
Introduction to Python

Summer Teacher Institute
2007

Fourth Watch Software LC



Overview

● Why I am here
● Why Johnny can't Code

– http://www.salon.com/tech/feature/2006/09/14/basic/
● Why Python?
● Technical Resources
● Usage “HowTo” Resources
● What is it “good” for?
● What Python is not good for
● Characteristics of Python
● Brief look at Python



Overview

● First, there is absolutely no way I can teach 
you anything meaningful about Python in a 
few minutes.

● My goal is to suggest meaningful reasons 
you should look at Python as a vehicle to 
encourage and enthuse students in the use 
of a computer to “scratch their itch” by 
programming their own solution.

● It is a BIG mistake to “optimize early” since 
you don't know what needs optimization



Overview

● Using languages like C and C++, etc, are 
examples of optimizing early:
– Usual “excuse” is “speed” or “efficiency”.
– Code is reduced to “machine instructions” so is 

“faster” than using a “vitrual machine” of some 
kind.

● Using languages like Java and C#, etc
– Both almost as much work as C or C++.
– Memory management is somewhat easier.



Why Python?

● I got into programming back when BASIC 
was new (circa 1970)

● Programming was fun, BASIC was easy for 
easy things, ok for hard things, failed for 
difficult things

● Enter Pascal, C, then C++, Java, etc
● Never got into Perl as after I wrote a program 

and left it for a while, couldn't understand it 
later without working hard, awk and C were 
easier. 



Why Python?

● After 20+ years of programming, writing code 
was getting too tedius. Solving even an easy 
problem was a lot of work.

● In the 1980's developed what was called a 
“fourth generation language” which would 
normally “just do” what you probably wanted, 
letting you override the details if the “normal” 
was not what you wanted.

● Got back into the “dynamic language” space 
in 1991 using MUMPS.



Why Python?

● Became a big fan of “dynamic language” 
environments, because:
– Immediate feedback
– Didn't have to write a “program” to see how 

something (operator, function, etc) worked
– Didn't have to worry about managing memory as 

a “garbage collector” was constantly watching for 
things no longer needed

– I could concentrate on the problem I wanted to 
solve rather than on trying to figure out why my 
program just “cored”.



Why Python?

● My Python journey
– Learned of Python in mid-1990's
– With a leader named “Guido” -- how cool!
– Started attending the International Python 

Conferences in about 1999 (IPC8)
– Have been an active member of the PyCon 

organizers for several years
– Have been impressed with the leadership of the 

Python community
– Active development of the language, but stability 

as well



Why Python?

● My Observations about the Python 
community:
– Python has a large core of developers and is not 

dependent on Guido to survive
– Several implementations of Python exist

● CPython – the traditional reference
● Jython – written in Java generates JVM
● IronPython – Microsoft's .NET implementation
● IPython – an enhanced interactive Python

– Very open to new fans of Python
– Expanding and coalescing (refining, refactoring) 

which is true of the code as well



Technical Resources

● Python programming language 
http://www.python.org

● SimPy simulation package 
http://simpy.sourceforge.net/index.html

● Pygame graphical interface for games
● SimPlot basic plotting package for SimPy
● SimGUI graphical interface to SimPy models
● SimulationStep allows stepping thru model 

event by event
● SimulationRT allows synchronization to real 

time



Usage “HowTo” Resources

● Example: The Bank 
http://simpy.sourceforge.net/SimPyDocs/TheBank.html 
http://simpy.sourceforge.net/SimPyDocs/TheBank2.html

● Modeling of a Fuel Fabrication Facility Using 
Python and SimPy (LANL) 
http://www.python.org/pycon/dc2004/papers/16/

● Introduction to the SimPy Discrete-Event 
Simulation Package (Professor Norm Matloff) 
http://heather.cs.ucdavis.edu/~matloff/simpy.html 

● SimPy: Simulation Systems in Python 
http://www.onlamp.com/lpt/a/3257

http://www.python.org/pycon/dc2004/papers/16/


What is it “good” for?

● Good “starter” language
– Don't forget it is programming – can be hard
– Dynamic/interactive environment
– No funky syntax: print 'hello, world'
– Visibility of “Code blocks”
– No mandatory declaration of variables
– No mandatory declaration of types
– Just write code



What is it “good” for?

● Good “intermediate” language
– Software may be organized in modules
– Software may be organized in packages
– Refactoring facilitated by code block syntax
– Blocks defined by indentation
– No misleading block structure due to an unseen 

block signal token (e.g. “{“ “}” or begin/end)
– Larger bodies of code tends to live longer, 

coming back to “cold code” is not difficult (c.f. 
Perl, C, C++, Java, etc)

–
●



What is it “good” for?

● Good “advanced” language
– Well defined object hierarchy.
– Multiple inheritance with well defined “MRO” 

(Method Resolution Order) so programmers are 
not forced to introduce artificial “interfaces” when 
the object model naturally would use multiple 
inheritance.

– Can “decorate” (Python “borrowed” the Java 
“annotation” approach) functions/methods to 
give short-hand for complex specifications.

– Dynamic creation & compilation of code and 
object structures



What is it “good” for?

● Good “expert” language
– You can start out simple, and grow the problem 

to a very sophisticated package
● Significant applications are written in Python

– YouTube
– RedHat / SuSE installation / system admin
– BitTorrent
– Plone/Zope (content management systems)
– Google – current home/sponsor of Python

● It starts out small and simple, yet is ready for 
“industrial strength” use.



What Python is not good for

● When the problem is computationally bound 
and the limit is the Python virtual machine
– LANL/LBL/Sandia/NASA and others have done 

much for making numerical analysis in Python 
effective.

– SWIG (Simplified Wrapper Interface Generator) 
makes specification of inter-language interfaces 
formal and automated.

– Interfacing between Python and C libraries is 
well defined, so you can write an interface to 
your C module as needed.



Characteristics of Python

● It comes “Batteries included”
● It “fits the brain”
● Programming:

– The way
– Guido
– Indented it

● Life is better without braces



Characteristics of Python

● Platform independent
● Yet, may bind to platform dependent libraries
● Many useful built-in data types
● Ability to create user data types and add 

operators that work on them (like operator 
overloading in C++)

● Well integrated with graphical libraries that 
work the same, no code changes, across 
platforms such as Linux, Mac OS X, and (if 
you must) Microsoft Windows

●



Characteristics of Python



Characteristics of Python



Brief Look at Python

>>> print “Hello, World!”
Hello, World



Brief Look at Python

>>> 2 + 2
4
>>> 2 ** 64
18446744073709551616L



Brief Look at Python

>>> import math
>>> math.e
2.7182818284590451
>>> math.pi
3.1415926535897931
>>> math.sin(math.radians(90))
1.0



Brief Look at Python

>>> def fib(n):
...   if n == 1:
...     return n
...   else:
...     return n * fib(n-1)
...
>>>



Brief Look at Python

>>> fib(1)
1
>>> fib(2)
2
>>> fib(3)
6
>>> fib(4)
24



Brief Look at Python

>>> for i in range(6):
...  print i, fib(i)
...
0 1
1 1
2 2
3 6
4 24
5 120
>>>



Brief Look at Python

>>> s = "a string"
>>> s.find("z")
-1
>>> s.find("i")
5
>>> s[5]
'i'
>>>



Brief Look at Python

>>> s = "a string"
>>> s.find("z")
-1
>>> s.find("i")
5
>>> s[5]
'i'
>>>



Brief Look at Python

>>> s = "%d squared is %d" % (
        123, 123**2)
>>> s
'123 squared is 15129'
>>>



Brief Look at Python

>>> a = "apple"
>>> p = 0.49
>>> n = 2
>>> "%d %s%s $%5.2f" % (n, a,
     n != 1 and "s" or "", n * p)
'2 apples $ 0.98'
>>> n = 1
>>> "%d %s%s $%5.2f" % (n, a,
     n != 1 and "s" or "", n * p)
'1 apple $ 0.49'



Brief Look at Python

>>> lst = [1, 2, 3, 4]
>>> lst[0]
1
>>> lst.append(5)
>>> lst
[1, 2, 3, 4, 5]
>>>



Conclusion

● Programming is not easy
● In fact it is hard
● Programming in C++ is roughly equivalent to 

requiring your students to do all long division 
using Roman numerals, with no concept of 0

● It can be done (so I'm told), but why?
– If there is a good reason to require long division 

to be done in Roman numerals, I'd like to hear it.
● Keep programming fun
● It's tough enough out there.


