
Galaxies Far, Far, Away

New Mexico

SupercompuƟng Challenge

Final Report

April 5, 2023

Team Number 50

St. Thomas Aquinas School

Team Members

Catherine Sedillo

Teacher

Eric Vigil

Project Mentor

James Sedillo

Page | 1

Contents
ExecuƟve Summary ... 1

IntroducƟon .. 2

Methodology ... 2

ConvoluƟonal Neural Networks .. 2

Image Dataset and Image Classes ... 2

SoŌware and Hardware .. 3

Data Preprocessing ... 4

Model and VerificaƟon Methods .. 5

ConvoluƟonal Neural Network Architecture... 5

Tensorflow 2 and Keras ... 6

Tensorflow 2 Model for Galaxy ClassificaƟon ... 7

Results ... 8

Conclusions ... 10

References ... 10

Acknowledgements ... 10

ExecuƟve Summary

Modern astronomical instruments are revealing an endless number of galaxies everywhere observaƟons

are made. This creates an overwhelming volume of informaƟon beyond the capability of human effort.

With recent improvements in compuƟng power and machine learning, the convoluƟonal neural network

shows promise as an aid to the astronomical surveyor especially for galaxy classificaƟon.

The capabiliƟes of machine learning for galaxy classificaƟon are demonstrated here using Python, the

Tensorflow 2 module, the Galaxy Zoo 2 dataset, and a small convoluƟonal neural network model. A

custom-method of image preprocessing is detailed and applied to the imagery to aid the convoluƟonal

neural network with achieving a high training accuracy.

Final training and validaƟon of the convoluƟonal neural network developed here resulted in a training

accuracy of 98% and a validaƟon accuracy near 80%. A simple graphical user interface (GUI) was made to

allow the user to train, save, load, and interact with the CNN model and observe its class predicƟons in

real-Ɵme.

Page | 2

IntroducƟon

Modern astronomical telescopes are looking deeper into the universe. The images that they produce

reveal the existence of countless stars and galaxies. The seemingly infinite quanƟty of these astronomical

objects in these images has become too much for humans to idenƟfy and characterize. Machine learning

can provide the ability to automaƟcally classify these astronomical objects, allowing astronomers to

focus on more abstract concepts.

This project uses a ConvoluƟonal Neural Network (CNN) architecture combined with a preprocessing

technique to train a neural network to classify galaxies in the Galaxy Zoo 2 dataset. The goal is to achieve

high-accuracy predicƟons of the galaxy classificaƟon.

Methodology

Neural networks are popular for recognizing and classifying objects in images. Common uses include

video surveillance, self-driving vehicles, and cancer screening. The goal of this project is to apply this

capability for the purpose of idenƟfying galaxy types in telescope imagery using a neural network

topology called the ConvoluƟonal Neural Network, or CNN.

ConvoluƟonal Neural Networks

ConvoluƟonal Neural Networks make up the first layers of a neural network intended for image

recogniƟon. This is because, like the animal visual cortex, CNNs provide a feature-extracƟon capability to

the neural network (NN)[4, p. 518]. The output of a CNN layer is typically connected to a “max pooling”

layer creaƟng what is referred to as a “feature map.” The layering of CNNs and max-pooling layers

provides the broader neural network with the capability to recognize more complex image features. A

set of fully-connected neural network layers make-up the final layers of the CNN with the last layer

composed of a number neurons corresponding to the number of object classes the CNN needs to

idenƟfy.

Image Dataset and Image Classes

Training a CNN must be done with the aid of a dataset that has an abundance of images which show the

objects of interest. For this project, the dataset was downloaded from the Galaxy Zoo 2 dataset available

in [1]. This dataset contains 243,437 images obtained by the Sloan Digital Sky Survey (SDSS) telescope.

This dataset features a mulƟtude of galaxy types in color, 424x424 resoluƟon, JPEG images along with

Page | 3

two spreadsheets for referencing each image’s classificaƟon. Image classes include the following

examples [5, p. 2860]:

 Er = smooth galaxy, completely round.

 SBc2m = barred disk galaxy with a just noƟceable bulge and two medium-wound spiral arm(s).

 Seb = edge-on disk galaxy with a boxy bulge.

 Sc(I) = disk galaxy with a just noƟceable bulge, no spiral structure, and irregular morphology.

 A = star.

For this project, the classes were reduced to 3: ellipƟcal galaxies, spiral/disk galaxies, and edge-on

spiral/disk galaxies. Stars and galaxies with irregular features were not included in the training and

validaƟon datasets to improve training accuracy.

SoŌware and Hardware

The soŌware was developed using the Python programming language running within an Anaconda

environment. Python modules used included the following:

 OpenCV: for loading images, grayscale-conversion, and saving images.

 Scikit-Image: for generaƟng intensity profile lines in images.

 tkInter: for applicaƟon GUI rendering.

 Numpy: for list and matrix math.

 Pandas: for reading *.csv files

 Matplotlib: for ploƫng/visualizing data.

 Tensorflow 2: for building, training, and tesƟng the CNN.

 os: for image directory queries.

 Random: for image file name shuffling.

Hardware specificaƟons of the PC were:

 Intel i9-9900KF processor

 64-GB system RAM.

 nVidia RTX-2080 Super graphics card with 8GB VRAM.

 Windows 10 OS.

Page | 4

Data Preprocessing

Data preprocessing can be any method that helps remove unnecessary informaƟon and/or enhances

relevant informaƟon within an image. According to [2, p.13], “In an image-understanding system, the

preprocessing stage oŌen performs funcƟons such as the gray scale manipulaƟon, edge detecƟon,

developing descripƟons of objects or shapes in the image, image restoraƟon, and geometric correcƟon.”

The use of preprocessing allows the Neural Network to train on relevant informaƟon and comes highly

recommended from the research literature.

As suggested by [2, p.13], the galaxy images were first converted to grayscale to reduce the image

dimensionality from 3D-RGB (Red, Green, Blue) to 2D-grayscale. This resulted in 424x424-pixel images

with intensity values ranging from 0 to 255. Since the images contain an abundance of extra objects such

as stars and other galaxies, an approach was devised to remove these objects by interpreƟng the image

as a topographical map. Topographical maps feature contour lines represenƟng locaƟons of equal

alƟtude. For the galaxy images, contour lines represent pixels of equal intensity. Using the scikit-image

module available to Python, the find_contours() funcƟon was employed to generate contours for pixels

of intensity 60 (out of 255). Of the many contours generated by this funcƟon, the contour with the

largest length was chosen as it was most likely to correlate with the largest object in the image, this

being the galaxy of interest. A simple computaƟon of the hypotenuse on each of this galaxy contour’s set

of coordinate pairs resulted in a list of radius values of the galaxy contour. The largest of these radii was

then used as the radius for creaƟng a circular image filter where pixels within the circle had value 1 and

all pixels outside the filter had a values of 0. The image filter was made to have the same dimensions as

the original image (424x424) with the circular filter overlapping the galaxy. MulƟplicaƟon of the

corresponding pixels of the image and the image filter generally removed most of the objects within the

image while keeping the galaxy visible. Examples of this are shown in the figures 1 and 2. The Python

applicaƟon developed for this purpose (countour_prep.py) was used to preprocess a large batch of 8,443

image files for use by the CNN.

Page | 5

Figure 1 Preprocessing applied to a spiral galaxy image.

Figure 2 Preprocessing applied to an ellipƟcal galaxy image.

Model and VerificaƟon Methods

ConvoluƟonal Neural Network Architecture

Various CNN architectures were tested in this study in order to obtain one with the highest validaƟon

accuracy. The final architecture tested took the form of figure 3.

Page | 6

Figure 3 Final CNN architecture

As can be seen from the figure, the CNN takes a preprocessed image at its input. This image is then

presented to a convoluƟonal layer for the first feature-extracƟon phase. Since convoluƟonal layers

increase the dimensionality of the data, max-pooling layers are added behind the convoluƟonal layers to

reduce or “downsample” the data [3, p.385]. Two addiƟonal convoluƟonal layers are added to provide

the CNN with the ability to capture higher-level paƩerns from previous convoluƟonal layers. Again, max-

pooling layers are added to reduce the growing dimensionality of the data output from the convoluƟonal

layers. Finally, a flaƩening layer is used as an interface between the convoluƟonal layers and the

subsequent dense layers. Dense layers represent the convenƟonal type of neural network. Layer

configuraƟons followed from what was commonly used in the research [4, pp.545-547] and [3, pp.392-

393] where convoluƟonal layers were set to use 3x3 filters, max-pooling layers used 2x2 filters, and all

acƟvaƟon funcƟons were of the “ReLU” type [3, p.258]. The final layer was different from the others in

that it used a “SoŌmax” acƟvaƟon funcƟon to provide a confidence value for mulƟclass classificaƟon [3,

p.268]. ExperimentaƟon was then performed by varying the sizes of the layers and noƟng the

performance of the CNN’s training accuracy and validaƟon accuracy.

Tensorflow 2 and Keras

The CNN was created using the Tensorflow 2 module and its Keras wrapper available to Python.

Tensorflow allows the neural network developer to conveniently enclose training samples and their class

descripƟons into objects called “datasets.” Furthermore, tesƟng data is also encapsulated into

Tensorflow dataset objects. With training and test data ready, the CNN “model” is created layer-by-layer

using Keras. Next, the layers are compiled along with the choice of opƟmizer, loss funcƟon, and the

metric to opƟmize. Finally, a fiƫng funcƟon is called against the model object with the dataset objects

Page | 7

and number of epochs as arguments. Tensorflow then proceeds to train the CNN, reporƟng the training

accuracy and validaƟon accuracy aŌer every epoch. Tensorflow also provides training and validaƟon

process configuraƟons called “pipelines” that can be used for data shuffling, caching, batching,

prefetching, and most important of all: preprocessing. AŌer configuraƟon and fiƫng, a trained

Tensorflow model is available to save to disk in hdf5 format.

Tensorflow 2 Model for Galaxy ClassificaƟon

The following figure represents Tensorflow 2’s summary of the final CNN model developed for this

project.

Figure 4 Tensorflow 2 model summary for the Galaxy Classifier App

Following the general consensus of the research literature [4, p.547] and [3, p.393], the following

Tensorflow 2 arguments were passed to the compile() funcƟon of the model object:

 OpƟmizer = ‘adam’

 Loss = ‘sparse_categorical_crossentropy’

Page | 8

 Metrics = [‘accuracy’]

Epoch count was limited to an iniƟal run of 30. If the training accuracy suggested that the CNN’s accuracy

had more potenƟal for improvement, an addiƟonal 30 epochs were run.

AddiƟonal minor preprocessing was performed by the Python applicaƟon. This included cropping a

200x200 pixel image from the original 424x424 image and a normalizaƟon of the pixel values from the

original 0-to-255 range (8-bit unsigned integer) to a 0-to-1 range (32-bit, floaƟng-point).

The preprocessed images were used to the fullest extent (8,440 out of 8,443 available) with an 80%

allocaƟon to the training dataset (6,752 images) and a 20% allocaƟon to the validaƟon dataset (1,688

images). Once all training epochs completed, the Python applicaƟon (main_final.py) ploƩed the training

accuracy and the validaƟon accuracy as a funcƟon of the epoch number.

Results

The final model was trained and validated over a total of 60 epochs in two, 30-epoch runs. The first run

resulted in the data shown in figure 5.

Figure 5 Training and validaƟon accuracy of the final model, first 30-epochs

Training accuracy yielded 96% with validaƟon accuracy yielding 81%. In an aƩempt to improve the

validaƟon accuracy, a second, 30-epoch training run was done yielding the following result in figure 6.

Page | 9

Figure 6 Training and validaƟon accuracy of the final model's second, 30-epoch run.

Here, training accuracy improved to 98%, but validaƟon accuracy declined to 79%, an indicaƟon that the

addiƟonal training was tending toward overfiƫng the data.

The final realizaƟon of the Python program (main_final.py) is an interacƟve graphical user interface (GUI)

shown in figure 7.

Figure 7 The Galaxy Classifier applicaƟon GUI

This GUI allows the user to observe the preprocessed galaxy image, along with its true and predicted

classificaƟon. The 3D plot in the center provides a topographical perspecƟve of the image pixel intensity.

Controls are provided at the boƩom to load the image set, cycle through the images, and train the CNN.

Page | 10

Conclusions

Machine learning with convoluƟonal neural networks most-certainly demonstrates a promising

capability for the classificaƟon of galaxies in astronomical surveys. High training accuracies are

demonstrably obtained with the convoluƟonal neural network employed, but high-validaƟon accuracies

are a bit more challenging to achieve. The use of custom-developed preprocessing methods, such as the

technique demonstrated in this project, contribute significantly to the CNN’s ability to obtain high-

accuracy classificaƟon predicƟons. With the freely-available dataset provided by Galaxy Zoo, the free

tools available to Python, any moƟvated machine-learning developer who wishes to test their own

preprocessing algorithm and neural network tuning skills can undertake this galaxy classificaƟon

challenge.

References

[1] hƩps://zenodo.org/record/3565489#.ZCt2rPbML-h

[2] Kulkarni, Arun D. “ArƟficial Neural Networks for Image Understanding.” Van Nostrand Reinhold, 1993.

[3] Liu, Yuxi H. “Python Machine Learning by Example.” Packt Publishing, 2020.

[4] Raschka, SebasƟan and Mirjalili, Vahid. “Python Machine Learning.” Packt Publishing, 2019.

[5] Willet, Kyle W., et al. “Galaxy Zoo 2: Detailed Morphological ClassificaƟons for 304,122 Galaxies from

the Sloan Digital Sky Survey.” Monthly NoƟces of the Royal Astronomical Society, 2013.

Acknowledgements

Special thanks to Christopher Hoppe for his generous interim review of this project.

	cover_page
	team50-final-report

