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ExecuƟve Summary 

Modern astronomical instruments are revealing an endless number of galaxies everywhere observaƟons 

are made. This creates an overwhelming volume of informaƟon beyond the capability of human effort. 

With recent improvements in compuƟng power and machine learning, the convoluƟonal neural network 

shows promise as an aid to the astronomical surveyor especially for galaxy classificaƟon. 

The capabiliƟes of machine learning for galaxy classificaƟon are demonstrated here using Python, the 

Tensorflow 2 module, the Galaxy Zoo 2 dataset, and a small convoluƟonal neural network model. A 

custom-method of image preprocessing is detailed and applied to the imagery to aid the convoluƟonal 

neural network with achieving a high training accuracy. 

Final training and validaƟon of the convoluƟonal neural network developed here resulted in a training 

accuracy of 98% and a validaƟon accuracy near 80%. A simple graphical user interface (GUI) was made to 

allow the user to train, save, load, and interact with the CNN model and observe its class predicƟons in 

real-Ɵme. 
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IntroducƟon 

Modern astronomical telescopes are looking deeper into the universe. The images that they produce 

reveal the existence of countless stars and galaxies. The seemingly infinite quanƟty of these astronomical 

objects in these images has become too much for humans to idenƟfy and characterize. Machine learning 

can provide the ability to automaƟcally classify these astronomical objects, allowing astronomers to 

focus on more abstract concepts. 

This project uses a ConvoluƟonal Neural Network (CNN) architecture combined with a preprocessing 

technique to train a neural network to classify galaxies in the Galaxy Zoo 2 dataset. The goal is to achieve 

high-accuracy predicƟons of the galaxy classificaƟon. 

Methodology 

Neural networks are popular for recognizing and classifying objects in images. Common uses include 

video surveillance, self-driving vehicles, and cancer screening. The goal of this project is to apply this 

capability for the purpose of idenƟfying galaxy types in telescope imagery using a neural network 

topology called the ConvoluƟonal Neural Network, or CNN.   

ConvoluƟonal Neural Networks 

ConvoluƟonal Neural Networks make up the first layers of a neural network intended for image 

recogniƟon. This is because, like the animal visual cortex, CNNs provide a feature-extracƟon capability to 

the neural network (NN)[4, p. 518]. The output of a CNN layer is typically connected to a “max pooling” 

layer creaƟng what is referred to as a “feature map.” The layering of CNNs and max-pooling layers 

provides the broader neural network with the capability to recognize more complex image features. A 

set of fully-connected neural network layers make-up the final layers of the CNN with the last layer 

composed of a number neurons corresponding to the number of object classes the CNN needs to 

idenƟfy.  

Image Dataset and Image Classes 

Training a CNN must be done with the aid of a dataset that has an abundance of images which show the 

objects of interest. For this project, the dataset was downloaded from the Galaxy Zoo 2 dataset available 

in [1]. This dataset contains 243,437 images obtained by the Sloan Digital Sky Survey (SDSS) telescope. 

This dataset features a mulƟtude of galaxy types in color, 424x424 resoluƟon, JPEG images along with 
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two spreadsheets for referencing each image’s classificaƟon. Image classes include the following 

examples [5, p. 2860]: 

 Er = smooth galaxy, completely round. 

 SBc2m = barred disk galaxy with a just noƟceable bulge and two medium-wound spiral arm(s). 

 Seb = edge-on disk galaxy with a boxy bulge. 

 Sc(I) = disk galaxy with a just noƟceable bulge, no spiral structure,  and irregular morphology. 

 A = star. 

For this project, the classes were reduced to 3: ellipƟcal galaxies, spiral/disk galaxies, and edge-on 

spiral/disk galaxies. Stars and galaxies with irregular features were not included in the training and 

validaƟon datasets to improve training accuracy. 

SoŌware and Hardware 

The soŌware was developed using the Python programming language running within an Anaconda 

environment. Python modules used included the following: 

 OpenCV: for loading images, grayscale-conversion, and saving images. 

 Scikit-Image: for generaƟng intensity profile lines in images. 

 tkInter: for applicaƟon GUI rendering. 

 Numpy: for list and matrix math. 

 Pandas: for reading *.csv files 

 Matplotlib: for ploƫng/visualizing data. 

 Tensorflow 2: for building, training, and tesƟng the CNN. 

 os: for image directory queries. 

 Random: for image file name shuffling. 

Hardware specificaƟons of the PC were: 

 Intel i9-9900KF processor 

 64-GB system RAM. 

 nVidia RTX-2080 Super graphics card with 8GB VRAM. 

 Windows 10 OS. 



Page | 4  
 

Data Preprocessing 

Data preprocessing can be any method that helps remove unnecessary informaƟon and/or enhances 

relevant informaƟon within an image. According to [2, p.13], “In an image-understanding system, the 

preprocessing stage oŌen performs funcƟons such as the gray scale manipulaƟon, edge detecƟon, 

developing descripƟons of objects or shapes in the image, image restoraƟon, and geometric correcƟon.” 

The use of preprocessing allows the Neural Network to train on relevant informaƟon and comes highly 

recommended from the research literature. 

As suggested by [2, p.13], the galaxy images were first converted to grayscale to reduce the image 

dimensionality from 3D-RGB (Red, Green, Blue) to 2D-grayscale. This resulted in 424x424-pixel images 

with intensity values ranging from 0 to 255. Since the images contain an abundance of extra objects such 

as stars and other galaxies, an approach was devised to remove these objects by interpreƟng the image 

as a topographical map. Topographical maps feature contour lines represenƟng locaƟons of equal 

alƟtude. For the galaxy images, contour lines represent pixels of equal intensity. Using the scikit-image 

module available to Python, the find_contours() funcƟon was employed to generate contours for pixels 

of intensity 60 (out of 255). Of the many contours generated by this funcƟon, the contour with the 

largest length was chosen as it was most likely to correlate with the largest object in the image, this 

being the galaxy of interest. A simple computaƟon of the hypotenuse on each of this galaxy contour’s set 

of coordinate pairs resulted in a list of radius values of the galaxy contour. The largest of these radii was 

then used as the radius for creaƟng a circular image filter where pixels within the circle had value 1 and 

all pixels outside the filter had a values of 0. The image filter was made to have the same dimensions as 

the original image (424x424) with the circular filter overlapping the galaxy. MulƟplicaƟon of the 

corresponding pixels of the image and the image filter generally removed most of the objects within the 

image while keeping the galaxy visible. Examples of this are shown in the figures 1 and 2. The Python 

applicaƟon developed for this purpose (countour_prep.py) was used to preprocess a large batch of 8,443 

image files for use by the CNN. 
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Figure 1 Preprocessing applied to a spiral galaxy image. 

 

Figure 2 Preprocessing applied to an ellipƟcal galaxy image. 

Model and VerificaƟon Methods 

ConvoluƟonal Neural Network Architecture 

Various CNN architectures were tested in this study in order to obtain one with the highest validaƟon 

accuracy. The final architecture tested took the form of figure 3. 
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Figure 3 Final CNN architecture 

As can be seen from the figure, the CNN takes a preprocessed image at its input. This image is then 

presented to a convoluƟonal layer for the first feature-extracƟon phase. Since convoluƟonal layers 

increase the dimensionality of the data, max-pooling layers are added behind the convoluƟonal layers to 

reduce or “downsample” the data [3, p.385]. Two addiƟonal convoluƟonal layers are added to provide 

the CNN with the ability to capture higher-level paƩerns from previous convoluƟonal layers. Again, max-

pooling layers are added to reduce the growing dimensionality of the data output from the convoluƟonal 

layers. Finally, a flaƩening layer is used as an interface between the convoluƟonal layers and the 

subsequent dense layers. Dense layers represent the convenƟonal type of neural network. Layer 

configuraƟons followed from what was commonly used in the research [4, pp.545-547] and [3, pp.392-

393] where convoluƟonal layers were set to use 3x3 filters, max-pooling layers used 2x2 filters, and all 

acƟvaƟon funcƟons were of the “ReLU” type [3, p.258]. The final layer was different from the others in 

that it used a “SoŌmax” acƟvaƟon funcƟon to provide a confidence value for mulƟclass classificaƟon [3, 

p.268]. ExperimentaƟon was then performed by varying the sizes of the layers and noƟng the 

performance of the CNN’s training accuracy and validaƟon accuracy. 

Tensorflow 2 and Keras 

The CNN was created using the Tensorflow 2 module and its Keras wrapper available to Python. 

Tensorflow allows the neural network developer to conveniently enclose training samples and their class 

descripƟons into objects called “datasets.” Furthermore, tesƟng data is also encapsulated into 

Tensorflow dataset objects. With training and test data ready, the CNN “model” is created layer-by-layer 

using Keras. Next, the layers are compiled along with the choice of opƟmizer, loss funcƟon, and the 

metric to opƟmize. Finally, a fiƫng funcƟon is called against the model object with the dataset objects 
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and number of epochs as arguments. Tensorflow then proceeds to train the CNN, reporƟng the training 

accuracy and validaƟon accuracy aŌer every epoch. Tensorflow also provides training and validaƟon 

process configuraƟons called “pipelines” that can be used for data shuffling, caching, batching, 

prefetching, and most important of all: preprocessing. AŌer configuraƟon and fiƫng, a trained 

Tensorflow model is available to save to disk in hdf5 format. 

Tensorflow 2 Model for Galaxy ClassificaƟon 

The following figure represents Tensorflow 2’s summary of the final CNN model developed for this 

project. 

 

Figure 4 Tensorflow 2 model summary for the Galaxy Classifier App 

Following the general consensus of the research literature [4, p.547] and [3, p.393], the following 

Tensorflow 2 arguments were passed to the compile() funcƟon of the model object: 

 OpƟmizer = ‘adam’ 

 Loss = ‘sparse_categorical_crossentropy’ 
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 Metrics = [‘accuracy’] 

Epoch count was limited to an iniƟal run of 30. If the training accuracy suggested that the CNN’s accuracy 

had more potenƟal for improvement, an addiƟonal 30 epochs were run. 

AddiƟonal minor preprocessing was performed by the Python applicaƟon. This included cropping a 

200x200 pixel image from the original 424x424 image and a normalizaƟon of the pixel values from the 

original 0-to-255 range (8-bit unsigned integer) to a 0-to-1 range (32-bit, floaƟng-point). 

The preprocessed images were used to the fullest extent (8,440 out of 8,443 available) with an 80% 

allocaƟon to the training dataset (6,752 images) and a 20% allocaƟon to the validaƟon dataset (1,688 

images). Once all training epochs completed, the Python applicaƟon (main_final.py) ploƩed the training 

accuracy and the validaƟon accuracy as a funcƟon of the epoch number. 

Results 

The final model was trained and validated over a total of 60 epochs in two, 30-epoch runs. The first run 

resulted in the data shown in figure 5. 

 

Figure 5 Training and validaƟon accuracy of the final model, first 30-epochs 

Training accuracy yielded 96% with validaƟon accuracy yielding 81%. In an aƩempt to improve the 

validaƟon accuracy, a second, 30-epoch training run was done yielding the following result in figure 6. 
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Figure 6 Training and validaƟon accuracy of the final model's second, 30-epoch run. 

Here, training accuracy improved to 98%, but validaƟon accuracy declined to 79%, an indicaƟon that the 

addiƟonal training was tending toward overfiƫng the data. 

The final realizaƟon of the Python program (main_final.py) is an interacƟve graphical user interface (GUI) 

shown in figure 7. 

 

Figure 7 The Galaxy Classifier applicaƟon GUI 

This GUI allows the user to observe the preprocessed galaxy image, along with its true and predicted 

classificaƟon. The 3D plot in the center provides a topographical perspecƟve of the image pixel intensity. 

Controls are provided at the boƩom to load the image set, cycle through the images, and train the CNN. 
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Conclusions 

Machine learning with convoluƟonal neural networks most-certainly demonstrates a promising 

capability for the classificaƟon of galaxies in astronomical surveys. High training accuracies are 

demonstrably obtained with the convoluƟonal neural network employed, but high-validaƟon accuracies 

are a bit more challenging to achieve. The use of custom-developed preprocessing methods, such as the 

technique demonstrated in this project, contribute significantly to the CNN’s ability to obtain high-

accuracy classificaƟon predicƟons.  With the freely-available dataset provided by Galaxy Zoo, the free 

tools available to Python, any moƟvated machine-learning developer who wishes to test their own 

preprocessing algorithm and neural network tuning skills can undertake this galaxy classificaƟon 

challenge. 
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