, we’ll show the modularity of the code in terms of integrators and

force codes (stages 2 and 3) for a single frame of a hypothetical simulation using a leapfrog

integration scheme and the direct method.

Here is the main simulation loop, as we are concerned with the integration step, we only

include it here. SINGS picks the configured integrator from a list of function pointers called

integrators[], and then passes in the simulation and force code from the array of function

pointers force_codes[] to run. Given we are using leapfrog integration and the direct

method, the indices for integrators[] and force_codes[] and are 3 and 0, respectively.
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//main . c

. . .

for ( int i = 0 ; i < sim . s im c fg . t imes teps ; i++ {
. . .

i n t e g r a t o r s [ sim . s im c fg . i n t e g r a t o r ](& sim , f o r c e c od e s [ sim . s im c fg . force method ] ) ;

. . .

}

For the leapfrog integrator, we must hold on to all of our current particle acceleration

vectors so we can complete the integration step (23). We then call our force code. Notice,

nothing in the leapfrog integrator touches the force codes, they simply pass the simulation

state back and forth. We then run a parallel loop to complete the integration step on each

of the particles.

// i n t e g r a t i on . c

. . .

void l e ap f r o g ( s t a t e ∗sim , void (∗ update ) ( s t a t e ∗ ) ) {
vec3 ∗ a i = c a l l o c ( sim−>num part i c l e s , s izeof ( vec3 ) ) ;

for ( int i = 0 ; i < sim−>num par t i c l e s ; i++) {
a i [ i ] = sim−>p a r t i c l e s [ i ] . acc ;

}
update ( sim ) ;

#pragma omp p a r a l l e l for

for ( int j = 0 ; j < sim−>num par t i c l e s ; j++) {
sim−>p a r t i c l e s [ j ] . pos = vec add ( sim−>p a r t i c l e s [ j ] . pos ,

vec add ( v e c s c a l e ( sim−>p a r t i c l e s [ j ] . ve l , sim−>s im c fg . dt ) ,

v e c s c a l e ( a i [ j ] , . 5 f ∗ sim−>s im c fg . dt∗sim−>s im c fg . dt ) ) ) ;

sim−>p a r t i c l e s [ j ] . v e l = vec add ( sim−>p a r t i c l e s [ j ] . ve l ,

v e c s c a l e ( vec add ( a i [ j ] , sim−>p a r t i c l e s [ j ] . acc ) ,

. 5 f ∗ sim−>s im c fg . dt ) ) ;

}

f r e e ( a i ) ;

}

Finally the force calculation step step, just the implementation of the direct method from

(18a). We run a parallel for loop across all the particles. The main aspect of these functions

to note is that the implementation of these functions do not inherently matter, as long as

they all use the same simulation state structure. All we have done in this 3 step process is

pass sim around between these various independent functions
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// phys i c s . c

. . .

void d i r e c t ( s t a t e ∗ sim ) {
#pragma omp p a r a l l e l for

for ( int i = 0 ; i < sim−>num par t i c l e s ; i++) {
sim−>p a r t i c l e s [ i ] . acc = ( vec3 ){0 , 0 , 0} ;
d i r e c t a c c (&sim−>p a r t i c l e s [ i ] , ∗ sim ) ;

}
}

void d i r e c t a c c ( p a r t i c l e ∗p , s t a t e sim ) {
for ( int j = 0 ; j < sim . num par t i c l e s ; j++) {

i f (p == sim . p a r t i c l e s+j )

continue ;

p−>acc = vec add (p−>acc , v e c s c a l e ( f g c a l c (∗p ,

sim . p a r t i c l e s [ j ] , sim . s im c fg ) , 1/p−>mass ) ) ;

}
}

5.3 Parallelisation

The parallelisation of SINGS is achieved via the use of OpenMP, the only external library

used in this project. We chose OpenMP for its simplicity, as it allowed us to focus on

developing an initially single core framework that could later be easily adapted for mult-

ple cores. At its heart, SINGS is essentially a bunch of nested loops, loops on particles,

whether that for calculating forces on those particles or integrating those forces to find their

positions and velocities. Because of the modularity of SINGS and the manner in which

our simulation data is stored, the state structure, we can easily parallelise the high level

loops which update particle parameters. This can be seen first hand in 5.2, where a simple

#pragma omp parallel for is all that’s needed to parallelise the algorithms.

To demonstrate the effectiveness of this parallelisation, we ran several simulations using

the direct method and our two symplectic integrators with various thread counts up to 12,

then normalised the y-axis by taking 1/runtime (we take runtime to be roughly ∝ 1/threads).

The results of this are shown in Figure 6.

5.4 Model Validation

We can validate SINGS models by checking for the consistency of certain well known sim-

ulation parameters, and seeing how they evolve over the course of a simulation. Examples

we’ve discussed earlier related to Plummer softening (Figure 1) and the Barnes-Hut method

(Figure 3). Another method besides computing the force directly is measuring the simulation
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Figure 6: A figure showing 1/runtime for various thread counts between the leapfrog and sym-
plectic Euler integration schemes.

energy. Recalling 2.1,

U = −G
mimj

rji
(2)

where U is the gravitational potential energy between two bodies. The only other source of

energy in the simulation is going to be the individual particle kinetic energies, given by

K =
1

2
miv

2
i (24)

thus, if we want to compute the total mechanical energy E of the simulation at a time t, we

can do a direct summation over all particle-pairs of their respective gravitational potential

energies and their kinetic energies. Doing this yields

E =
N∑
i ̸=j

1

2
miv

2
i −G

mimj

rji
(25)

This is one of the chief tools SINGS employs for diagnostics, as the reduction or increase

in energy of the system over time, while expected (especially with low particle counts with

many close-range interactions) might result in unrealistic outputs. A plot featuring the

relative energy Erel (given by Erel =

∣∣∣∣Ef

Ei

∣∣∣∣) across a simulation with various integrators is

shown in Figure 7.

Another measure of error that we haven’t yet discussed is the error resulting from high
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Figure 7: A plot of the relative energy Erel over the course of a full simulation for various integrator
choices.

∆t values. If we run the same analysis over the course of a simulation, comparing the change

in Erel for various ∆t we can produce the graph in Figure 8.
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Figure 8: The relative change in energy over the course of a simulation using the direct method
and different numerical integration methods, for various ∆t in the range [0, 3.2]

We see quite a clean relationship in the change in energy of the system with respect to

∆t across all integrators, though the randomness of a particular simulation state will mean

that at certain ∆t’s deviations from this fit will occur.
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6 Next Steps

As powerful a tool as SINGS is today, there are many areas within the codebase that could use

improvement along with a plethora of new techniques and approaches to N-body computation

which SINGS would benefit immensely from.

A specific example as discussed in the Abstract & Executive Summary was the Cloud-

in-Cell (CIC) Particle Mesh (PM) method. A high level description is that the Particle

Mesh method uses the Poisson equation and a Fast Fourier Transform (FFT) to compute

the gravitational potential in cubic cells across the simulation space. Using this potential

we can then apply a force to a particle inside the cell. This method like Barnes-Hut has

an order O(N logN), and is particularly well suited for computing the long-range forces on

particles extremely quickly (depending on the FFT algorithm), but is less well suited for

close interactions. This gives rise to derivations of the method like the Particle-Particle-

Particle Mesh (P3M) method (Roger W Hockney and Eastwood, 1988) which does a direct

force calculation between nearby particles. This latter method was initially planned to be

in SINGS at release but the present architecture did not adapt well to the method and our

FFT was not easily parallelised. However, we feel strongly that the future of SINGS will

likely involve some P3M implementation.

A reworking of the architecture to support P3M would also make way for the imple-

mentation of a more robust and realistic collisional particle model via Smoothed-Particle

Hydrodynamics (SPH) (Gingold and Monaghan, 1977). Our current collisional gas model

may be accurate if we take the particles to be like individual molecules colliding with one

another but in terms of astrophysical simulations, it simply doesn’t cut it. In short, SPH is a

mesh-free approach to model fluid flows. It approaches the problem by dividing a fluid into

discrete moving elements governed by a so-called ”kernel function”, which mediates particle

interactions. The power of SPH as a computationally efficient way to accurately model the

fluid-like flows of the interstellar and intergalactic mediums makes for its would-be imple-

mentation in SINGS highly desireable.

Before tackling any of these problems, however, there exists a major short term goal, and

that is the implementation of periodic boundary conditions. These are necessary for high

resolution structure formation simulations, and presently SINGS does not support them.

In essence, periodic boundary conditions result in particles that leave the simulation space

being acted on by mirrors of the simulation space. This is relatively cheap to compute as

the force from the mirrors of the simulation can be acquired by a coordinate transformation

on the particle. This is a high priority goal, and is likely the first major upgrade to SINGS

after the conclusion of the New Mexico Supercomputing Challenge.
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A smaller goal is to support a Hubble constant, essentially for modelling cosmic expan-

sion. This would allow SINGS to analyse real ΛCDM cosmologies, scenarios like those close

to the big bang, given the modification to the architecture to handle the numerical errors

associated with such extreme conditions. And on the larger scales, it would allow SINGS

to analyse structure formation in the context of an expanding universe. This isn’t a high

priority goal, but compared to some of the other ideas addressed here, it is the one most in

reach.

And finally, a distant stretch goal is the implementation of Open MPI. Modifying the

architecture to support the segmented memory of supercomputers would allow SINGS to

contribute to meaningful research, given the changes we’ve outlined in this section. The

current architecture around OpenMP is exceptionally simple in comparison to what an MPI

implementation would take, however, it would truly prove SINGS’ worth as a tool for mod-

elling astrophysical systems.

7 Conclusion

What we have demonstrated through analysis of the data generated by SINGS is that it

is an extremely capable tool for running complex astrophysical simulations. While the

architecture cannot handle the high particle counts and the collisional dynamics of more

mainstream astrophysical simulation codes, it more than holds its own. SINGS thus far has

been validated in handling simulations in particle counts in excess of 1,000,000, and with the

performance improvements facilitated by the multithreading of OpenMP will surely enable

the creation of larger, more complex simulations. OpenMP support brings many opportu-

nities for furthering the development of the software, and its implementation has probably

been the single greatest achievement in developing SINGS. The fleshed out Barnes-Hut im-

plementation already provided a strong foundation for further advancements, in addition

to SINGS’ general architectural modularity. The error diagnostic tools and the simulation

i/o, however rudimentary, make SINGS flexible and easy to use for those hoping to make

and run astrophysical simulations of their own. With the implementation of certain features

discussed in Section 6, SINGS has the potential to become far more than just a humble

N-body gravitation simulator.

The repositories for SINGS and SINGS I can be found on Github with the following

links. Also included is a repository containing all the materials used in the creation of this

document, including the raw data files generated from SINGS outputs. SINGS will slowly

be released onto the Github under the GPLv2 license, as the source code is polished and

documented. However, SINGS I as featured in this paper is already fully available for use,
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however rudimentary it is in comparison.

SINGS: https://github.com/CodingKraken/SINGS

SINGS I: https://github.com/CodingKraken/SINGS-I

This Paper and More: https://github.com/CodingKraken/SCC-SINGS-Paper
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Executive Summary:
Drought in the Rio Grande River has and will continue to worsen as the years go on.

According to research completed by Williams et al. as a result of climate change “...2000-2021

was the driest 22-yr period since at least 800 [CE]” [1]. This type of drought is dangerous due to

the widespread effect on wildlife, crops, and general livelihood. Water is a resource that is

important to the prosperity of not only human species, but also animals and crops as well. The

rain that we get during monsoon season is not enough to relieve drought. We have also seen that

drought is occurring more often, for longer periods, and sooner in the year. Through our project

we researched the effects of drought in New Mexico specifically. We have found that methods

such as optimizing federal reservoirs to more than one entity, redefining dams in a way that is

more infrastructurally beneficial to its environment, and redistributing water sources, can lead to

a healthier river that can withstand dryness and be drought-resistant. As the Rio Grande river has

changed in the last 100 years, its systems of irrigation and water distribution should change as

well. We believe that these solutions can save the amount of water supply in the Rio Grande, as

well as use it in more impactful ways that can save the drying environment around the river. Our

project focused on visualizing drought as it relates to the Palmer Drought Severity Index in

different divisions of New Mexico monthly from the years 1895-2022. This visualization has

allowed us to draw conclusions based on patterns of past drought conditions as it relates to

seasonal and monthly data. We created a map of New Mexico using the eight divisions of New

Mexico with a gradient that shows where drought is more severe and what months of the year

this happens.
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Problem:
The Rio Grande River, which flows through New Mexico, has been facing severe

drought due to climate change and needs a better distribution of water plan. In addition, New

Mexico needs to have additional options for water resources. In Las Cruces specifically, the Rio

Grande didn’t flow until March and was dry by September last year, completely disrupting the

irrigation season which normally lasts from February to October. Since many cities in New

Mexico reside along the Rio Grande River, this drought has a widespread effect on wildlife,

crops, and livelihood. In Las Cruces, water is diverted and drained according to “water rights”

which accounts for three-quarters of the state’s surface and groundwater even though this only

makes up 2.4% of New Mexico’s Gross Domestic Product. Due to this distribution of water,

New Mexican residents suffer not only by not being able to enjoy the pleasures of living by the

water, but wildlife and nature suffer as well. Last year, Albuquerque also experienced a dry river

on a 5-mile stretch of the Rio Grande for the first time in 40 years which means that drying

events are taking place earlier and farther north than normal. Although rain alleviates drought,

the Rio Grande is a snow-melt-driven system, and this is not enough to reverse long-term

drought conditions. Water resources need to be reconsidered and redistributed to prepare for the

nearing endemic state of drought in the Rio Grande River.
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Objectives:
Our objectives were to create a code utilizing pycharm which could not only visualize

drought as it already occurs in the Rio Grande and New Mexico, but also make predictions as to

what patterns this drought will continue to follow. Specifically, we wanted to investigate how

climate change may affect the future drought that we may face and the problems this could cause

for our community. Finally, we wanted to discuss possible mitigation practices to the effect of

drought or relief possibilities.

To start our project, we wanted to investigate possible measurements of drought. These

include the Palmer Drought Severity Index which is a measurement of the duration and intensity

of long term drought patterns and the Standardized Precipitation Evapotranspiration index which

takes into account precipitation and potential evapotranspiration. We decided to use the Palmer

Drought Severity Index because it could be best used to look at the historical aspect of drought

without variables related to human impacts like irrigation or snowfall. This will be used to make

predictions regarding drought in the future as it relates to historical patterns. To garner accurate

results, we gathered New Mexico precipitation data from the past few years from NASA

Worldview. In order to best accurately display drought in different areas of NM, we used the

eight divisions of New Mexico’s weather divisions which was obtained through the National

Centers for Environmental Information. This has monthly PDSI historical division data from

1895-2022 and helps us to understand/visualize drought patterns for specific months of the year

and areas of New Mexico. We also discussed possible strategies to mitigate drought such as

water redistribution and reprioritization.
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Research:
Drought Indices:

To investigate the relationship between drought and the future of the Rio Grande, we

have investigated drought indexes that have recorded historical data. We primarily researched the

Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Evapotranspiration

Index (SPEI). The Standardized Precipitation Evapotranspiration Index utilizes both

precipitation and evapotranspiration data [7]. A limitation to this method is that it needs a long

base period of around 30-50 years to collect data and process accurate results. Therefore, we

looked into PDSI.

Figure 1
(https://climatedataguide.ucar.edu/climate-data/palmer-drought-severity-index-pdsi)

The Palmer Drought Severity Index is a historically-based drought index that contrives

temperature and precipitation data from a given location. This data is then calculated into a

scaled index (reference Figure 1) that generally spans from -4 (indicating severe drought) to +4

(indicating extreme moisture). This index uses and determines the water balance equation,

including evapotranspiration, soil recharge, runoff, and moisture loss from the surface layer. It
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“...uses precipitation, temperature, and available water capacity (AWC) as input data, thus the

parameters of water balance can be calculated, such as runoff, recharge, evapotranspiration, and

coefficient of soil moisture loss” [7]. Limitations within this index are its nonconsideration of

human impacts such as irrigation, the variation of water balance components that also vary with

elevation and land cover, and lastly, snowfall. In our project, we utilized this index in a way that

put current conditions into a historical perspective. We have obtained monthly index data ranging

from the years 1895-2022 in order to compare and validate these values with possible

predictions.

Nasa Worldview:

NASA Worldview was a tool to strengthen our understanding of drought data. NASA

Worldview gave a comprehensive list of data sets from varying factors that contribute to drought.

Some of these factors include land surface reflectance, land surface temperature, population

density, precipitation rate, radiance, and soil moisture (as seen in Figure 2). NASA Worldview

allowed us to recognize how drought has its impacts on both humanity and the environment. A

higher population density will more easily experience drought than a low population density. We

looked into using NASA Worldview for our data but it only allowed data to be downloaded one

day at a time. Considering we wanted to look at data at least a few decades in the past, this

wasn’t an option for us.

Figure 2
(https://worldview.earthdata.nasa.gov/?v=-122.84927811493296,27.101252117697136,-90.03298740584484,43.6461320168624&l=Reference_Labels_15m(hidden),Reference_Features_15m(hi

dden),Coastlines_15m,AIRS_Precipitation_Day,VIIRS_NOAA20_CorrectedReflectance_TrueColor(hidden),VIIRS_SNPP_CorrectedReflectance_TrueColor(hidden),MODIS_Aqua_CorrectedR

eflectance_TrueColor(hidden),MODIS_Terra_CorrectedReflectance_TrueColor&lg=true&s=-106.1084,34.4213&t=2023-01-21-T06%3A24%3A22Z)
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Climate Divisions:

To accurately display drought in different areas of NM, we are using the eight divisions

of New Mexico’s weather divisions. These divisions include as shown in Figure 3: Central

Valley (5), Central Highlands (6), Northeastern Plains (3), Southeastern Plains (7), Northwestern

Plateau (1), Northern Mountains (2), Southern Desert (8), Southwestern Mountains (4). We

obtained this division index from the National Centers for Environmental Information (NCEI). It

presents historical division data of monthly PDSI from 1895-2022 [6]. We used this in our

project to understand where drought may be the most severe in New Mexico as well as which

months of the year this continually occurs in. These patterns have helped us understand drought

and also enable us to make predictions about what will happen in the future if these patterns do

continue.

Figure 3

Water Prioritization:

As aforementioned, humans can affect drought just as much as nature. Both in population

(how many people need water) but also in management. What is the most effective way to

allocate our water resources? The three largest sectors that this gets broken into are industrial,

domestic, and agricultural. The industrial sector will use water for production of goods. A caveat

of supplying the industrial sector with water is that it will most likely become contaminated after

use. Water purification is a process that requires a lot of time and energy. The domestic sector
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covers an individual’s use of water. For example, showering, laundering clothing, running the

dishwasher, and drinking. This sector’s allocation will depend on the population of the state or

county. Finally, the agricultural sector, where water is used to water crops or give to animals.

This sector is especially important in New Mexico considering our relatively large production of

pecans, peppers, and corn. Our climate is naturally dry so most plants require artificial watering

in order to thrive.

During droughts, water has to be allocated precisely in order to fulfill the needs of each

main sector. In addition to our drought predictions, we thought it would be interesting to explore

the relationship between humans, economy, and nature. In a future project, it would be

interesting to create an algorithm which would calculate the most beneficial use of a certain

amount of water. Figure 4 shows the average separation of each sector.

Figure 4

(https://learn.genetics.utah.edu/content/earth/waterallocation)
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Predictions and Probability

One of the objectives of this project was to be able to predict future drought, thus

identifying how severely climate change will affect our weather patterns. Our hypothesis is that

as the Earth experiences this positive feedback loop of growing warming and warming. Drought

will also become more and more severe. The increased temperature will directly cause an

increase in evaporation (decrease in soil moisture). This rapid evaporation will severely dry out

soil, so when it does rain, the soil won’t be able to soak up the water. We will instead probably

experience an increase in flash flooding. We predict that drought will continue to intensify and

therefore we must begin to find solutions now.

Probability goes hand in hand with predictions. Most predictions have a likelihood, a

probability. We researched how to incorporate probability formulas and concepts into this

project. This would also eliminate any misleading or false information by stating “this is our

predicted rate of precipitation with a likelihood of …” We researched independent events,

mutually exclusive events, conditional probability, and how to calculated expected value. This

general knowledge of probability allows us to accurately integrate the topic into our code.
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Python and Pycharm
Objective: Creating a model that computationally predicts future droughts, in order to

identify possible solutions in water distribution.

Overview:

In our program, we wanted to create a model that visually represented New Mexico and its

historical data pertaining to droughts. This would then allow us to then transition to the idea of

predicting droughts and the impacts it has on surrounding environments. To start this, we

analyzed historical data of PDSI in different divisions of New Mexico to find patterns and the

relationships that are present with this large array of data.

Obtaining and converting data:

In our research, we were able to find PDSI drought data from NCEI databases that provided files

of monthly drought conditions in the contiguous United States. We then converted this data into

our program and found a way to simplify and understand this abundant data in order to only

focus on New Mexico drought data. Then we had to dissect and understand the format of the

series of ten digits.

Finally, we used shapefiles also acquired from NCEI databases to create a visual of New Mexico

in our program. This allowed us to create a structure and shape of the state, as well as display the

eight climate divisions.

Figure 5
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Nested Dictionary:

In our program, we implemented a nested dictionary to separate the vast amount of data by state,

climate division, month, and year. We chose to use a nested dictionary in our program because of

its ability to comprehend and reiterate data in a limited amount of time. This would then help us

have the ability to find certain points of drought data in a given year, month, and climate

division. In figure 6 and 7, it shows the structure of our nested dictionary and our ability to print

certain divisions and months, in order to analyze specific points.

Figure 6

Figure 7

Visual Gradient:

One of the vital parts of our program was the representation of the drought data in a visual

setting using shapefiles, PDSI drought data, and the nested dictionary. One of our main goals for
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this program was to be able to represent the change of drought over time in these eight climate

divisions. The graph displays the shape of New Mexico and the borders of the climate divisions.

It then uses a color gradient to show the difference in drought in varying shades of oranges. The

darkest orange represents a drier climate condition compared to lighter shades of orange which

show wetter and more sustaining conditions. With the implementation of the nested dictionary,

we are able to show different time frames throughout a given year. This has allowed us to

compare the varying months in years spanning from 1895 to 2022 (figure 8 and figure 9)

Figure 8
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Figure 9
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Tables and Graphs:

Figure 10

In Figure 10, the x-axis depicts year and the y-axis depicts the precipitation rate. The data

represents each plot of PDSI monthly data between the years 1895 to 2022.
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Results:
This year our results were mostly visual and pattern related. We used our code to use historical

PDSI data to model drought in the eight divisions of New Mexico. A gradient is used in order to

see where drought is more severe and the code runs through all 12 months of a specific year.

Through running our code we found some patterns for specific years. An observation was that in

1895 drought was present in central NM (division 5). As compared to 2022 drought was more

stagnant in the SW of NM in 2022, and drought was shown to vary in 1895 with there being no

drought in most of NM from December 1895-March 1896. In 1950 drought was harsh on the east

of New Mexico, and in 1990 there was consistent drought in divisions 2 and 3. In 2000 drought

conditions were severe in October, November, and December. In 2010 drought started in the west

and gradually moved up the state while Division 5 stayed impacted by drought. In 2015 drought

stayed present in the northeast side and in 2018 the summer was not impacted by drought while

the winter was. In 2020 Drought was harsh in the Southwest and there was consistent drought in

division 5 of 2021 while there was no drought in division 1. Finally, in 2022 there was consistent

drought in the Southwest. As we can see from these observations, drought has remained an issue

in various areas of New Mexico throughout the years. Some of the most damaged areas are

central NM and the northwestern plateau.
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Conclusion:
Through this project we were able to gain a better understanding of drought in New Mexico and

possible mitigation strategies. Our code helped us to view PDSI through many years of the past

utilizing the eight divisions of New Mexico. Through this information, we were able to find

patterns with drought and discover areas of New Mexico where drought is consistently

worsened. We have found that methods such as optimizing federal reservoirs to more than one

entity, redefining dams in a way that is more infrastructurally beneficial to its environment, and

redistributing water sources, can lead to a healthier river that can withstand dryness and be

drought-resistant. As we continue, we would like to make predictions of drought in the future

with the assumption that drought patterns will continue as seen. Our hypothesis is that as the

Earth experiences this positive feedback loop of growing warming and warming. Drought will

also become more and more severe. Since drought is an issue that is consistent at the least it is

exceptionally important that we start developing strategies to mitigate the problems caused to the

community, wildlife, and crops.
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Significant Achievements:
The most significant achievement that we had as a team this year was time management

and organization. Since all three members of our team are seniors we had to learn how to better

manage our time and prioritize our tasks for the challenge while also handling the workload in

school and at our jobs. It was an incredibly busy and stressful year so we had to make sure that

we had all the deadlines for the challenge set in our calendar. In addition, we had to make sure

that our communication was always kept up with one another as we go to different schools. We

set times to meet during the week that would work with all of our schedules and we made a

commitment to work on our tasks on our own time separate from those meetings as well. We

effectively set up a plan to research our project, do the code for our project, and also complete all

of our big tasks such as the proposal, interim, evaluation, and final report. As a team of three, we

did a great job staying organized and following through with the tasks we embarked on.

Ayvree Urrea:

The most significant achievement that I had this year was staying organized and

appreciative amidst an incredibly stressful season of life. I have felt very overwhelmed this year

with extracurriculars, sports, school, and work. However, I also wanted to get the most out of

every experience with it being my last year in most of my activities. This year I have taken the

time to appreciate all that I have learned through my years in the challenge. Some of those things

being presenting skills, organizational skills, researching skills, and coding skills. I am very

proud of the comfortability I have grown to have with presenting as I have gone through with

evaluation and expo every year. I have gained many coding skills in python especially

understanding matrices, functions, loops, and if/and statements. I have also become a more

knowledgeable researcher in order to find the information needed and utilize it. Most

importantly, I have gained confidence in my capacity to take a problem I see in the world and

actually make changes- computationally or otherwise- that will help mitigate the problem. This is

a skill I will forever take with me in college and beyond.

17



Kiara Onomoto:

The most significant achievement that I had this year was expanding my skills in

communication with my team members and mentor, as well as being able to be the sole

programmer on my team. Throughout my time participating in the Supercomputing Challenge, I

have felt that my ability to communicate has grown significantly to what it is today. Being from a

team that is divided into two schools, and having to communicate with a mentor who also has a

busy schedule, this year has taught me the importance of communication. As I have participated

in this program, I found it to be important to be a dependable team member. This meant that I

had greatly accepted the role of communicator between my team and mentor. This year, I felt I

have achieved this by organizing the availability of meetings and keeping track of deadlines.

Furthermore, my skills in programming in Python have greatly benefited this year with my

dedication to stepping out of my comfort zone to being the sole programmer that fully

understood and could comprehend new skills that were taught to us by our mentor. These skills

will greatly impact my future endeavors.

Violet Kelly:

My most significant achievement this year was integrating myself into the community of

Supercomputing and learning how to present code to an in-person audience. This only being my

second year in the challenge, this was the first time I got to go out to Socorro and immerse

myself in the Supercomputing culture. I learned a lot through both experience and the lessons we

were taught. It was also really inspiring to see everyone who was also competing in the

challenge. I also got the opportunity to present our code to professional scientists, which was

terrifying at first, but after the shock of nerves I became more comfortable presenting to

incredibly intelligent strangers. I feel that one presentation had really prepared me or at least

gotten me comfortable with the skill of public speaking that I will no doubt have to utlize in

college. The question portion also helped me understand how I can better communicate my ideas

to others in a way that is clear and concise. Alongside this, I’ve learned how to communicate my

passion to others. I am passionate about mitigating the effects of climate change and educating
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others on the reality we are facing. This coding project was a great way for me to investigate an

issue that I was naturally motivated to study and share.
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Abstract/Executive Summary

The purpose of this project is to address and help with the frequent wildfires that are

happening in the state of New Mexico every year. Regardless of whether wildfires are controlled

or uncontrolled, they should always be treated very seriously and with extreme caution because

they are the source of pollution, and are life threatening. By releasing CO2 into the atmosphere,

wildfires also contribute to global warming. Furthermore, forests purify the air that we breathe,

offer a home to much of the world’s wildlife and flora, and provide natural resources (e.g. timber

and medical plants).

The result of the project is a robotic fire weather conditions detection system called

Smokey, which alerts about either very possible or already existing fires. It includes the

following parts: Arduino MEGA 2564, CO2 and TVOC sensor, Dust and Pollen sensor,

Temperature and Humidity sensor, RTC Clock, BlueTooth and SD drives, infrared light sensor,

parabolic dish, LCD display, and several LEDs. Smokey was programmed using C++ language

and has been tested during different experiments and through the data collection and analysis.

The experiments included burning incense, candles, and matches, turning humidifiers on/off, and

exposing Smokey to an infrared heater.

Smokey correctly detects increased/decreased levels of CO2, TVOC, smoke, dust,

temperature, and humidity in the air, as well as it correctly senses IR (infrared) light reflected in

a parabolic dish to the IR detector caused by the heat of the flames, which were burnt in the

chemical fume hood. This fire weather conditions detector could be used by the Fire Services to

determine when to avoid prescribed fires. In addition, by installing a network of such robots in

the forest that would communicate with each other via Bluetooth and be powered by the PV solar

energy, the Forest Services would be quickly alerted about the wildfires that have already started

on their own.

3



Hypothesis

High levels of dust, smoke, CO2, and temperature, and low level of humidity in the air as

well as the presence of infrared light of a flame detected from far away may indicate possible

wildfires and wildfire weather conditions. Developing a robotic system with sensors that would

measure all these levels and detect such an infrared light could inform about already existing

wildfires or predict the potential ones.

Identify the Problem

Problem Background and Research

According to InciWeb, “the Hermit's Peak fire began April 6, 2022 as a result of the Las

Dispensas prescribed fire on the Pecos/Las Vegas Ranger District of the Santa Fe National

Forest” (InciWeb). While “the Calf Canyon fire was caused by a pile burn holdover from January

that remained dormant under the surface through three winter snow events before reemerging in

April” (InciWeb). As the fires reemerged and grew, they then managed to merge and become

one, known as The Hermit's Peak and Calf Canyon fire. All together more than 800,000 acres

burned in the state of New Mexico in 2022.
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The fires that emerged became immense to the point that the smoke was visible in Santa

Fe. Since the team had already developed an air quality monitoring system called Snoopy (that

was submitted to the Supercomputing Challenge last year), they were able to measure the level

of dust and smoke in the air during that time. The images below show those levels as well as the

smoke captured here, in Santa Fe.

Previous Project: Snoopy
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Idea Generation / Goal

As mentioned before, Snoopy was able to detect the level of dust, smoke, pollen, TVOC

(Total Volatile Organic Compounds), and CO2 in the air. Based on the collected data during the

time of wildfire, the team was inspired to upgrade Snoopy to a fire and fire weather measuring

system. This is where the idea of Smokey came from.

Work Done By Others

In order to implement this idea and accomplish this goal, the team was regularly meeting

with the mentor from industry and their teacher. During the meetings the team learned about each

part of hardware, including laying out circuit boards and adding sensors to it, and C++ coding.
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Constraints

Since some of the team members were unable to meet regularly, after meeting with the

mentor, the team leader was updating the rest of the team after school. It was a very challenging

and time consuming role to do both work with the professional mentor and teach the rest of the

team.

Model/Prototype
Description of Model

Smokey is a robotic monitoring system that detects the levels of dust, smoke, CO2,

TVOC, humidity, temperature, and infrared light.

The development of Smokey included the following three phases displayed on the image

above:

1. Protype #1 (on the left) only included the basic sensors;

2. Prototype #2 (in the middle) in addition to basic sensors, also included warning

LEDs and LCD (Liquid Crystal Display);

3. Prototype #3 (on the right) in addition to components in prototype #2, also

included infrared sensor and parabolic dish.
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Smokey reused sensors and their software used by Snoopy that detected smoke, dust /

pollen particles, as well as TVOC and CO2. The following parts were also added to Smokey:

circuit board, power module, infrared, humidity and temperature sensors. The table below lists

similarities and differences between Snoopy and Smokey.

Snoopy Both Smokey

● Uses wires to connect
the sensors

● Uses stepper motors
to drive around

● Detects air quality

● Have CO2, TVOC,
pollen sensors, RTC,
and SD card modules.

● Use C++ coding

● Uses a circuit board
with a modular
interface

● Has an IR sensor, a
humidity and
temperature sensor,
and a power module.

● Uses stepper motors
to pan and tilt IR
sensor and dish

● Detects wildfires

As shown on the image below, in order to build Smokey, the following hardware was

required: Arduino Mega, circuit board, power control and bluetooth modules, SD and motor

drivers, RTC clock, air quality, and temperature and humidity sensors.
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The team learned how to connect Smokey to the Bluefruit app installed on their

smartphones through Bluetooth, and how to control the infrared sensor and parabolic dish

movement when each of the following arrow buttons was pressed:

In order to accomplish this task, the team had to add the following instructions to the

code:

In addition, the team also learned how to program each of the four buttons to display data

on the screen of the Bluefruit’s app. Button 1, when pressed, displays the level of smoke and dust

in the air; button 2 displays the level of humidity, temperature, and chemicals, such as CO2 and

TVOC, button 3 displays the level of battery, and button 4, when pressed together with button 1,

displays the date and time, as shown on the screenshots below:
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The screenshot below shows the part of the code responsible for accomplishing the above

tasks.
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Test model and evaluate

Testing

Many tests were performed with Smokey, including exposing it to the burning flames in

the chemical fume hood. The performance of Smokey was recorded and saved onto the SD card

and then analyzed and presented graphically in the charts below. Each line within the charts

represents a value that was recorded by Smokey, the blue line represents the pollen size 1.0

values, the red line represents the pollen size 10 values, the yellow line represents the humidity

values, the green line represents the temperature values and the orange line represents the flame

values of this experiment.
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In addition to the actual flames, Smokey was also used to detect light from an infrared

heater. The chart below displays the efficiency of the range of the infrared sensor from different

distances. It was able to easily get a reading all the way up to 90 feet. The experiments were

performed in the classroom as well as school corridors. This is proportional to the inverse square

law. Every time the distance was doubled, the efficiency of the infrared sensor dropped to ¼.

Due to the limitations of the number of characters on LCD display and the Bluefruit app used on

cell phones, the maximum value of detected infrared light displayed by Smokey is 99.
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Troubleshooting

Before and after the many tests, bug fixes were added to the C++ code and libraries of

Smokey. The occasional bugs were observed in the values displayed on the LCD panel. One

initial bug was due to an error caused by the fluctuation of voltage in the faulty wiring within the

battery pack. Other bug fixes included sorting and separating the code into three different

sections that made it more readable and easier to troubleshoot. Another bug that occurred within

the LEDs was caused by the pin values being flipped for the smoke, humidity, and temperature

LEDs. A recurring issue was with the CO2 module as it would not update to display the correct

value. As of this time, most of these bugs have been resolved.

Redesigning

As previously mentioned, Smokey has been redesigned several times as improvements

were made to it, leading to three different prototypes. Each next prototype was an improved

version of the previous one with some extra components added to it. The idea for adding an

infrared sensor to the last prototype of Smokey came from the satellites that use a parabolic dish.

As for Smokey, it was built around the size of its circuit board and components. This was done in

order to have enough space to fit everything within it and to have the ability to mount it in

various places, including the actual forest, buildings, and homes.
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Computational/Mathematical Model

The code consists of more than a thousand lines split into 3 different libraries. The first

library calls upon the setup process for Smokey’s modules and Smokey’s DO functions and starts

a watchdog timer. The watchdog timer keeps Smokey’s software from freezing for long periods

of time as it counts out each second. After a series of 10 seconds, a flag is set and the watchdog

timer counts to a minute and sets another flag. If the software is still frozen after 5 minutes, the

software resets. This unfreezes Smokey’s software, and the data still stays saved onto the SD

card.
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The second library is the main library of Smokey’s coded software that stores each of the

main mathematical parts of Smokey. It includes the main functions for the stepper motors that

move the parabolic dish and an infrared sensor, such as Pan_ang, Pan_ang_wh, Pan_ang_fr,

Tilt_ang, Tilt_ang_wh, and Tilt_ang_fr. The “wh” stands for “whole” and the “fr” stands for

fraction. Fraction is used to display the remainder of the tilt or pan angle as a character. Custom

bits are stored in order for fractions to be displayed on the LCD and Bluefruit app.

The next part in the second library includes values and functions for the LEDs. If the

average value of smoke is above the warning value, the corresponding smoke LED turns on. If

the average temperature is greater than the warning value and at the same time the humidity level

is lower than the set value, then the corresponding humidity and temperature LED lights up. The

infrared sensor’s whole number displayed on the LCD screen and Bluefruit app represents the

value of the strength of the infrared light, while the fraction displays the angle that the infrared

light was spotted at. The third library includes all of the DO functions.
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Conclusion

As a result of this work, the team has developed a prototype of a working robotic fire and

fire weather conditions measuring system that has been tested in a variety of conditions and

circumstances. If this prototype were mass produced and networked in the way that all of them

would communicate with each other via Bluetooth, they could be then installed in the forest to

serve as the wildfire protection system. Each such Smokey could use a battery that would charge

during the day by a small PV solar panel and keep powering Smokey also during the night.

While working on this project the team valued the experience gained. Some team

members learned how to design a circuit board and C++ programming while others learned more

about video editing and presenting in front of an audience. This project helped each team

member discover his/her natural interests, skills, and abilities, as well as to make their mind

about the major in the college.

Collaboration

Roles / Responsibilities

Although the team shared the responsibilities and roles working on the project, their

contribution depended on the certain natural skills that each team member already had. One team

member was involved in research while another was in charge of tracking deadlines and putting

presentations together. The team leader was mostly in charge of computer programming and

working directly with the mentor, and another team member was in charge of hardware. All the

team members were meeting after school to work together using their skills. The main

responsibility of the team, as a whole, was to be present for meetings, presentations, and to be
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responsive to any communication involving the project.

Contributions

The team leader, Zachariah Burch, was regularly meeting with the mentor, and worked on

designing circuit board, the C++ programming, and on the parts of the report that included the

components of Smokey, code, graphs, and images.

The team leader’s assistant, Isel Aragon, has been putting all the presentations together,

regularly stayed in after school meetings, and worked on the report together with the team leader

and their teacher.

The team member, Britny Marquez, has been participating in after school meetings and

greatly contributing to the presentations of the project.

Another team member, Daniel Leon Leon, together with the team leader, was meeting

with the mentor and worked on designing the circuit board.
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1 Executive Summary

Social media platforms are currently confronted with a large amount of contro-

versial content, which carries significant consequences for the emotional health

of their users [1]. Without an effective way to classify this content, social media

platforms face difficulty when trying to limit such content.

In this project, we attempt to use deep learning to predict the metrics

(heuristics) that a social media platform would use to categorize a post as con-

troversial before the post is even reacted to - simply from the natural language

content of the post. By doing this, a post can be classified as controversial,

before it’s already had a negative impact on a social media platform.

To achieve this, we made use of a BERT model, with our custom layer

trained to identify content as controversial. With this, we were able to make

use of a pre-trained understanding of natural language, while still creating a

model relevant to our task, achieving great success on what would otherwise be

a limited dataset.
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Through our model, we were able to achieve a high degree of accuracy, suc-

cessfully demonstrating the potential of our approach in detecting controversial

content, and allowing this detection to happen much quicker than otherwise

possible.

2 Project Problem and Solution

As nearly any frequent user of a social media platform can attest to, most social

media platforms contain a large amount of controversial content. The constant

exposure to such content, for many, can harm their emotional health [1].

To reduce the negative impact of controversial content, it may be useful

to reduce one’s exposure to this content. However, to reduce the exposure of

controversial content, it is of course necessary to have the capability to classify

content as controversial or non-controversial.

Controversial content is relatively easy to recognize after it’s been published,

by analyzing how the content is being reacted to. However, this of course has

its limitations, as the content has to have a negative effect before it’s controver-

siality can be recognized.

In this project, we use deep learning techniques to predict heuristics related

to the controversiality of a social media post, simply from its natural language

content. We do this by learning the features of the natural language which

correspond with a post’s controversiality.
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3 Model Structure

To effectively work with natural language, we opted to use a deep learning

model. This model is able to take the textual content from a variety of social

media posts and learn what within this text content correlates with a contro-

versial post.

3.1 Use of Heuristics

A heuristic is, essentially, a metric that itself may not correlate exactly with

what needs to be predicted, but can be used as a part of an informed judgment.

In this project, we make use of heuristics related to post controversiality.

Specifically, we use the like-to-retweet ratio of a Twitter post, though other

similar metrics exist. These metrics, in many cases, can give us an idea of the

controversiality of a post. For example, if a post has many retweets, though not

many likes, there’s a possibility that users felt the need to give their thoughts on

a post, instead of simply expressing their agreement. Thus, a low like-to-retweet

ratio is possibly an indicator of controversial content.

Unfortunately, without a large annotated dataset, it’s impossible to vali-

date if these heuristics truly correlate with the underlying controversiality of a

post. However, while we cannot, in this project, predict controversially itself,

by predicting these metrics using nothing but the content of a Tweet, we can

demonstrate the potential of using these heuristics to predict the controversial-

ity of a social media post ahead of time, avoiding the need to inflict the negative

impact of such content before it can be categorized.
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Additionally, while some work has been done in the past into the training of

models which use annotated data, these studies often suffer from the relatively

low sample size afforded by manual annotation [4].

3.2 BERT Modeling

The simple way to view BERT modeling is as a way to leverage a deep under-

standing of natural language, from an extremely large, pre-trained model, and

then narrow the capabilities of the model to exactly your task, with relatively

minimal training.

Essentially, the BERT model makes up the first layers of the neural network.

We can then add our layers onto the end of that neural network, and train those

layers to our specific task. This way, our model doesn’t have to learn about the

English language itself and can focus entirely on our specific task.

To provide some more technical detail, ”BERT” stands for ”Bidirectional

Encoder Representations from Transformers”. The model can successfully con-

sider the bidirectional context of a word. That is - instead of just providing

an idea of what a word means in its most general context, such as what’s done

with a word embedding, or providing context for a word based on the words

preceding it. [2] Instead, BERT can effectively consider the context of a word

within the sentence it’s in, providing a very rich and useful understanding of

natural language [3], which can be applied to a narrower context.
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3.3 Our Own Layer

The BERT model we are using, of course, doesn’t have any understanding of

how to associate the natural language content of a social media post with con-

troversiality. To do this, we needed to add our custom layer, which takes input

from the output neurons of the BERT model and outputs its predictions of the

metrics which we use to approximate controversiality.

For the primary metric used, like retweet ratio, we created ten different

classes for the metric, each of which represents a percentile range of the metric

across our training dataset.

So, for example, the first class would represent all like/retweet ratios in the

bottom [0-10%), the second class would represent all like/retweet ratios in the

[10%-20%) percentile range, and so on.

By using these percentiles, we can make our classes very close to equal in

presence, certainly within our dataset, and gain a relatively detailed idea of the

predicted metric.

4 Dataset Collection

To train our model, we, of course, need a dataset to use. For this project, we

were unable to find a pre-existing, publicly available dataset that would work

well for this project. For our dataset, we had three main constraints.

1. The dataset needs to be as large as possible, to allow for the most effective

training of our network.
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2. The dataset needs to have as much information as possible relating to the

public reactions to a tweet.

3. The dataset needs to consist of tweets that have been reacted to as widely

as possible, to provide the richest possible reaction metrics.

To fill these constraints, we collected a dataset of Tweets, using a Python

program written ourselves. This program aggregated the tweets from the top

50 Twitter accounts, by using the Twitter API to scrape these Tweets over

a relatively long period, and compiled all of these Tweets into a consolidated

dataset.

In this dataset, we included every possible metric which we could relate to

the public reaction to a Tweet. In the end, we used three metrics to approximate

the controversially of a post, the first metric is the primary one utilized in this

experiment.

In total, we were able to collect 156,677 tweets, each of which was used to

train the neural network.

5 Solution Validation Methodology

To validate that our solution performs effectively, it’s necessary to perform a

test of our model. The testing of our model, following extremely standard

Machine Learning methodology, relies on testing the accuracy of our model on

a validation dataset. This dataset would not have been shown to the model

during training. As such, testing the accuracy of our model on a validation
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dataset provides a very close approximation of the performance of the model on

data it will encounter when deployed.

In our case, the validation dataset used was taken from our total dataset,

representing 25% of our entire dataset.

To gauge the accuracy of our model, we used two different metrics. The first,

categorical accuracy, is a fairly standard accuracy metric in the field of machine

learning. For this model, this simply represents the accuracy with which the

exact category is predicted.

However, unlike most classification models, with our particular model, not all

misclassifications are equally incorrect. A misclassification in a nearby percentile

should be represented as being more accurate than one in a further percentile.

As a result, we also used the ”average separation” metric, which represents the

average distance between the selected percentile and the correct one.

6 Solution Validation Results

Our model, after three epochs of training, was able to achieve a validation

accuracy of 29.94%, meaning that 29.94% of the posts were categorized into

the correct percentile. While not perfect, this level of accuracy still gives a

strong indication of the potential in the model, performing much better than

the 10% accuracy that would be archived without any learning. Additionally,

the trend from the three epochs of training, seen in Figure 1, seemed to be fairly

linear, showing the potential for this accuracy to improve should more compute
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Figure 1: A graph showing the categorical validation accuracy of our model as

training progressed.

resources be invested into training the model.

Additionally, we were able to achieve an average separation of 20.7%. This

means that, on average, the percentile assigned to each post deviated from the

ideal percentile by 20.7%. This, while of course not precisely accurate, shows

that this model can be used to give a relatively accurate general idea of how

controversial a post is, even when it fails to identify a post’s controversiality

exactly.

7 Conclusions

In this project, we were able to successfully teach a machine learning model

to recognize the signs of controversial content and achieve a level of accuracy

that, while not perfect, still allows for the model to be useful in the detection
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of controversial content. Through the use of natural language processing, we

have shown that it’s possible to predict the metrics which can indicate contro-

versiality. Through further work and exploration into different natural language

processing techniques, it’s possible that the accuracy could be improved even

further.

8 Future Work

To expand on this project, given more time and resources, there are several

improvements and expansions which could be made. The largest improvement

to this project itself would be to train the BERT model for more epochs, to

ascertain a more complete idea of the peak performance that can be archived.

Additionally, collecting more data from Twitter, over a larger period, would

allow for more performance to be achieved. And, of course, the dataset could

be expanded to other forms of context, such as spoken language or pictures with

text. Finally, given the resources to annotate enough content, the correlation

between the statistics
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A Brief Summary
Space is becoming more and more accessible and with that, more and more satellites

and resulting debris are put into orbit. Debris can be catastrophic to equipment in space and not

only to the equipment, but also the companies making the equipment as it can cost upwards of

$600 million dollars. Our goal is to create a “cheap” and effective system of satellites to track

space debris (also known as space junk) in order to help bring awareness and allow critical

equipment to avoid devastating collisions.

First, the cost program takes inputs including satellite weight, run time, quantum

efficiency of the camera, camera lens radius, fov (field of view), shutter speed, and finally the

number of satellites. The program can then calculate the cost by taking the total estimated cost

of the satellite parts and adding it to the cost of the run time and cost to orbit. A total cost is

outputted and the camera specs of the satellite are sent to the luminosity program.

The luminosity program checks if there is any debris in the field of view of the satellites.

If there is, the program uses the known distances from celestial bodies to calculate the angle of

the debris to the satellite which is then used to find the phase of the debris according to the

perspective of the satellite. Then, the program calculates the amount of light going from the sun

to the debris by using the inverse square law. That number is then multiplied by the surface area

of the debris, which is assumed to be a perfect sphere of a diameter equal to 1 kilometer, and

multiplied again by the debris’ material reflectivity, which we have assumed to be approximately

0.14 percent. The outcome of that problem is then multiplied by the phase of the debris

calculated earlier. The inverse square law is brought to light once again when it is used to find

the amount of light from the debris that enters the lens of the satellite. Here, factors including

quantum efficiency, lens surface area, and shutter speed are taken into account, turning the

luminosity that reaches the satellite into joules.

The information from the program is then sent to the simulation software which is used to

simulate the debris path saving its position and an appropriate time stamp to a file. Based on

the orbit and position we can find the debris’ velocity making it possible to predict its future path.

This data can then be used to alert satellites and other equipment in the predicted path of the

debris so that measures can be used to avoid the debris, therefore avoiding catastrophic

collisions.

With all three sections of the code working in unison, we are able to track the path of the

debris’ orbit allowing for the avoidance of $600 million dollar collisions. By stopping these

collisions we can also keep more debris from being created by resulting collisions therefore

making space safer than ever.



Terminology
The following are important terms that will be used throughout the report:

● Cislunar space - the space within the Earth’s and the Moon’s gravitational field,
excluding Earth itself.

● Satellite vs debris - the satellite in this case is referring to the man-made cube satellite.
Debris is the potentially hazardous object that the satellite is observing.

● Cube Satellite - a cheap, small satellite shaped like a cube. For our purposes, this is the
satellite we would most likely be working with in real life.

● Law of Cosines - a mathematical concept which states that, given all three side lengths
of a triangle, we can find all unknown angles of any triangle.

● Inverse Square Law - a law of physics which states that the amount of light decreases

exponentially the further you get from the source of the light (see this article for more

information).

● Luminosity - a measure of radiated light from a light source, written in joules per meter

squared per second (see this article for more information).

● Quantum Efficiency - the percentage of photons that are actually registered by a
camera (see this article for more information).

● Uniform circular motion - celestial body programmed to uniform orbit in space without

the interference of non-central celestial bodies.

● Elliptical motion - celestial body programmed to move with its orbit dictated by 2 or

more celestial bodies.

● Geosynchronous orbit - an orbit path at an altitude of 37,000km and stays above the

same spot on Earth.

The Problem
As space becomes more accessible and more satellites are put into orbit, the odds of a

collision between a satellite and a piece of debris increase significantly. A collision may cause a

significant amount of damage - a ‘cheap’ satellite costs several hundred thousand dollars to get

into orbit, and the cost increases exponentially from there. According to the GAO(Government

Accountability Office), there are almost 5,500 satellites in orbit as of spring 2022, and many

https://en.wikipedia.org/wiki/Inverse-square_law
https://www.mathsisfun.com/algebra/trig-cosine-law.html
https://en.wikipedia.org/wiki/Quantum_efficiency


more will be launched over time: it is estimated that an additional 58,000 satellites will be

launched by 2030. Immediate development of a tracking system is necessary to avoid the

severe property damage and destruction of satellites that may be crucial to things such as

national security or scientific research.

The Solution
Our goal is to find the optimal satellite configuration to track objects in cislunar orbit

taking into account cost production, maintenance, and view of debris. Finding a cost-effective

tracking system for objects in geosynchronous orbit to cislunar orbit can help prevent collisions

between debris and satellites. With that in mind, here are the steps that our program goes

through to achieve this:

● The simulation:
The simulation is composed of two programs that produce the positions for all the

satellites and the debris used within our cislunar space. The first program produces the chaotic

orbits for the debris one at a time and saves the positions for each time step to a file. The debris

orbits generated vary in both position and velocity. The position ranges from 50,000 km to

384,000 km away from the earth. The velocity runs through an assortment of different

magnitudes and directions. The second simulation runs through the satellite positions and

changes the velocity to stay in

circular orbit accordingly. The

location for the satellites runs

through eight positions at an

altitude of 2,000km (low earth

orbit) above earth, and four

orbiting at 5,000km. The

velocity changes accordingly so

the satellite orbits in near circular

motion. The accuracy of these

programs depends heavily on

the dt, or ‘time step’ being used.

The greater the time step, the

less accurate the data will be.

https://www.youtube.com/watch?v=2h8doa_lndg(video of the physics simulation running for 6

months, at a timestep of 10 seconds)

https://www.youtube.com/watch?v=2h8doa_lndg


https://www.youtube.com/watch?v=e2lvFIXgcWE(video of the physics simulation running for 6

months, at a timestep of 100 seconds)

● The Luminosity:
The luminosity section of the code runs after the simulation data has been compiled.

Given the positions of the satellite and debris at various points in time, as well as the

specifications that are generated for the satellite’s camera, the code iterates through each

satellite orbit and each debris orbit and works through over 1,000 different combinations of

debris and satellite to find the total light gathered by each satellite in each situation.

The program starts by using the coordinates of each celestial body(shown as [x,y,z],

[a,b,c], and [d,e,f] in the diagram) and finds the side lengths of the triangle between the sun, the

satellite, and the debris(shown as side A, B, and C in the diagram). Given the side lengths, the

Law of Cosines is used to find the angle from the debris to the satellite(shown as angle A in the

diagram) which is used to find the phase of the debris from the perspective of the satellite.

Before calculating how much light from the debris the satellite sees, we need to find

whether or not the satellite can see the debris in the first place. To do this, the satellite’s field of

view is taken into account, assuming it is facing directly away from the Earth. If the angle of the

https://www.youtube.com/watch?v=e2lvFIXgcWE


debris falls within the angle range between the two edges of the satellite’s view, it can be seen.

If not, the rest of the loop is skipped. If the debris can be seen, however, the bulk of the

calculations begin.

First, the amount of light from the sun to reach the debris is calculated with the Inverse

Square Law. This number is multiplied by the debris surface area(assumed to be a perfect

sphere 1 kilometer across for ease of calculation), multiplied by the reflectivity of the debris’

material(around 14%) and the phase of the debris that was calculated in the early stages of the

loop. The inverse square law is once again used to find the amount of light from the debris that

reflects into the lens of the satellite, where the quantum efficiency, lens surface area, and

shutter speed are taken into account, turning the luminosity that reaches the satellite into joules.

After this is done, the program writes the results to a file with its timestamp and moves on to the

next loop.

● The Cost
Our goal is to have a cheap way to track debris in a cislunar orbit. In order to track debris

in space, putting satellites into orbit, and close to the same vicinity as the debris, is the best way

of accurately tracking it without the interference that a tracking system on the ground would

have to deal with. While satellites are becoming more common as accessibility to space

increases, they remain incredibly expensive to build and maintain.



For example, the James Webb Telescope, although serving a different purpose than our

satellites would, cost around $10 billion dollars. This is an excessively large number considering

our budget and purpose, so with that in mind we turned to the cubesat.

The cubesat is an innovative way to fit the necessary components of a satellite into a

small frame, about 10cm^3, while still being able to effectively accomplish our goals. According

to our cost calculations it would only cost about $700,000 per satellite. This cost evaluation

takes into consideration things like cost to launch (using a rocket like the Falcon 9), cost to run

(mostly sending and receiving data from the satellite(s)), and the actual parts being used in the

cubesat. With an average lifespan of around one year and a low cost per satellite, compared to

the larger current satellites the cubesat is the perfect fit for our needs.

Verification of our data
To verify that our data from the 3-body simulation was accurate, we designed a visualizer

in the Unity game engine that would read from the various data sets we generated and show the

positions of the satellite and debris in motion, giving us an idea of whether or not our

calculations were accurate.

To verify the luminosity calculations, we used the visualizer to see whether or not it was

feasible for the satellite to see the debris given its field of view, as well as references from

previous physicists who attempted similar things, examples being finding the lux, which can be

translated into luminosity, of the moon (see this article for more information) and then plugging in

variables that matched the situation they worked with to see if we could replicate their results.

The costs for the satellite were taken from various vendors of satellite parts, as well as

NASA’s own projection of the average costs for a satellite to be built and launched. Since a

great deal of the work for this part of the code was in researching typical costs per part,

Conclusions
link to the generated data

While comparing the results of the luminosity data, some interesting patterns emerged.

For instance, the first 3 satellite orbits were able to cover each other’s blind spots relatively well.

They also occasionally overlapped viewing times, which allows for better tracking of the debris.

However, with such a small setup, there were still large blind spots spanning hours or

sometimes days. A fourth and fifth satellite at complementary orbits would help keep more than

one satellite tracking the debris at a time, and also reduce the time where the debris was

continuously out of sight. 8 satellites spaced evenly around the globe would have been optimal,

https://academic.oup.com/astrogeo/article/58/1/1.31/2938119?login=false
https://drive.google.com/drive/folders/1fFLCWf5tCchvCKFkNg5XgPLXm8kNaF81?usp=share_link


and rotated at slightly different axes to catch debris coming from any unexpected angles. In

terms of the amount of light received, it ended up being rather small due to the large distance

between the two objects. More expensive cameras with higher quantum efficiency, longer

shutter speed, and other types of satellite cameras that don’t rely on visible light to locate things

would all be helpful in better locating the debris.

Reflection
Our most significant achievement was undoubtedly the 3-body simulation of cislunar

space. The amount of fine-tuning and error fixing that it had to go through made its verification a

team effort, and also the most intricate part of our project.

We could also have done quite a few things better during the process. Overall, we

lacked organization and throughout the project had trouble communicating what needed to be

done by whom. These flaws in our strategy left us constantly scrambling to meet deadlines,

which resulted in last-minute crunch time on more than one occasion. The fact that everything in

our project relied on the progress of a central, sometimes finicky piece of code only one person

could work on at a time further hindered our efforts since often two people would need to wait in

order for one person to fix the issues before anyone could progress. During the start of the

project we were also unable to come to a solid decision of what to do, effectively wasting two

months of the time we had. In our future attempts at the challenge, it would be advantageous to

have a formal repository for code so we can better share in the creation of code, rather than

having most of the programming be offline. The final mistake we made was our last minute

realization that an increase in delta time(dt) caused the satellite positions that we had generated

ended up building so much percent error that for the past 3 months, none of the data was valid.

We were able to generate a couple more accurate simulations near the end with a lower dt, but

by that point we didn’t have the weeks it would take to compute the billions of lines of data we

needed.



Sources Used

“AFRL Propulsion Unit for CubeSats | VACCO Industries.” CubeSat Propulsion Systems |

VACCO Industries, https://cubesat-propulsion.com/propulsion-unit/.

“Camera - piCAM - Digital CubeSat Camera.” satsearch,

https://satsearch.co/products/skyfox-labs-picam-digital-cubesat-camera.

Chenciner, Alain. “Three body problem.” Scholarpedia, 3 October 2007,

http://www.scholarpedia.org/article/Three_body_problem. Accessed 4 April 2023.

“CubeSat Launch Costs.” SatCatalog, 10 December 2022,

https://www.satcatalog.com/insights/cubesat-launch-costs/. Accessed 4 April 2023.

“CubeSat S-Band Transceiver.” NanoAvionics,

https://nanoavionics.com/cubesat-components/cubesat-s-band-transceiver/. Accessed 4

April 2023.

“Distance to the Moon.” NASA,

https://www.nasa.gov/sites/default/files/files/Distance_to_the_Moon.pdf.

Fizell, Zack. “Orbital Mechanics: The Three-Body Problem | by Zack Fizell | ILLUMINATION.”

Medium, 20 March 2022,

https://medium.com/illumination/orbital-mechanics-the-three-body-problem-90be80e4711

3.

“Home.” YouTube, https://academic.oup.com/astrogeo/article/58/1/1.31/2938119?login=false.

“Home.” YouTube, https://www.cubesatshop.com/product/isis-on-board-computer/.

“Inverse-square law.”Wikipedia, https://en.wikipedia.org/wiki/Inverse-square_law.

“The Law of Cosines.” Math is Fun, https://www.mathsisfun.com/algebra/trig-cosine-law.html.

“Quantum efficiency.”Wikipedia, https://en.wikipedia.org/wiki/Quantum_efficiency.



 



Stress Anxiety Monitor (SAM)

New Mexico

Supercomputing Challenge

Final Report

April 4, 2023

Team 27

Monte del Sol Charter School

Team Members:

Gabriella Armijo

Emlee Taylor-Bowlin

Teacher Sponsor:

Rhonda Crespo

Project Mentor:

Mark Galassi



Contents

1 Executive Summary 2

2 Motivation and Plan of the Work 3

2.1 Suicide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Project Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Model and Methods 4

3.1 Obtaining and Preparing Data . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.2 An Introduction to Random Forest Models . . . . . . . . . . . . . . . . . . . 4

3.3 Implementation of a Random Forest Classi�er . . . . . . . . . . . . . . . . . 5

3.4 Intensity Score Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.5 Bag of Words Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Software Demonstration 6

5 Results 8

6 Conclusion 11

6.1 Takeaways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6.2 Limitations and Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

7 Acknowledgments 13

8 Further reading 14

References 16

1



1 Executive Summary

We have all lost someone prematurely due to a tragic suicide. It often leaves us with a feeling

of dread and many �what if�s. What if I saw the signs, what if I had stopped them, what if I

had texted them that night? This isn't a burden you should have to bear. Imagine a simple

program that could read some text snippets and alert you if you or a friend needed to reach

out to a professional? In this model we used machine learning to create an AI that will do

just that.

SAM (Stress Anxiety Monitor) is an AI built o� of the Random Forest Classi�er model.

It is trained with data from the �dreaddit� data set (Turcan & McKeown, 2019).

SAM uses two di�erent training and processing approaches: the Bag of Words and

Intensity Value methods. The Bag of Words method takes a count of every word in the text

snippet. It then feeds this data into a sparse vector, and any word in the English dictionary

that it does not �nd becomes a zero. The words are then processed by frequency, so redundant

words like the, as, and a are not counted as heavily. The Intensity Score method makes a

weighted score of the �worrisome� key words that show up in the text.

This word data is then fed into a machine learning Random Forest Classi�er that

processes the data and makes accurate predictions about a person's risk. We found SAM to

be accurate 99% of the time on the in-sample set. SAM is 93% accurate on out of sample

data. Hyperparameter tuning is still needed for SAM to be as accurate as possible.

As of now SAM can be used to help friends and family recommend people to professional

help. We would like to turn SAM into a simple webpage that could process screenshots and

take text input. SAM can help reduce the total number of teenage suicides in New Mexico,

and keep our communities safer and happier.
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2 Motivation and Plan of the Work

2.1 Suicide

Suicide is the #2 leading cause of death among teenagers and young adults worldwide

(D'Hotman et al., 2020; �Suicide statistics and facts. SAVE.�, 2021). New Mexico is currently

ranked #4 in the nation for states with the highest suicide rates. (�America's Health Rank-

ings.� 2020) New Mexico's current teen suicide rate is 24 deaths per 100,000 adolescents ages

15-19 a year (�Suicide rates by state 2023.� 2023). This results in about 513 teen suicides a

year.

Suicide is preventable with intervention; however, it is hard to intervene when people

don't openly talk about their feelings and it is easy to miss the warning signs. In this day and

age many teens and young adults spend a majority of their time chatting on social media or

via text messaging. Cries for help may be easily masked in this dull form of communication.

Being dependent on technology means that many teens are afraid of reaching out and talking

to someone in person for help, meaning the only way they can convey their emotions is

through texts and many hope that someone will pick up on their cry for help.

With the help of machine learning, however, suicide prevention may be easier. We

created an AI named SAM that is able to go through social media posts and/or text messages

looking for trigger words that may indicate that a person may be showing signs of high stress

that may lead to suicide. We hope SAM will lead to early detection and prevention of suicide.

2.2 Project Goal

The goal of this project is to accurately determine if a person may be at high risk of suicide or

self-harm based on messages that people share online. Our hope is that SAM can be applied

to help notice warning signs early on in things as simple as a text message.
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3 Model and Methods

3.1 Obtaining and Preparing Data

Our data set is publicly available on the Kaggle web site:

https://www.kaggle.com/datasets/adtysregita/stress?select=stress.csv

This data set initially contained 2,343 rows and 116 columns in a csv �le. All 2,343

rows were usable and didn't contain any missing values. We only use 4 of the columns: the

row number, the text, the label, and the con�dence.

Figure 1: Snippet of data from worrisome messages.

The label is a binary label that codes for stress or no stress. A label of �1� indicates

stress, whereas �0� does not. These numbers were provided by professionals based on the text

for that row. Con�dence is another professional-provided value that indicates the con�dence

the expert holds in that label. At this time SAM does not use the con�dence metric.

This data is then �nally ready to feed into the Random Forest Classi�er that we wrote

for this project, using the scikit learn framework. (Amadebai, 2022; Kessler et al., 2016)

3.2 An Introduction to Random Forest Models

Random Forest Classi�ers and Random Forest Regression are both methods of machine

learning. Random Forest models take numeric values and feed them into decision trees. The

trees then decide where this data continues and then break into two or more trees. They

inevitably end up as decision leaves. These leaves are the �nal output of the decision and

are also numeric values. In the case of regressors, they can be a range, why classi�ers give a

binary value.
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Figure 2 shows an example of a Random Forest Regressor. It allows for many di�erent

outputs like apple, cherry, or strawberry. It makes it's decisions based o� of size.

Figure 2: Decision based o� a Random Forest Regressor model. Image borrowed
from:
https://developer.nvidia.com/blog/accelerating-random-forests-up-to-45x-using-cuml/

The following �gure is an example of a Random Forest Classi�er. It can only provide a

binary output, in this case yes or no. Our model uses a classi�er to give the output of stress

or no stress.

Figure 3: Example of random forest classi�er.

3.3 Implementation of a Random Forest Classi�er

We used a Random forest Classi�er as our model type. It produces a 1 to indicate stress

or a 0 to indicate no stress. Many programmers try di�erent model types: we deduced that

Random Forest Classi�er by far is the most accepted model for natural language learning.

We manipulated two di�erent ways of processing the data, and before it was fed into the

model.
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3.4 Intensity Score Method

The �rst method of data processing was the Intensity Score method. We wrote a dictionary

of �worrisome� keywords, which are words the literature suggests can indicate stress. Each

word was given a weight, and the weighed word occurrences are added.

The result was a training set consisting of a single numeric score for each text snippet,

and the �expert label� of stress or no stress for that snippet.

This method makes for a very simple initial implementation, but it lacks nuance: the

speci�c use of word pairs is lost in that single score.

3.5 Bag of Words Method

The Bag of Words (Brownlee, 2019) is far more inclusive and more complex. The Bag of

Words method reads through the text snippet and accounts for the total number of times

any word from the English dictionary appears. It then scales the numbers by importance.

Importance is decided by the number of times each word occurs, so words like the, as, and,

then will carry far less importance, and not a�ect the interpretation.

This method is far more reliable, because it accounts for all possible words. However it

does come with the downside of producing a sparse vector. A sparse vector is a vector that

contains many zeros, showing no data. It can be useful if we see zeros in spots that would

indicate words like suicide, depression, or lonesomeness. It does become a nuisance when

zeros are always seen to indicate words like Pneumonoultramicroscopicsilicovolcanoconiosis

(considered the longest word in English and is used for a certain lung disease).

4 Software Demonstration

Our code can be found at the following repo:

https://codeberg.org/EmleeTaylorBowlin/SAMonitor

Here is an example of how you could clone it and then run the training and analysis;
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we include the output, from which you can see the error estimate and the score on both

in-sample and out-of-sample data.

SAMonitor.py also produces plots and saves them to disk. You can see in Figures 4,

5, and 6.

Note that the program has a �help option if you want to see how to test it in more

subtle ways.

git clone \url{https://codeberg.org/EmleeTaylorBowlin/SAMonitor.git}}

# Make sure you have the following libraries also installed on your computer

# pandas, numpy, matplotlib, and scikitlearn.

# Begin by running the programs in this order:

cd code/SAM

$ ./SAMonitor.py TnPData/dreaddit-train.csv TnPData/dreaddit-test.csv

Hey! SAMonitor here! We will now train on data and analyze snippets.

# loading training data from: TnPData/dreaddit-train.csv

# in-sample error metric (mae): 0.0014094432699083862

# in-sample classifier score: 0.9985905567300916

# saved confusion matrix to file confusion_insample_bag-of-words.png

# ========= out of sample =========

# out-of-sample error metric (mae): 0.3062937062937063

# out-of-sample classifier score: 0.6937062937062937

APPLY_TO_TEXT: worrisome score: """Things had started so well, but

now, two years later, I sit listening to Janacek's quartets - the

Intimate Letters and the Kreutzer Sonata - and I find myself feeling

desperate, and wondering if my life will ever be what I had dreamed it

would be. Well-meaning people offer me words of wisdom, like 'it gets

better' and 'just navigate the terrain you are in' and 'do not feel

that you are below the standard everyone else is at'. I know they are
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right and I hope that some day I can take their advice, but I cannot

yet promise that I will.""" =====> [1] i.e. DO_WORRY

APPLY_TO_TEXT: worrisome score: """I was walking down the street,

singing do wa diddy diddy dum diddy do, and when I turned the corner I

saw someone walking with a book by Murakami, my favorite author of

Japanese magical realism. We started talking and shared a lot of

interests. This was a year and a half ago, and now we're together

almost every single day, singing do wah diddy diddy dum diddy do."""

=====> [0] i.e. NO_WORRY

5 Results

Our �nal model accurately predicts if someone is at high levels of stress based o� of snippets

of texts. We were able to test the applicability of our model by feeding it data sets of di�erent

sizes, and having our Random Forest Classi�er print various performance metrics, namely

the �mean absolute error� (MAE), the �accuracy score�, and for visualization purposes the

�confusion matrix�.

Our discussion of metrics is based on the �dreaddit� training (2838 samples) and testing

(714 samples) data sets.

A confusion matrix is one of the ways to express if the classi�er's predictions were

correct or incorrect. The confusion matrix generates both actual and predicted values. All

the diagonal elements denote correctly classi�ed outcomes. The misclassi�ed outcomes are

represented in the o�-diagonal portions of the confusion matrix. They are commonly denoted

as true positive, true negative, false positive, and false negative.

In our application the main concern is the lower left entry in the confusion matrix: when

we predict �OK� but we should really have been worried. These are called �false negatives�,

and would lead SAM to ignore a call for help.
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Figure 4: Simple example of confusion matrix for in-sample data on our training
set.

in-sample MAE in-sample accuracy out-of-sample MAE out-of-sample accuracy

0.0014 0.99859 0.30629 0.6937

In the confusion matrix in Figure 4 the top left value represents the True Negative

where the model correctly predicted that the person is stressed. The top right value is a False

Positive that says that the AI incorrectly predicted that the person was stressed (when they

were actually OK). The bottom left is the False Negative, the AI incorrectly predicted

the person to be ok (when they are actually stressed � this value is the key to whether our

method works). The bottom right is a True Positive where the model correctly predicted

that the person is not stressed.

We can run our model with either the bag-of-words method or the intensity score
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method: the user can switch with a command-line option. We use the Bag of Words method

by default. Our model compares its predictions to the actual results and produces the

confusion matrices. For either method, our model trained itself on a user speci�ed data set

sample before it tested itself on data set sample that it has never seen before. Using both

methods we were able to deduce that the Bag of Words method was more e�ective in correctly

classifying if someone was stressed or not.

(a) Training Predictions (b) Testing Predictions

Figure 5: Bag of words predictions: here we look at the confusion matrix for
both in-sample and out-of-sample data with the bag-of-words approach.

Figure 5 shows the confusion matrix for the Bag of Words method. In this instance

the �in-sample� comes from the dreaddit training data, and the �out of sample� comes from

the dreaddit test data.

In Figure 6 we see what we get with the �intensity score� approach, used on the same

data sets.

The main take-home from these �gures comes from the lower-left square in the confusion

matrix. The in-sample �false negative� rate with the bag-of-words approach is extremely low

(0.00035, or 0.035%). With the intensity score approach it is much bigger (0.18, or 18%).

The method performs worse with out-of-sample data: 0.076 (or 7.6%) false negatives

for bag-of-words, versus 0.17 (17%) false negatives for the intensity score approach.
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(a) Training Predictions (b) Testing Predictions

Figure 6: Intensity score approach: confusion matrix for in-sample and out-of-
sample data.

Clearly we can now focus on using the bag-of-words approach.

6 Conclusion

6.1 Takeaways

In conclusion, we were able to make a functional AI stress monitor that was able to detect

if someone was considered to be at a high stress risk. This could potentially be used in

the future to aid health care o�cials in screening someone as high risk for suicide based on

text messages. It could also help friends and family monitor loved ones and guide them to

professionals. Through two ways of extracting data we where able to identify that a Bag of

Words approach was the best option when it came to accurately preparing the data predict

if someone was considered highly stressed or not. The largest takeaway of SAM is its ability

to help friends and professionals intervene before suicide occurs.

6.2 Limitations and Errors

Our current out-of-sample performance is that SAM will incorrectly think that someone �is

�ne� about 7% of the time. How can this be improved?
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One enhancement would be to include other emotions conveyed through the text, like

sorrow, aggression, shock, etc. Many of these scores are available in the data set. By including

more parameters in determining if someone is more at risk for committing suicide will make

our model more accurate and therefore more useful to health professionals.

Hyperparameter tuning is also needed; this would entail changing the hyperparemeters.

Hyperparameters are values that are used to control the learning process of the AI.

6.3 Future Work

Given time we would like to expand this project to include other emotions conveyed through

text. We would also like to have SAM keep a running tab on how often a certain user shows

high risk signs through multiple posts and the number of times they post. We would also

like to add a web-based application that can take images and screen shots, as well as text. It

could also have a user type answers to questions about how they are feeling. The text would

then be fed to SAM for classifcation of stress level.
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ExecuƟve Summary 

Modern astronomical instruments are revealing an endless number of galaxies everywhere observaƟons 

are made. This creates an overwhelming volume of informaƟon beyond the capability of human effort. 

With recent improvements in compuƟng power and machine learning, the convoluƟonal neural network 

shows promise as an aid to the astronomical surveyor especially for galaxy classificaƟon. 

The capabiliƟes of machine learning for galaxy classificaƟon are demonstrated here using Python, the 

Tensorflow 2 module, the Galaxy Zoo 2 dataset, and a small convoluƟonal neural network model. A 

custom-method of image preprocessing is detailed and applied to the imagery to aid the convoluƟonal 

neural network with achieving a high training accuracy. 

Final training and validaƟon of the convoluƟonal neural network developed here resulted in a training 

accuracy of 98% and a validaƟon accuracy near 80%. A simple graphical user interface (GUI) was made to 

allow the user to train, save, load, and interact with the CNN model and observe its class predicƟons in 

real-Ɵme. 
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IntroducƟon 

Modern astronomical telescopes are looking deeper into the universe. The images that they produce 

reveal the existence of countless stars and galaxies. The seemingly infinite quanƟty of these astronomical 

objects in these images has become too much for humans to idenƟfy and characterize. Machine learning 

can provide the ability to automaƟcally classify these astronomical objects, allowing astronomers to 

focus on more abstract concepts. 

This project uses a ConvoluƟonal Neural Network (CNN) architecture combined with a preprocessing 

technique to train a neural network to classify galaxies in the Galaxy Zoo 2 dataset. The goal is to achieve 

high-accuracy predicƟons of the galaxy classificaƟon. 

Methodology 

Neural networks are popular for recognizing and classifying objects in images. Common uses include 

video surveillance, self-driving vehicles, and cancer screening. The goal of this project is to apply this 

capability for the purpose of idenƟfying galaxy types in telescope imagery using a neural network 

topology called the ConvoluƟonal Neural Network, or CNN.   

ConvoluƟonal Neural Networks 

ConvoluƟonal Neural Networks make up the first layers of a neural network intended for image 

recogniƟon. This is because, like the animal visual cortex, CNNs provide a feature-extracƟon capability to 

the neural network (NN)[4, p. 518]. The output of a CNN layer is typically connected to a “max pooling” 

layer creaƟng what is referred to as a “feature map.” The layering of CNNs and max-pooling layers 

provides the broader neural network with the capability to recognize more complex image features. A 

set of fully-connected neural network layers make-up the final layers of the CNN with the last layer 

composed of a number neurons corresponding to the number of object classes the CNN needs to 

idenƟfy.  

Image Dataset and Image Classes 

Training a CNN must be done with the aid of a dataset that has an abundance of images which show the 

objects of interest. For this project, the dataset was downloaded from the Galaxy Zoo 2 dataset available 

in [1]. This dataset contains 243,437 images obtained by the Sloan Digital Sky Survey (SDSS) telescope. 

This dataset features a mulƟtude of galaxy types in color, 424x424 resoluƟon, JPEG images along with 
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two spreadsheets for referencing each image’s classificaƟon. Image classes include the following 

examples [5, p. 2860]: 

 Er = smooth galaxy, completely round. 

 SBc2m = barred disk galaxy with a just noƟceable bulge and two medium-wound spiral arm(s). 

 Seb = edge-on disk galaxy with a boxy bulge. 

 Sc(I) = disk galaxy with a just noƟceable bulge, no spiral structure,  and irregular morphology. 

 A = star. 

For this project, the classes were reduced to 3: ellipƟcal galaxies, spiral/disk galaxies, and edge-on 

spiral/disk galaxies. Stars and galaxies with irregular features were not included in the training and 

validaƟon datasets to improve training accuracy. 

SoŌware and Hardware 

The soŌware was developed using the Python programming language running within an Anaconda 

environment. Python modules used included the following: 

 OpenCV: for loading images, grayscale-conversion, and saving images. 

 Scikit-Image: for generaƟng intensity profile lines in images. 

 tkInter: for applicaƟon GUI rendering. 

 Numpy: for list and matrix math. 

 Pandas: for reading *.csv files 

 Matplotlib: for ploƫng/visualizing data. 

 Tensorflow 2: for building, training, and tesƟng the CNN. 

 os: for image directory queries. 

 Random: for image file name shuffling. 

Hardware specificaƟons of the PC were: 

 Intel i9-9900KF processor 

 64-GB system RAM. 

 nVidia RTX-2080 Super graphics card with 8GB VRAM. 

 Windows 10 OS. 
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Data Preprocessing 

Data preprocessing can be any method that helps remove unnecessary informaƟon and/or enhances 

relevant informaƟon within an image. According to [2, p.13], “In an image-understanding system, the 

preprocessing stage oŌen performs funcƟons such as the gray scale manipulaƟon, edge detecƟon, 

developing descripƟons of objects or shapes in the image, image restoraƟon, and geometric correcƟon.” 

The use of preprocessing allows the Neural Network to train on relevant informaƟon and comes highly 

recommended from the research literature. 

As suggested by [2, p.13], the galaxy images were first converted to grayscale to reduce the image 

dimensionality from 3D-RGB (Red, Green, Blue) to 2D-grayscale. This resulted in 424x424-pixel images 

with intensity values ranging from 0 to 255. Since the images contain an abundance of extra objects such 

as stars and other galaxies, an approach was devised to remove these objects by interpreƟng the image 

as a topographical map. Topographical maps feature contour lines represenƟng locaƟons of equal 

alƟtude. For the galaxy images, contour lines represent pixels of equal intensity. Using the scikit-image 

module available to Python, the find_contours() funcƟon was employed to generate contours for pixels 

of intensity 60 (out of 255). Of the many contours generated by this funcƟon, the contour with the 

largest length was chosen as it was most likely to correlate with the largest object in the image, this 

being the galaxy of interest. A simple computaƟon of the hypotenuse on each of this galaxy contour’s set 

of coordinate pairs resulted in a list of radius values of the galaxy contour. The largest of these radii was 

then used as the radius for creaƟng a circular image filter where pixels within the circle had value 1 and 

all pixels outside the filter had a values of 0. The image filter was made to have the same dimensions as 

the original image (424x424) with the circular filter overlapping the galaxy. MulƟplicaƟon of the 

corresponding pixels of the image and the image filter generally removed most of the objects within the 

image while keeping the galaxy visible. Examples of this are shown in the figures 1 and 2. The Python 

applicaƟon developed for this purpose (countour_prep.py) was used to preprocess a large batch of 8,443 

image files for use by the CNN. 
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Figure 1 Preprocessing applied to a spiral galaxy image. 

 

Figure 2 Preprocessing applied to an ellipƟcal galaxy image. 

Model and VerificaƟon Methods 

ConvoluƟonal Neural Network Architecture 

Various CNN architectures were tested in this study in order to obtain one with the highest validaƟon 

accuracy. The final architecture tested took the form of figure 3. 
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Figure 3 Final CNN architecture 

As can be seen from the figure, the CNN takes a preprocessed image at its input. This image is then 

presented to a convoluƟonal layer for the first feature-extracƟon phase. Since convoluƟonal layers 

increase the dimensionality of the data, max-pooling layers are added behind the convoluƟonal layers to 

reduce or “downsample” the data [3, p.385]. Two addiƟonal convoluƟonal layers are added to provide 

the CNN with the ability to capture higher-level paƩerns from previous convoluƟonal layers. Again, max-

pooling layers are added to reduce the growing dimensionality of the data output from the convoluƟonal 

layers. Finally, a flaƩening layer is used as an interface between the convoluƟonal layers and the 

subsequent dense layers. Dense layers represent the convenƟonal type of neural network. Layer 

configuraƟons followed from what was commonly used in the research [4, pp.545-547] and [3, pp.392-

393] where convoluƟonal layers were set to use 3x3 filters, max-pooling layers used 2x2 filters, and all 

acƟvaƟon funcƟons were of the “ReLU” type [3, p.258]. The final layer was different from the others in 

that it used a “SoŌmax” acƟvaƟon funcƟon to provide a confidence value for mulƟclass classificaƟon [3, 

p.268]. ExperimentaƟon was then performed by varying the sizes of the layers and noƟng the 

performance of the CNN’s training accuracy and validaƟon accuracy. 

Tensorflow 2 and Keras 

The CNN was created using the Tensorflow 2 module and its Keras wrapper available to Python. 

Tensorflow allows the neural network developer to conveniently enclose training samples and their class 

descripƟons into objects called “datasets.” Furthermore, tesƟng data is also encapsulated into 

Tensorflow dataset objects. With training and test data ready, the CNN “model” is created layer-by-layer 

using Keras. Next, the layers are compiled along with the choice of opƟmizer, loss funcƟon, and the 

metric to opƟmize. Finally, a fiƫng funcƟon is called against the model object with the dataset objects 
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and number of epochs as arguments. Tensorflow then proceeds to train the CNN, reporƟng the training 

accuracy and validaƟon accuracy aŌer every epoch. Tensorflow also provides training and validaƟon 

process configuraƟons called “pipelines” that can be used for data shuffling, caching, batching, 

prefetching, and most important of all: preprocessing. AŌer configuraƟon and fiƫng, a trained 

Tensorflow model is available to save to disk in hdf5 format. 

Tensorflow 2 Model for Galaxy ClassificaƟon 

The following figure represents Tensorflow 2’s summary of the final CNN model developed for this 

project. 

 

Figure 4 Tensorflow 2 model summary for the Galaxy Classifier App 

Following the general consensus of the research literature [4, p.547] and [3, p.393], the following 

Tensorflow 2 arguments were passed to the compile() funcƟon of the model object: 

 OpƟmizer = ‘adam’ 

 Loss = ‘sparse_categorical_crossentropy’ 
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 Metrics = [‘accuracy’] 

Epoch count was limited to an iniƟal run of 30. If the training accuracy suggested that the CNN’s accuracy 

had more potenƟal for improvement, an addiƟonal 30 epochs were run. 

AddiƟonal minor preprocessing was performed by the Python applicaƟon. This included cropping a 

200x200 pixel image from the original 424x424 image and a normalizaƟon of the pixel values from the 

original 0-to-255 range (8-bit unsigned integer) to a 0-to-1 range (32-bit, floaƟng-point). 

The preprocessed images were used to the fullest extent (8,440 out of 8,443 available) with an 80% 

allocaƟon to the training dataset (6,752 images) and a 20% allocaƟon to the validaƟon dataset (1,688 

images). Once all training epochs completed, the Python applicaƟon (main_final.py) ploƩed the training 

accuracy and the validaƟon accuracy as a funcƟon of the epoch number. 

Results 

The final model was trained and validated over a total of 60 epochs in two, 30-epoch runs. The first run 

resulted in the data shown in figure 5. 

 

Figure 5 Training and validaƟon accuracy of the final model, first 30-epochs 

Training accuracy yielded 96% with validaƟon accuracy yielding 81%. In an aƩempt to improve the 

validaƟon accuracy, a second, 30-epoch training run was done yielding the following result in figure 6. 
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Figure 6 Training and validaƟon accuracy of the final model's second, 30-epoch run. 

Here, training accuracy improved to 98%, but validaƟon accuracy declined to 79%, an indicaƟon that the 

addiƟonal training was tending toward overfiƫng the data. 

The final realizaƟon of the Python program (main_final.py) is an interacƟve graphical user interface (GUI) 

shown in figure 7. 

 

Figure 7 The Galaxy Classifier applicaƟon GUI 

This GUI allows the user to observe the preprocessed galaxy image, along with its true and predicted 

classificaƟon. The 3D plot in the center provides a topographical perspecƟve of the image pixel intensity. 

Controls are provided at the boƩom to load the image set, cycle through the images, and train the CNN. 
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Conclusions 

Machine learning with convoluƟonal neural networks most-certainly demonstrates a promising 

capability for the classificaƟon of galaxies in astronomical surveys. High training accuracies are 

demonstrably obtained with the convoluƟonal neural network employed, but high-validaƟon accuracies 

are a bit more challenging to achieve. The use of custom-developed preprocessing methods, such as the 

technique demonstrated in this project, contribute significantly to the CNN’s ability to obtain high-

accuracy classificaƟon predicƟons.  With the freely-available dataset provided by Galaxy Zoo, the free 

tools available to Python, any moƟvated machine-learning developer who wishes to test their own 

preprocessing algorithm and neural network tuning skills can undertake this galaxy classificaƟon 

challenge. 
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