

Nanoscale Self-Assembly

New Mexico
Supercomputing Challenge

Final Report
April 2, 2008

Team 2
Albuquerque Academy

Team Members:
Michael Wang
Ari Shaw-Faber

Teacher:
Jim Mims

Project Mentor:
Yifeng Wang, Ph.D

Table of Contents

Executive Summary Page 3

Introduction Page 4

Mathematical Model Page 6

Deriving the One-Dimensional Version Page 6

Scaled Equations Page 8

Adding Temperature Effects Page 10

Numerical Solution Page 12

Transformation of the Time Derivative Page 13

Transformation of the Laplacian Page 13

Transformation of the Double Integral Term Page 14

Semi-Implicit Method Page 15

Coordinates in Fourier Space Page 17

Fast Fourier Transform (FFT) Page 18

Architecture of the Software Page 22

Results and Discussion Page 24

Homogeneous Simulations Page 24

Heterogeneous Simulations Page 26

Temperature Simulations Page 29

 1

Conclusions Page 31

Acknowledgements Page 32

References Page 33

Appendices Page 35

A: Numerical Stability and Convergence Analysis Page 35

B: More Simulations Page 37

C: Screenshots of the Program Page 38

D: Source Code Page 40

 2

Executive Summary

When deposited over a solid surface, some chemicals form patterns at the

nanoscale. Two major factors cause this pattern formation. The minimums in Gibb’s

free energy drive the phase separation of the chemical components. This separation

increases the amount surface free energy. To minimize its total energy, the system reacts

by reducing the number of phase boundaries. On the other hand, the surface stress

produced by concentration variations tends to create finer patterns by increasing the

number of phase boundaries. These two opposing factors cause the system to reach

equilibrium and form a stable pattern.

This pattern formation is described by a set of nonlinear integral-differential

diffusion equations that couple the concentrations and the surface stress. These equations

are simplified using the Fourier Transformation, which converts the integral-differential

equations into simpler partial differential equations in Fourier space. The Fast Fourier

Transform is used to transform values between real and Fourier space.

We successfully wrote a program in C# to simulate this self-assembly process.

We modified the equations to include temperature fluctuations. Our simulations agree

qualitatively with the experimental results reported in literature and what we expect. We

have successfully simulated the transitions between quantum dots, serpentine stripes, and

quantum pits. We have shown that heterogeneous pattern formations can be guided by

preexisting patterns. We have also shown that temperature can be used to control the size

of patterns. This software can be used to understand and design nano pattern formation

on solid surfaces. Future work will be focused on improving the numerical method and

including other mechanisms for controlling these pattern formations.

 3

Introduction

The self-assembly of nano patterns is very important because it can potentially

allow us to create circuits and thus devices at the nanoscale. For example, the smaller we

can make circuits, the more “things” we can fit on a single computer chip. This will

allow us to create faster computers because data will only need to be transferred over

extremely short distances. In addition, the cost and energy required to operate such

devices will be greatly reduced. Therefore, nanotechnology can revolutionize our

existing industry.

The self-assembly of nano patterns has been observed in many systems (see

Figure 1). Those patterns are formed when some chemicals are deposited over a surface.

Two major factors cause this pattern formation. The minimums in Gibb’s free energy

drive the phase separation of the chemical components, which increases the amount of

surface free energy. To minimize its total energy, the system reacts by reducing the

number of phase boundaries. On the other hand, the surface stress produced by

concentration variations tends to create finer patterns by increasing the number of phase

boundaries. These two opposing factors cause the system to reach equilibrium and form

a stable pattern. A computer model simulating such processes can be used for pattern

design.

 Because pattern formation happens spontaneously, the same self-assembly

process could affect the life of pre-made nano devices. Even though we might achieve

making nano devices, the patterns on these devices could at any point reassemble into

something else, which would cause it to malfunction. Thus, a computer code that

 4

simulates how patterns evolve over time under certain conditions (e.g. temperature

fluctuations) could be useful for predicting device lifetime.

The self-assembly of nanoscale patterns is not only important because of their

applications, but also because they are so mysterious and fascinating. Many of these

patterns are so stunning and beautiful that we would never expect. In this project, we

develop computer software to simulate these patterns under constant and changing

temperature. Using simulations, we investigate the effects of prescribing an initial

pattern and show that initial patterns can be used to control the pattern formations. We

also investigate the effects of temperature changes on these patterns.

Figure 1: Experimental observations of the nanoscale self-assembly of Pb (lead) on Cu (copper)

(Plass et al., 2001). A transition from quantum dots through serpentine stripes to quantum pits can
be clearly seen in b-f.

 5

Mathematical Model

The model described below is based on the work of Lu (2006) and Lu and Kim

(2005) with our own understanding and some modifications. The mathematical model

can be derived using the atomic flux and the driving force of diffusion. The atomic flux

vector, jJiJJ
rrr

21 += , is defined as the amount of chemical species passing over unit

length per unit time.

Deriving the Equations (One Dimensional Version):

Figure 2: Derivation of one dimensional model

(txJ ,

(txx ,Δ+

)

)

 is the amount of chemical species entering the shaded region per unit time

and is the amount of chemical species leaving the region per unit time. J

x
t
C
Δ

∂
∂

Λ is the change in the number of moles of species accumulating (change in

concentration) in this region per unit time, where Λ is the number of species per unit

length. Thus, the amount of species entering the region minus the amount of species

leaving the region is equal to the change in concentration per unit time. In mathematical

terms, () () x
t
CtxxJtxJ −, Δ
∂
∂

Λ=Δ+ , . Bringing the xΔ to the left side and taking the

limit as , we obtain 0→Δx () ()
t
C

x
J

x
txJtxxJ

x ∂
Δ ∂

Λ=
∂
∂

−
Δ

=
−+

− . Using Fick’s

diffusion law (Pelesko and Bernstein, 2003), which states that the atomic flux is

→Δ

,lim
0

,

 6

negatively proportional the gradient of chemical potential (energy stored per mol of a

species) per unit length, we can write the above equation as

2

2

x
M

x
M

xt
C

∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
∂
∂

−=
∂
∂

Λ
μμ , where M is the proportionality constant known as the

diffusion coefficient, and μ is the chemical potential. This is the one dimensional model

of our system and can be extended to two dimensions, which we are studying. The two

dimensional derivation is similar but slightly more difficult, and we will not show it here.

In the two dimensional model, 2

2

x
M

∂
∂ μ becomes where μ2∇M 2

2

2

2
1

2
2

xx ∂
∂

+
∂
∂

=∇ . As

demonstrated by Lu and Kim (2005), μ is defined as ⎟
⎠
⎞

⎜
⎝
⎛ ∇−

∂
∂

+
∂
∂

Λ
Ch

C
f

C
g 221

ββε , where

g is the excess energy created from the mixing of the chemical components (see Eq. 3), f

(21 CC ηφψ ++=) is the surface stress (surface energy per unit of strain in the surface)

assumed to be proportional to concentrations, ββε is the strain in the surface, and h is a

constant characterizing the contribution of chemical potential from phase boundaries.

Since we are studying the patterns formed by two chemicals, the final set of equations is

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇−ββ∂

+
∂
∂

∇
Λ

=∇
Λ

=
∂
∂

1
2

1
1

2
2
1

1
2

2
11 2 Ch

C
gMM

t
C μ ∂

1C
f ε (1)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇−

∂
∂

2C
f

+
∂
∂

∇
Λ

=∇
Λ

=
∂
∂

2
2

2
2

2
2
2

2
2

2
22 2 Ch

C
gMM

t
C μ ββε (2)

where (Lu and Kim, 2005)

() () (){
()[] () ([]

()
)

)[]}1

12

1ln1lnln,

21
1
23

0
23212

21
1
13

0
132121

1
12

0
1221

21221121

Ω+Ω−−

+−+Ω+Ω+−Ω+Ω

(2

1
1

+

−

1
1

2

−

−

+ −−− − ++Λ=

CCCC

CCCCCCCC

CCCCCCTkCCg B

C

C

C

C

 (3)

 7

() () ()
() ()[]

() () ()
() ()[] 212

22
2

11

2211
2

212
22

2
11

2211
2

2
3

2

2

1

2

2
3

2

1

1

1 11 ξξ
ξξ

ξξ

π
ηξξ

ξξ

ξξ

π
φε ξξξξ

ββ dd
xx

xx
E
vdd

xx

xx
E
v

CCCC

∫∫∫∫
−+−

−+−−
−

−+−

−+−−
−= ∂

∂
∂
∂

∂
∂

∂
∂

 (4)

C1 — concentration of chemical component 1
C2 — concentration of chemical component 2

1μ — chemical potential of component 1

2μ — chemical potential of component 2
M — diffusion coefficient
Λ — moles of component per area
g — excess energy created from the mixing of chemicals
kB — Boltzmann’s constant

 Ω— bonding strength (subscript such as 12 means component 1 to component 2)
 T — absolute temperature

f — surface stress due to concentration variations
 ββε — strain in the surface

h1 and h2 — constants characterizing chemical potential from phase boundaries
E — Young’s modulus (stiffness of substrate)
v — Poisson’s ratio of the substrate

 φ — surface stress per mole of component 1
 η — surface stress per mole of component 2

Scaled Equations:

We now scale the equations to reduce model parameters. The scaled equations

are

()[]11
2

211
21 *2, ε

τ
+∇−∇=

∂
∂ CCCPC (5)

()[]22
2

212
22 *2, ε

τ
+∇−∇=

∂
∂ CHCCPSC (6)

where

() ()
() ()[]

() ()
() ()[] 212

22
2

11

22112
212

22
2

11

22111
1

2
3

2

2

1

2

2
3

2

1

1

1

* ξξ
ξξ

ξξ

π
ξξ

ξξ

ξξ

π
ε ξξξξ dd

xx

xxQ
dd

xx

xxQ
CCCC

∫∫∫∫
−+−

−+−
−

−+−

−+−
−= ∂

∂
∂
∂

∂
∂

∂
∂

(7)

 8

() ()
() ()[]

() ()
() ()[] 212

22
2

11

22113
212

22
2

11

22112
2

2
3

2

2

1

2

2
3

2

1

1

1

* ξξ
ξξ

ξξ

π
ξξ

ξξ

ξξ

π
ε ξξξξ dd

xx

xxQ
dd

xx

xxQ
CCCC

∫∫∫∫
−+−

−+−
−

−+−

−+−
−= ∂

∂
∂
∂

∂
∂

∂
∂

(8)

() ()[]
()[] ()

()16626

21232

2
1

ln1,

21
2
2

2
121

1
13

21
0
1321

1
23

0
232

21
1
12

0
122

21

1

1
211

−−−−+Ω

+−−Ω+−+Ω+Ω

−−Ω+Ω+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

=
∂
∂

Λ
=

CCCCCC

CCCCC

CCC
CC

C
C
g

Tk
CCP

B

 (9)

() ()[]
()[] ()

()16662

21223

2
1

ln1,

21
2
2

2
121

1
13

21
0
2321

1
13

0
131

21
1
12

0
121

21

2

2
212

−−−−+Ω

+−−Ω+−+Ω+Ω

−−Ω+Ω+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

=
∂
∂

Λ
=

CCCCCC

CCCCC

CCC
CC

C
C
g

Tk
CCP

B

 (10)

3
3

2
2

1
1 ,,

l
bQ

l
bQ

l
bQ === (11)

1

2

1

2 ,
h
hH

M
MS == (12)

() () () 22
1

32
1

222
1

1 1
,

1
,

1 ηφηφ v
Ehl

v
Ehl

v
Ehl

−
=

−
=

−
= (13)

Tk
h

b
BΛ

= 1 (14)

()21

1

TkM
h

B

=τ (15)

Only the Q’s, S, and H after scaling need to be assigned values for simulations. Putting

in additional parameters such as E will be unnecessary because we will eventually

calculate Q anyways.

 9

Adding Temperature Effects:

Eq. 5 and Eq. 6 assume a constant temperature. However, it is obvious that

temperature fluctuations cause chemicals to behave differently. This is an important

aspect that we plan to model, and these equations have to be modified to include

temperature changes during a simulation. The terms we add in are based on experimental

data and observations. According to Anderson and Crerar (1993), g (see Eq. 3) is a

linear function of temperature. First we change the equations slightly. In Eq. 3, instead

of having T multiply to the entire equation, we only multiply it to the ideal mixing terms

(the logarithmic terms). A new T0 is introduced and is multiplied to the rest of the

equation (the non-ideal mixing terms). We then multiply the terms containing and

 by

0
abΩ

1
abΩ (TTab −+ 01)α , where abα is a constant. For example, ()[]2

1
12

0
1221 CCC Ω+Ω 1C −

becomes ()[] ()()TTC −+− 0121
1
12 1 αC2CC Ω+Ω0

1221 . The new g that incorporates

temperature is

() () ()[]

()[] ()()
() ()[] ()()

() ()[] ()()
⎭
⎬
⎫

−+−+Ω+Ω−−

+−+−+Ω+Ω−−

+−+−Ω+Ω
⎩
⎨
⎧

+−−−−++Λ=

TTCCCCC

TTCCCCC

TTCCCC

CCCCCCCC
T
TTkCCg B

02321
1
23

0
23212

01321
1
13

0
13211

01221
1
12

0
1221

21212211
0

021

1121

1121

1

1ln1lnln,

α

α

α
 (16)

Using this new equation, P1 and P2 (Eq. 9 and Eq. 10) become

 10

()

()[] ()()

()[] ()()
()[()] ()()TTCCCCCCCC

TTCCC

TTCCC
CC

C
T
T

C
g

Tk
CCP

B

−+−−−−+Ω+−−Ω

+−+−+Ω+Ω

−−+−Ω+Ω+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

=

∂
∂

Λ
=

01321
2
2

2
121

1
1321

0
13

02321
1
23

0
232

01221
1
12

0
122

21

1

0

10
211

11662621

1232

12
1

ln

1,

α

α

α

 (17)

()

()[] ()()

()[] ()()
() ()[] ()()TTCCCCCCCC

TTCCC

TTCCC
CC

C
T
T

C
g

Tk
CCP

B

−+−−−−+Ω+−−Ω

+−+−+Ω+Ω

−−+−Ω+Ω+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

=

∂
∂

Λ
=

01321
2
2

2
121

1
1321

0
23

01321
1
13

0
131

01221
1
12

0
121

21

2

0

20
212

11666221

1223

12
1

ln

1,

α

α

α

 (18)

Temperature changes also affect the rate at which the chemicals diffuse; thus, M1

and M2 must be a function of temperature. According to experimental results

(Kaganovskii et al., 1998), this rate increases exponentially with temperature. To capture

this effect this, we multiply M1 and M2 by
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

Δ
−

0

11
TTR

E

e , where ΔE is the activation energy

(kilojoules per mole) and R is the ideal gas constant (8.314 joules per mole Kelvin). The

final modification we make is to Young’s modulus E, the stiffness. The experimental

results of Jeong et al. (2003) show that Young’s modulus decreases linearly as

temperature increases. So we multiply it by ()TT −+ 01 β . This constant divides all of the

Q’s after scaling. In general, after scaling and transforming, the temperature constants

will remain unchanged.

 11

Numerical Solution

The set of integral-differential equations Eq. 5 and Eq. 6 are impossible to solve

analytically. However, we can use the Fourier Transform to simplify them enough so

that they can be solved numerically using a semi-implicit method. First, initial and

boundary conditions must be given in order to solve these equations. The initial

condition is the beginning pattern created by the user. Two possible initial conditions are

considered: homogeneous and heterogeneous (e.g. certain areas have higher

concentrations). For boundary condition, we let both concentrations to be zero at infinity,

that is,
() ()
() () 0,,,0,,

0,,,0,,

11

22

=∞=−∞
=∞=∞−

txCtxC
txCtxC

. This convention is useful when we transform

the equations. In addition to these, we also let the successive derivatives (up to the third

order) to be zero at infinity1. Again, these help in the Fourier transformations.

Let the Fourier Transformation be defined as

() () ()
212121

2211,,,, dxdxetxxCtkkC xkxki +−
∞

∞−

∞

∞−
∫ ∫=

)
 (19)

The
π2
1 can be included however it is unnecessary because it will eventually drop out

and will only act as minor scaling factor if we do include it.

1

() ()

() ()

3,2,1

0,,,0,,

0,,,0,,

1
2

1
2

2
1

2
1

=

=∞
∂
∂

=−∞
∂
∂

=∞
∂
∂

=∞−
∂
∂

n

tx
x
Ctx

x
C

tx
x
Ctx

x
C

n

n

n

n

n

n

n

n

 12

Transformation of the Time Derivative:

() () ()

t
CdxdxetxxC

t
dxdxe

t
C xkxkixkxki

∂
∂

=
∂
∂

=
∂
∂ +−

∞

∞−

∞

∞−

+−
∞

∞−

∞

∞−
∫ ∫∫ ∫

)

212121
22112211 ,, (20)

Transformation of the Laplacian:

2
2

2

2
1

2
2

x
C

x
CC

∂
∂

+
∂
∂

=∇ (21)

We here only show the transformation of the first term since the transformation of

the second one follows the same procedure.

() () ()

()

() () () ()[]

() ()
2121

2
1

21211211

21
1

1

21
1

1
1

212
1

2

2211

22112211

2211

221122112211

,,

,,,,

dxdxetxxCk

dxdxetxxCiktxxCeik

dxdxe
x
Cik

dxdxe
x
Cik

x
Cedxdxe

x
C

xkxki

xkxkixkxki

xkxki

xkxkixkxkixkxki

∫ ∫

∫ ∫

∫ ∫

∫ ∫∫ ∫

∞

∞−

∞

∞−

+−

∞

∞−

∞

∞−

+−+−

∞

∞−

∞

∞−

+−

∞

∞−

∞

∞−

+−+−+−
∞

∞−

∞

∞−

−=

+=

∂
∂

=

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

+
∂
∂

=
∂
∂

 ()tkkCk ,, 21
2

1

)
−= (22)

Here we use integration by parts2 twice and the boundary conditions, which are

() 0
1

2211 =
∂
∂

∞

∞−

+−

x
Ce xkxki and () () 0,, 21

2211 =
∞

∞−

+− txxCe xkxki . Using a similar procedure, we can

obtain the transformation of the second term, which is ()tkkCk ,, 21
2
2

)
−

kCkdx ,1
2

21

)
−=

. Adding these two

transformations together, we have , where () (tkdxeC xkxki ,2
2 2211∇ +−

∞

∞−

∞

∞−
∫ ∫)

2
2

2
1 kkk += . Note that this procedure also applies to ()txxP ,, 21 , which becomes

2 () () () () () ()∫∫ ′−=′ dxxgxfxgxfdxxgxf

 13

(tkkPk ,, 21
2))

−

Ck

. This method can be extended to any order derivative since it only

requires integration by parts and the boundary conditions. Therefore,

becomes

C4∇

)4

()

).

Transformation of the Double Integration Term:

The transformation of the double integral terms in Eq. 7 and Eq. 8 is adopted from

Hu et al. (2007). This transformation involves writing the double integral as a

convolution and using the fact that the Fourier transformation of a convolution is the

product of the Fourier transformation of each function3 (Convolution Theorem).

()
() ()[]

()
() ()[]

()
() ()[]∫∫∫∫∫∫

−+
+

−+−

−
=

−−

−+− ∂
∂

∂
∂

∂
∂

2
3

2

2
3

1

2
3

2

2
22

2

212

2
22

2
11

2111
212

221

221

ξ

ξξ

ξξ

ξξξ
ξξ

ξ

ξ ξξξ

xx

dd

xx

ddx
dd

xx

xx CCC

]

−

−

11

2

ξ

ξx

+

∂
∂

1

2
1

1

ξ

ξ ξ
C

()

(23)

Again we here only show the transformation of the first term. Let

()[2
12

22
2

1−ξ1

−
−+= ξρ xx . Taking the partial derivative of ρ with respect to 1ξ , we

have ()
() ()[] 2

32
22

2
11

11

ξξ1

ξ
ξ
ρ

−+−

−
∂
∂

xx

x
= . Substituting it into the first term of Eq. 23, we

obtain 21
11

ξξ
ξξ

ρ ddC
∫∫ ∂

∂
∂
∂ , which is the convolution of the partial derivatives of

() 2
12

2
2
1

−
+= xxρ and (t is constant) with respect to , or (txxC ,, 21) 1x

11 x
C

x ∂
∂

∗
∂
∂

−21
11

ddC
=

∂
∂

∂
∂

∫∫
ρξξ

ξξ
ρ . Using the Convolution Theorem and the method for

transforming spatial derivatives (previous transformation), we obtain

3 () ()[] ()[] ()[]xgFxfFxgxfF ⋅=∗

 14

() () ()

Cikik

dxdxe
x
Cdxdxe

x
dxdxe

x
C

x
xkxkixkxkixkxki

))
11

21
1

21
1

21
11

221122112211

⋅−=

∂
∂

∂
∂

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∗
∂
∂

− +−
∞

∞−

∞

∞−

+−
∞

∞−

∞

∞−

+−
∞

∞−

∞

∞−
∫ ∫∫ ∫∫ ∫

ρ

ρρ

Ck
))ρ2

1= (24)

Similarly, the transformation of the second term is Ck
))ρ2

2 . Thus, the Fourier

transformation of the double integral is the sum of the two individual transformations, or

Ck
))ρ2 . It can be shown that

k
πρ 2

=) , which produces Ck
)

π2

C

. Finally, using the method

for transforming the Laplacian, we obtain k
)32π− .

In summary, we have

() ()
() ()[]
() ()
() ()[] Ckdd

xx

xx

Ckdd
xx

xx
CkC

PkP
CkC

t
C

t
C

CC

CC

)

)

)

)

)

)

3
212

22
2

11

22112

212
22

2
11

2211

44

22

22

2

2

2
3

21

2
3

21

πξξ
ξξ

ξξ

πξξ
ξξ

ξξ

ξξ

ξξ

−⇒
−+−

−+−
∇

⇒
−+−

−+−
⇒∇

−⇒∇

−⇒∇
∂
∂

⇒
∂
∂

∫∫

∫∫

∂
∂

∂
∂

∂
∂

∂
∂

 (25)

Consequently, Eq. 5 and Eq. 6 become

22
3

11
3

1
4

1
21 222 CQkCQkCkPk

t
C))))
)

++−−=
∂
∂

 (26)

()23
3

12
3

2
4

2
22 222 CQkCQkCHkPkS

t
C))))
)

++−−=
∂
∂ (27)

Semi-Implicit Method:

Eq. 26 and Eq. 27 can be solved using a semi-implicit method proposed by Chen

and Shen (1998). This method treats the non-linear P
)

 terms explicitly and the linear C
)

 15

terms implicitly. First, let ()tkkPPn ,, 21

))
= , ()tkkCC n ,, 21

))
= , and ()ttkkCC n Δ+=+ ,, 21

1))

(with subscripts 1 and 2). Also, let
t

C nnC
t
C

Δ
−

=
∂ +

))

∂

) 1

 (also with subscripts). Eq. 26 and

Eq. 27 become

1
22

31
11 2+ +n CQkCQ

))31
1

4
1

21
1

1 22 ++
+

+−−=
Δ
− nnn

nn

kCkPk
t

CC))
))

 (28)

()1
2
+n

3
1

2
4

2
22

1
2 2 +
+

−−=
Δ
− nn

nn

CQCHkPkS
t

CC))) 31
12

3 22 + ++ n kCQk
)

))

 (29)

In matrix form, these equations combine as

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+

+

n

n

n

n

PS

P
k

C

C

2

12
1

2

1
1

)×⎥
⎦

⎤
⎢
⎣

⎡ +−
=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−

−
Δ +

+

nn

nn

QQSk
Qkk

CC

CC
t 12

3
1

34

2
1

2

1
1

1

2
221

+− SkSHk
Qk

34
2

3

22
2

)

)

)))

 (30)))

Solving for
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+

+

1
2

1
1

n

n

C

C
)

)

, we obtain

()
⎥
⎥
⎦

⎤
⎥
⎦

⎤
⎢
⎣

⎡

Δ+Δ−
Δ−+

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+

+

n

n

ttQSk
tQkk

C

C

2
3

1
34

1
2

1
1

12
221

()−
Δ−

QkHkS
tQk

3
34

2
3

22
2

⎢
⎢
⎣

⎡

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Δ−
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

×
−

n

n

n

n

PS

P
tk

C

C

2

12

2

1
1

)

)

)

)

)

)

(31)

Eq. 31 is in the form that can be implemented in a code. The inverse matrix can

be found using a formula for 2x2 matrices4. With the temperature constants added in the

previous section, Eq. 31 becomes (the key equation)

4 ⎥

⎦

⎤
⎢
⎣

⎡
−

−
−

=⎥
⎦

⎤
⎢
⎣

⎡
−

ac
bd

cbaddc
ba 1

1

 16

() ()

() ()

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Δ−
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

×

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

Δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

−+
−+

Δ
−

−+
Δ

−Δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

−+
=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

Δ
−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

Δ
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

Δ
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

Δ
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

Δ
−

+

+

n

n
TTR

E

n

n

TTR
ETTR

E

TTR
E

TTR
E

n

n

PS

P
tke

C

C

t
TT

QkHkSe
TT

tQSke

TT
tQket

TT
Qkke

C

C

2

12
11

2

1

1

0

3
3

4
11

0

2
3

11
0

2
3

11

0

1
3

4
11

1
2

1
1

0

0
0

0
0

1
221

1
2

1
2

1
221

)

)

)

)

)

)

ββ

ββ

(32)

The concentrations are calculated as follows (Figure 3). In real space, we use C

to calculate P. Then we transform C and P to find nC
)

and nP
)

. In Fourier space we use

nC
)

 and nP
)

 to calculate 1+nC
)

. We transform 1+nC
)

 into real space and repeat the same

process.

Figure 3: Procedure used to calculate the concentrations

Coordinates in Fourier Space:

The coordinates in Fourier space are not the same as those in real. Fourier space

is made up of frequencies as it is also called the frequency domain/space. For a two

dimensional set of data, the frequencies for each row (left to right) are

Δ
−

Δ
−⎟

⎠
⎞

⎜
⎝
⎛

Δ
−

Δ
−

Δ
±

Δ
−

ΔΔΔ NNNNNN
1,2,...,1

2
1,

2
1,1

2
1,...,2,1,0

The columns (top to bottom) follow the same sequence. The sign doesn’t matter for the

middle term. is the sampling interval, which acts like a length scale. For example,

 could mean there are 0.1 nm per pixel.

Δ

1.0=Δ

 17

Fast Fourier Transform (FFT)

If we could use Eq. 32, the calculations would be incredibly simple.

Unfortunately, Eq. 32 is in Fourier space, which we can’t intuitively see. In addition, we

can’t find a formula for the transformation of ()txxP ,, 21 because it is non-linear, that is,

(tkkP ,, 21))
 can’t be calculated directly in Fourier space. Also, we can’t transform Eq. 32

back to real space using the Fourier transformation in the previous section because it is

not in the right form.

The solution to this problem is the Fast Fourier Transformation (FFT). This is an

efficient and fast algorithm for transforming data sets between real and Fourier space.

The Discrete Fourier Transformation (DFT) is defined as

() () 2
22

1
112

2

2

1

221

0

1

0
2121 ,, N

min
N

minN

n

N

n

eennfmmF
ππ

∑∑
−

=

−

=

= (33)

F is the transformation of the discrete data set f. One could simply put this into a

computer and obtain the transformations. However, for large data sets, say 512x512, this

method can take a very long time. For data sets of this size, the FFT algorithm is the best

solution; in fact, calculations that would take days and possibly even weeks can be

reduced to merely seconds and minutes, which is an enormous advantage.

Take the one dimensional DFT () ()∑
−

=

=
1

0

2N

n

N
inm

enfmF
π

 as an example5. This can

be rewritten as

5 The two dimensional DFT is a combination of two one dimension DFT’s

 18

() ()
()

()
()

() () () ()

() ()mFWmF

enfeenf

enfenfmF

ome

N

n

N
imn

N
imN

n

N
imn

N

n

N
nimN

n

N
nim

+=

++=

++=

∑∑

∑∑
−

=

−

=

−

=

+−

=

12/

0

2/
2212/

0

2/
2

12/

0

12212/

0

22

122

122

πππ

ππ

 (34)

Thus F can be written as the DFT of the even indices plus a complex constant6 times the

DFT of the odd indices. and()mF e ()mF o are periodic with periods of length N / 2,

thus, () ⎟
⎠
⎞

⎜
⎝
⎛ −=

2
NmFmF ee and () ⎟

⎠
⎞

⎜
⎝
⎛ −= Fm o

2
NmF o for

2
Nm ≥ . F originally requires

 operations, but, by separating it into evens and odds, F now only requires 2N
2

2N

operations, which is slightly faster. We continue breaking F down into smaller sets of

size N / 4 of evens and odds7 and so on until we are left with sets of size 1. F eventually

only requires operations, which is significantly faster for large N. In the end,

we have a seemingly meaningless string of e’s and o’s. Actually, this seemingly

meaningless string is extremely useful in finding which

NN 2log

()nf goes with ()mF oeoeeeoeoo..... .

Take the string, reverse it, and let e = 0 and o = 1. What does this produce? It produces

the binary representation of n (in ()nf) (Press et al.2002)! Thus, a faster way to break

down F until there are N sets of size 1 left is by taking the binary representation of the

indices of the initial set and “flipping” them. This is called bit reversing, the first part of

the FFT.

6 Note that W is not the same constant for each successive separation of F. For each successive separation
after Eq. 34, the N in W is divided by two.
7 () () () ()2/

2
N

im
meomeee eWmFWmFmF

π
=+=

 19

Once we have bit reversed the initial set, we have to regroup everything. This

method is called the butterfly method8, which is also known as the Danielson-Lanzos

Formula. The amazing aspect of this formula is that it is iterative. The butterfly method

first takes two consecutive elements (after bit reverse) and combines them into a set of

size two. Each element of the new set is calculated using a similar formula as that of Eq.

34. There are N / 2 such sets. Then, two consecutive sets are combined to create a new

set of size four (one element of one set combines with an element of the other) using a

similar formula. There are N / 4 such sets. This continues until you are left with one

large set of size N, which is the transformation. The following is a diagram for

combining the elements (size 8). The left side is already bit reversed.

Figure 4: Method of combining elements after bit reversing.

http://www.cmlab.csie.ntu.edu.tw/cml/dsp/training/coding/transform/fft.html

8 When this method is drawn out, parts of it are shaped like a butterfly.

 20

The following is a simple 2 point DFT

 (35)

() ()
() ()

() ()

() () () () yxyexFWFFWFY

yxyexFWFX

FF
FF

N

ioeoe

ioe

oo

ee

+=⎟
⎠
⎞⎜

⎝
⎛+=+=+=

−=⎟
⎠
⎞⎜

⎝
⎛+=+=

=

=

=

2
2

222

1
2

21

1122

11

21
21

2

π

π

The FFT cannot simulate an infinitive domain. To resolve this problem, the

simulation is carried out in a square cell, which is replicated many times to cover the

whole space (Lu and Kim, 2005).

Numerical Stability and Convergence Analysis

We have found that Eq. 32 is very sensitive to time step Δt and sampling interval

Δ. We did numerical convergence test in order to choose appropriate Δt and Δ. See

Appendix A for discussion.

 21

Architecture of the Software

See Appendix C for screenshots of the program.

The main interface gives the user a broad overview of the program in addition to a

choice of running a homogeneous or a heterogeneous simulation. Both options will go

similar screens. For a heterogeneous simulation, you can create your own initial patterns.

In the heterogeneous parameter input screen, the user may change the default

parameter values and select a self-created pattern file and/or parameter file they would

like to use in the simulations. In addition, the user can change the size of the simulation

square. When the user starts the simulation, the class BitmapConverter is called. This

class reads the hex numbers (colors) from the picture file and creates an array storing the

corresponding concentrations (e.g. white color (0x000000) implies C = 0). After this

process, the simulation screen is called. This is where the concentrations are displayed.

Here the user may choose to change the time step, the number of time steps to calculate

before displaying an image, and the temperature.

The homogeneous parameter input screen is very similar except that the user does

not have to input a pattern file. In addition, the class BitmapConverter is bypassed since

there aren’t any pattern files to read.

All of the calculations are done in the class FFTandCalc.

There is one more class called Parameters. This class stores all of the parameters

from the input screen. This prevents transferring large amounts of data between classes

and reduces the amount of clatter, making the program more organized and easier to

debug.

 22

This software is written in C# because the syntax is similar to Java but is a better

language for intense computations. The following is a diagram of the architecture of our

software.

Figure 5: Architecture of our program

 23

Results and Discussion

We have run many simulations after we finished the coding and have obtained

many interesting results.

Homogeneous Simulations:

As observed experimentally, for low concentrations, chemicals tend to rearrange

themselves into quantum dots. This qualitatively agrees with our simulations as shown in

Figure 6A. This simulation starts with low concentrations: C1 = 0.15 and C2 = 0.1. A

total scaled time of 0.1 has elapsed in this simulation. Figure 6A shows a nice array of

quantum dots with diameters of approximately 3 nm.

As the concentrations of both components increase, the quantum dots become

serpentine stripes in Figure 6B. The initial concentrations used in this simulation are C1

= 0.25 and C2 = 0.15. A total scaled time of 0.1 has elapsed.

As the concentrations continue to increase, the serpentine stripes are replaced by

quantum pits, which are the opposite of quantum dots (see Figure 6C). For this

simulation, C1 = 0.4 and C2 = 0.35. Again, a total scaled time of 0.1 has elapsed. These

transitions from quantum dots to serpentine stripes, and to quantum pits, agree

qualitatively with experimental observation in Figure 1.

For the above three simulations, we use parameters Q1 = 2, Q2 = 2, Q3 = 2, S =

1.0, H = 1.0, = 5, = 0, = 5, = 0, = 5, = 0, Initial Temperature =

400, Percent Perturbation = 1, Δ = 0.2. The patterns shown in Figure 6 are the main

results that we are able to obtain. For concentrations higher than those above, numerical

error produces strange effects. We will not show any of those simulations here because

they can be misleading.

0
12Ω 1

12Ω 0
13Ω 1

13Ω 0
23Ω 1

23Ω

 24

A

B

C

Figure 6: Transition from quantum dots (A) to serpentine stripes (B) and to quantum pits (C) as the
concentration increase. The length of the simulations square is 51 nm.

 25

Heterogeneous Simulations:

Heterogeneous simulations have a much wider range of results compared to the

homogeneous simulations. For each initial pattern, there is a different result. Thus,

heterogeneous simulations are more interesting to study. See Appendix B for more

simulations.

 The initial pattern of Figure 7A was a circle of concentration .2 to .25. Outside

the circle, the concentration was 0.05. This image was taken after a total scaled time of 1

elapsed. The interesting part of simulation is that it originally formed several rings

before quantum dots appeared. If we were to run this simulation even longer, all of the

rings would become quantum dots arranged in circles. The ring formation is analogous

to the ripples created by dropping a rock in water.

Initially in Figure 7B, half of the simulation square had a concentration of 0.3 to

0.35. The other half had a concentration of 0.05. First, a high concentration stripe

formed at the boundary. Gradually over time, more stripes formed. Not much happened

to the lower concentration aside from the slight increase caused by the higher

concentration spreading out. The formation of the stripes was expected. In this

simulation, a total time of 0.9 elapsed.

The initial pattern in Figure 7C was a square of concentration 0.4 to 0.45. A total

scaled time of 0.9 elapsed. This simulation was not anything like the circle. One might

expected it to spread out like the circle. This likely didn’t happen due to the

configuration (e.g. the sharp edges). Comparing the simulations of a square, a pentagon,

and a circle, we can infer that as the number of sides on the polygon increases, the closer

the simulation mimics the circle (it spreads out and forms rings), which makes sense.

 26

For the circle and half space simulations, we used Q1 = 1, Q2 = 1, Q3 = 1, S = 1.0,

H = 1.0, = 4, = 0, = 4, = 0, = 4, = 0, Initial Temperature = 400,

Percent Perturbation = 1, Δ = 0.2. For the square simulation, Q1 = 2, Q2 = 2, and Q3 = 2.

As you can see, each simulation is drastically different. Thus, you can create many

different patterns by different preexisting patterns, which is important for building nano

devices.

0
12Ω 1

12Ω 0
13Ω 1

13Ω 0
23Ω 1

23Ω

 27

A

B

C

Figure 7: Pattern formation guided by preexisting patterns. (A) Initial pattern: Circle of
concentration .2-.25. (B) Initial pattern: Half of simulation square with concentration 0.3-0.35. (C)
Initial pattern: Square of concentration .4-.45. The length of the simulation square is 51 nm.

 28

Temperature Simulations:

While heterogeneous simulations have many possible outcomes, the ability to

control the effects of temperature opens even more possibilities (e.g. controlling the size

of patterns). The physical and chemical properties of quantum dots depend on their size

(Roduner, 2006). As temperature increases, the chemicals tend to diffuse more as the

temperature term multiplied to M suggests and also the mixing of two chemical

components becomes more ideal, that is, everything will become homogeneous (spread

out). The following three simulations accurately show these expectations. These three

simulations are parts of one large simulation. We use the same parameters in Figure 6

with α12 = 0.025, α12 = 0.025, α12 = 0.025, β = 0.0001, and Activation Energy = 20.

In Figure 8A, we run a total scaled time of .1 with a temperature of 300 K (100 K

lower than the previous 6 simulations). As we can see, the patterns are finer in size and

sharper at the edges because the diffusion decreases and there is more non-ideal mixing.

As the temperature increases, we expect the patterns to coarsen (get thicker).

Figure 8B is at a scaled time of .2 with a temperature of 400 K (the temperature was

changed immediately after .1). The pattern clearly coarsens as a result of the increase of

diffusion.

Once the temperature reaches a certain point, the chemicals diffuse so much and

the mixing becomes almost ideal, and there is no definite pattern. As we can see in

Figure 8C, which is run at 500 K and has a total scaled time of .3, everything became

almost homogenized. Therefore, temperature can be used to control the size of the

patterns.

 29

A

B

C

Figure 8: Using temperature to control the size of patterns. The length of the simulation square is 51
nm. (A) Simulation at 300 K. (B) Simulation at 400 K. (C) Simulation at 500 K.

 30

Conclusions

Nanotechnology today is a hot topic. Building devices at a nanoscale has many

applications. Nanoscale patterns can be formed by self-assembly. When some chemicals

are deposited over an elastic substrate, they rearrange themselves into patterns to achieve

the lowest possible energy. Two major factors cause this pattern formation. The

minimums in Gibb’s free energy drive the phase separation of the chemical components.

This separation increases the amount surface free energy. To minimize its total energy,

the system reacts by reducing the number of phase boundaries. On the other hand, the

surface stress produced by concentration variations tends to create finer patterns by

increasing the number of phase boundaries. These two opposing factors cause the system

to eventually form a stable pattern.

We have successfully written a program in C# the can simulate pattern

formations. Our simulations agree qualitatively with experimental observations and our

expectations, which validate our program. In this program, we have successfully

implemented the FFT, which was originally written for C++.

Our program has simulated (1) the transitions from quantum dots to serpentine

stripes and to quantum pits as the concentration increases; (2) the dependency of

heterogeneous pattern formation on preexisting patterns; (3) and the effect of temperature

changes on the size of the patterns formed, which is important because the physical and

chemical properties of these patterns (e.g. quantum dots) depends on size.

In the future we plan to include other mechanisms to control the pattern

formations. Two such mechanisms are electric and magnetic fields. In addition, we will

try to solve the equations using a fully implicit method, which will hopefully improve the

 31

numerical stability. We will also look at ways to make our code even more efficient and

faster, which will help our studies.

Acknowledgements

We would like to acknowledge our mentor, Dr. Yifeng Wang, for his help by

providing us with resources and supporting us along the way. We would like to thank Dr.

David Metzler for his help with the math. We would also like to thank Mr. Jim Mims for

his support. This has been a really big project and their support is invaluable.

 32

References

Anderson, Greg M., and David A. Crerar. "Solid Solution." Thermodynamics in
Geochemistry. Oxford: Oxford University Press, 1993. 364-396.

Chung, Sung-hoon, et al. "Evaluation of Elastic Properties and Temperature

Effects in Si Thin Films Using an Electrostatic Microresonator." Journal of
Microelectromechanical Systems 122.4 (Aug. 2003): 524-530. 25 Mar. 2008
<http://ieeexplore.ieee.org>.

Hu, Shaowen, Girish Nathan, Fazle Hussain, Donald J. Kouri, Pradeep Sharma, and

Gemunu H. Gunaratne. "On Stability of Self-Assembled Nanoscale Patterns."
Journal of the Mechanics and Physics of Solids 55 (2007): 1357-1384.
ScienceDirect. Elsevier. 28 Nov. 2007 <http://www.sciencedirect.com/>.

Johnson, K. L. "Point Loading of an Elastic Half-Space." Contact Mechanics.

Cambridge, U.K.: Cambridge University Press, 1985. 45-83.

Kaganovskii, Yu. S., L. N. Paritskaya, and V. V. Bogdanov. "Kinetics and

Mechanisms of Intermetallic Growth By Surface Interdiffusion." Mat. Res.
Soc. Symp. Proc. 527 (1998): 303-307.

Lu, Wei. "Theory and Simulation of Nanoscale Self-Assembly on Substrates."

Journal of Computational and Theoretical Nanoscience 3.3 (2006): 342-361.

Lu, Wei, and Dongchoul Kim. "Dynamics of Nanoscale Self-Assembly of Ternary

Epilayers." Microelectronic Engineering 75 (2004): 78-84. ScienceDirect. 26
Feb. 2004. Elsevier. 28 Nov. 2007 <http://www.sciencedirect.com/>.

- - -. "Patterning nanoscale Structures by Surface Chemistry." Nano Letters 4.2 (2004):

313-316.

- - -. "Simulation on Nanoscale Self-Assembly of Ternary-Epilayers." Computational

Materials Science 32 (2005): 20-30. ScienceDirect. Elsevier. 8 Dec. 2007
<http://www.sciencedirect.com/>.

Pelesko, John A., and David H. Bernstein. "Microfluids." Modeling MEMS and NEMS.

New York: CRC Press, 2003. 297-314.

Plass, Richard, Julie A. Last, N. C. Bartelt, and G. L. Kellogg. "Self-Assembled Domain

Patterns." Nature 412 (Aug. 2001): 875. 25 Mar. 2008 <http://www.nature.com>.

Press, William H., Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.

"Fast Fourier Transform." Numerical Recipes in C++. 2nd ed. Cambridge: Cambridge
University Press, 2002. 501-541.

 33

Roduner, Emil. Nanoscopic Material: Size-Dependent Phenomena. Cambridge: The
Royal Society of Chemistry, 2006.

 34

Appendix A: Numerical Stability and Convergence Analysis

Because we are solving the equations numerically, we have to ensure that we

aren’t getting large numerical errors. Eq. 32 is sensitive to the choice of time step. By

trial and error, we find that the time steps, 0.0001-0.001, are appropriate for the

simulations.

Figure 9A uses a time step of 0.0001. A total scaled time of 0.1 elapses. It

appears that there are very few additional “things” (in the white areas) created by

numerical instability.

Figure 9B is a continuation of Figure 9A with a time step of 0.001. Clearly it

looks similar to Figure 9A, that is, we can still see the quantum dots. However, there is

clearly a lot more numerical instability. Random concentrations appear in the white areas

and some of the quantum dots have holes. Despite these, this simulation isn’t that

different from Figure 9A.

Figure 9C, however, is definitely different. We use a time step of 0.01 for this

simulation.

Thus, from these simulations, we see that 0.0001-0.001 is good choice for time

step. In addition to time step, Δx must also be checked. We will not show any

simulations here. We have run many simulations with different Δx and have concluded

that when Δx is around 0.05 to 0.6, the simulations are reasonable. We have simulated

quantum dots with Δx within this range and have found that the results are practically

identical. The parameters are similar to those of Figure 6.

 35

A

B

C

Figure 9: Numerical stability test. (A) 0.0001 time step. (B) 0.001 time step. (C) 0.01 time step.
Same scale as before (51 nm).

 36

Appendix B : More Simulations

More heterogeneous simulations are shown in Figure 10 (below). The parameters

are similar to those in the previous heterogeneous simulations.

A

B

Figure 10: More heterogeneous simulations. (A) The initial pattern was a triangle of concentration
0.5-0.55 and the rest was 0.05. A total scaled time of 0.1 has elapsed. The outer boundary is
numerical error. (B) The initial pattern was three lines (as you can see) with concentrations 0.3-0.35
and 0.45-0.5, respectively. The scale is the same as before.

 37

Appendix C: Screenshots of the Program
A

B

 38

C

D

Figure 11: Program screenshots. (A) Start screen. (B) Homogeneous parameter input screen. (C)
Heterogeneous input screen. (D) Simulation screen.

 39

Appendix D: Source Code

formStart.cs
//==
//
// File Name : formStart.cs
// Purpose : To give a broad overview of the program and provides options
// : for creating a homogeneous or heterogeneous simulation
//
// Author : Micheal Wang
// Albuquerque Academy
// Created on : December 2007
// Copyright : All Rights Reserved.
//
//==

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;

namespace NanoSimulator
{
 public partial class form_start : Form
 {
 /**
 * constructor
 */
 public form_start()
 {
 InitializeComponent();
 }

 //---
 /**
 *
 */
 private void form_start_Load(object sender, EventArgs e)
 {

 }

 //---
 /**
 * Calls either the heterogeneous or homogeneous input forms depending
 * on which of the choices is selected
 */
 private void bt_start_Click(object sender, EventArgs e)
 {
 if (rbt_homo.Checked.Equals(true))
 {
 formHomogeneous fhomo = new formHomogeneous();
 fhomo.Show();
 }
 else
 {
 formHeterogeneous fhetero = new formHeterogeneous();
 fhetero.Show();

 40

 }
 }

 //---
 /**
 * Exits program
 */
 private void bt_quit_Click(object sender, EventArgs e)
 {
 this.Dispose();
 }

 //--
 /**
 * This sets the homogeneous option to true and the heterogeneous option
 * to false
 */
 private void rbt_homo_CheckedChanged(object sender, EventArgs e)
 {
 rbt_homo.Checked.Equals(true);
 rbt_hetero.Checked.Equals(false);
 }

 //--
 /**
 * This sets the heterogeneous option to true and the homogeneous option
 * to false
 */
 private void rbt_hetero_CheckedChanged(object sender, EventArgs e)
 {
 rbt_homo.Checked.Equals(false);
 rbt_hetero.Checked.Equals(true);
 }
 //--
 }
}

formHomogeneous.cs
//==
//
// File Name : formHomogeneous.cs
// Purpose : To create an interface for changing parameter values
//
// Author : Micheal Wang
// Albuquerque Academy
// Created on : December 2007
// Copyright : All Rights Reserved.
//
//==

using System;
using System.IO;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;

namespace NanoSimulator
{
 public partial class formHomogeneous : Form

 41

 {
 Parameters pHomo;

 /**
 * constructor
 */
 public formHomogeneous()
 {
 pHomo = new Parameters();
 InitializeComponent();
 }

 //---
 /**
 *
 */
 private void formHomogeneous_Load(object sender, EventArgs e)
 {

 }

 //---
 /**
 * This exits the homogeneous input screen
 */
 private void closeToolStripMenuItem_Click(object sender, EventArgs e)
 {
 this.Dispose();
 }

 //---
 /**
 * This exits the homogeneous input screen
 */
 private void bt_close_Click(object sender, EventArgs e)
 {
 this.Dispose();
 }

 //---
 /**
 * This resets the parameters to their default values
 */
 private void bt_reset_Click(object sender, EventArgs e)
 {
 tb_C1.Text = "0";
 tb_C2.Text = "0";
 tb_Q1.Text = "1.0";
 tb_Q2.Text = "1.0";
 tb_Q3.Text = "1.0";
 tb_S.Text = "1.0";
 tb_H.Text = "1.0";
 tb_bond012.Text = "2.9";
 tb_bond112.Text = "0.0";
 tb_bond013.Text = "2.9";
 tb_bond113.Text = "0.0";
 tb_bond023.Text = "2.9";
 tb_bond123.Text = "0.0";
 tb_initTemp.Text = "400";
 tb_noise.Text = "0";
 tb_delta.Text = "0.3";
 tb_deltaE.Text = "55.1";

 42

 }

 //---
 /**
 * This stores all of the parameter values and calls/opens the
 * simulation window
 */
 private void bt_startSim_Click(object sender, EventArgs e)
 {
 pHomo.homoC1 = Double.Parse(tb_C1.Text);
 pHomo.homoC2 = Double.Parse(tb_C2.Text);

 pHomo.iTemperature = Double.Parse(tb_initTemp.Text);
 pHomo.sqLength = Int16.Parse(tb_simSqLength.Text);
 pHomo.delta = Double.Parse(tb_delta.Text);

 pHomo.cMatSize = 2 * pHomo.sqLength * pHomo.sqLength;
 pHomo.kSize = pHomo.sqLength * pHomo.sqLength;

 pHomo.Q1 = Double.Parse(tb_Q1.Text);
 pHomo.Q2 = Double.Parse(tb_Q2.Text);
 pHomo.Q3 = Double.Parse(tb_Q3.Text);

 pHomo.S = Double.Parse(tb_S.Text);
 pHomo.H = Double.Parse(tb_H.Text);

 pHomo.o_0_12 = Double.Parse(tb_bond012.Text);
 pHomo.o_1_12 = Double.Parse(tb_bond112.Text);
 pHomo.o_0_13 = Double.Parse(tb_bond013.Text);
 pHomo.o_1_13 = Double.Parse(tb_bond113.Text);
 pHomo.o_0_23 = Double.Parse(tb_bond023.Text);
 pHomo.o_1_23 = Double.Parse(tb_bond123.Text);
 pHomo.a_12 = Double.Parse(tb_alpha12.Text);
 pHomo.a_13 = Double.Parse(tb_alpha13.Text);
 pHomo.a_23 = Double.Parse(tb_alpha23.Text);
 pHomo.beta = Double.Parse(tb_beta.Text);

 pHomo.activationEnergy = Double.Parse(tb_deltaE.Text);

 pHomo.percentNoise = Double.Parse(tb_noise.Text) / 100;

 formSimWindow fsm = new formSimWindow(pHomo);
 fsm.homogeneousArray();
 fsm.Show();
 }

 //---
 /**
 * This opens the browse dialog box where the user can choose a
 * parameter file
 */
 private void bt_parameterBrowse_Click(object sender, EventArgs e)
 {
 openParameterFile();
 }

 //---
 /**
 * This opens the browse dialog box where the user can choose a
 * parameter file
 */
 private void openToolStripMenuItem_Click(object sender, EventArgs e)

 43

 {
 openParameterFile();
 }

 //---
 /**
 * This reloads the parameters from the selected file
 */
 private void bt_reload_Click(object sender, EventArgs e)
 {
 readInParam();
 }

 //---
 /**
 * This opens the save dialog box where the user can save the parameters
 */
 private void saveToolStripMenuItem_Click(object sender, EventArgs e)
 {
 SaveFileDialog sfd = new SaveFileDialog();
 sfd.Filter = "Text File|*.txt";
 sfd.Title = "Save Image as Text File";
 sfd.FileName = "";

 if (sfd.ShowDialog() == DialogResult.OK)
 {
 System.IO.StreamWriter writer = new System.IO.StreamWriter(sfd.FileName);

 writer.WriteLine(tb_C1.Text);
 writer.WriteLine(tb_C2.Text);
 writer.WriteLine(tb_Q1.Text);
 writer.WriteLine(tb_Q2.Text);
 writer.WriteLine(tb_Q3.Text);
 writer.WriteLine(tb_S.Text);
 writer.WriteLine(tb_H.Text);
 writer.WriteLine(tb_bond012.Text);
 writer.WriteLine(tb_bond112.Text);
 writer.WriteLine(tb_bond013.Text);
 writer.WriteLine(tb_bond113.Text);
 writer.WriteLine(tb_bond023.Text);
 writer.WriteLine(tb_bond123.Text);
 writer.WriteLine(tb_initTemp.Text);
 writer.WriteLine(tb_noise.Text);
 writer.WriteLine(tb_delta.Text);
 writer.WriteLine(tb_alpha12.Text);
 writer.WriteLine(tb_alpha13.Text);
 writer.WriteLine(tb_alpha23.Text);
 writer.WriteLine(tb_beta.Text);
 writer.WriteLine(tb_deltaE.Text);

 writer.Close();
 }
 }

 //---
 /**
 * This reduces code since the same code for opening a file is used
 * more than once
 */
 private void openParameterFile()
 {
 OpenFileDialog ofd = new OpenFileDialog();

 44

 ofd.Filter = "Text File|*.txt";
 ofd.Title = "Open Text File";
 ofd.FileName = "";

 if (ofd.ShowDialog() == DialogResult.OK)
 {
 tb_parameterFile.Text = ofd.FileName;

 readInParam();
 }
 }

 //---
 /**
 * This reads in the parameters from the selected file
 */
 private void readInParam()
 {
 if (tb_parameterFile.Text.Equals(""))
 {
 }
 else
 {
 StreamReader paramRd = new StreamReader(tb_parameterFile.Text);

 tb_C1.Text = paramRd.ReadLine();
 tb_C2.Text = paramRd.ReadLine();
 tb_Q1.Text = paramRd.ReadLine();
 tb_Q2.Text = paramRd.ReadLine();
 tb_Q3.Text = paramRd.ReadLine();
 tb_S.Text = paramRd.ReadLine();
 tb_H.Text = paramRd.ReadLine();
 tb_bond012.Text = paramRd.ReadLine();
 tb_bond112.Text = paramRd.ReadLine();
 tb_bond013.Text = paramRd.ReadLine();
 tb_bond113.Text = paramRd.ReadLine();
 tb_bond023.Text = paramRd.ReadLine();
 tb_bond123.Text = paramRd.ReadLine();
 tb_initTemp.Text = paramRd.ReadLine();
 tb_noise.Text = paramRd.ReadLine();
 tb_delta.Text = paramRd.ReadLine();
 tb_alpha12.Text = paramRd.ReadLine();
 tb_alpha13.Text = paramRd.ReadLine();
 tb_alpha23.Text = paramRd.ReadLine();
 tb_beta.Text = paramRd.ReadLine();
 tb_deltaE.Text = paramRd.ReadLine();

 paramRd.Close();
 }
 }
 //---
 }
}

formHeterogeneous.cs
//==
//
// File Name : formHeterogeneous.cs
// Purpose : To create an interface for changing parameter values and
// : selcting a prescibed pattern
//
// Author : Micheal Wang

 45

// Albuquerque Academy
// Created on : December 2007
// Copyright : All Rights Reserved.
//
//==

using System;
using System.IO;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;

namespace NanoSimulator
{
 public partial class formHeterogeneous : Form
 {
 Parameters pHetero;
 OpenFileDialog ofd = new OpenFileDialog();

 /**
 * constructor
 */
 public formHeterogeneous()
 {
 pHetero = new Parameters();
 InitializeComponent();
 }

 //---
 /**
 *
 */
 private void formHeterogeneous_Load(object sender, EventArgs e)
 {

 }

 //---
 /**
 * This closes the heterogeneous input screen
 */
 private void closeToolStripMenuItem_Click(object sender, EventArgs e)
 {
 this.Dispose();
 }

 //---
 /**
 * This also closes the heterogeneous input screen
 */
 private void bt_close_Click(object sender, EventArgs e)
 {
 this.Dispose();
 }

 //---
 /**
 * This resets the parameters to their default values
 */

 46

 private void bt_reset_Click(object sender, EventArgs e)
 {
 tb_Q1.Text = "1.0";
 tb_Q2.Text = "1.0";
 tb_Q3.Text = "1.0";
 tb_S.Text = "1.0";
 tb_H.Text = "1.0";
 tb_bond012.Text = "2.9";
 tb_bond112.Text = "0.0";
 tb_bond013.Text = "2.9";
 tb_bond113.Text = "0.0";
 tb_bond023.Text = "2.9";
 tb_bond123.Text = "0.0";
 tb_initTemp.Text = "400";
 tb_noise.Text = "0";
 tb_delta.Text = "0.3";
 tb_deltaE.Text = "55.1";
 }

 //---
 /**
 * This stores the parameter inputs and checks to make sure that:
 * (1) there are two pattern files
 * (2) the size of the simulation squares are a power of two
 * (3) the size of the pattern file correspondes to the size input
 */
 private void bt_startSim_Click(object sender, EventArgs e)
 {
 pHetero.Q1 = Double.Parse(tb_Q1.Text);
 pHetero.Q2 = Double.Parse(tb_Q2.Text);
 pHetero.Q3 = Double.Parse(tb_Q3.Text);

 pHetero.iTemperature = Double.Parse(tb_initTemp.Text);
 pHetero.sqLength = Int16.Parse(tb_simSqLength.Text);
 pHetero.delta = Double.Parse(tb_delta.Text);

 pHetero.cMatSize = 2 * pHetero.sqLength * pHetero.sqLength;
 pHetero.kSize = pHetero.sqLength * pHetero.sqLength;

 pHetero.S = Double.Parse(tb_S.Text);
 pHetero.H = Double.Parse(tb_H.Text);

 pHetero.o_0_12 = Double.Parse(tb_bond012.Text);
 pHetero.o_1_12 = Double.Parse(tb_bond112.Text);
 pHetero.o_0_13 = Double.Parse(tb_bond013.Text);
 pHetero.o_1_13 = Double.Parse(tb_bond113.Text);
 pHetero.o_0_23 = Double.Parse(tb_bond023.Text);
 pHetero.o_1_23 = Double.Parse(tb_bond123.Text);
 pHetero.a_12 = Double.Parse(tb_alpha12.Text);
 pHetero.a_13 = Double.Parse(tb_alpha13.Text);
 pHetero.a_23 = Double.Parse(tb_alpha23.Text);
 pHetero.beta = Double.Parse(tb_beta.Text);

 pHetero.activationEnergy = Double.Parse(tb_deltaE.Text);

 pHetero.percentNoise = Double.Parse(tb_noise.Text) / 100;

 //there must be a file in the each field to read
 if (tb_patternFileC1.Text.Equals("") || tb_patternFileC2.Text.Equals(""))
 {
 MessageBox.Show("One or both pattern file fields are empty", "Warning", MessageBoxButtons.OK,
MessageBoxIcon.Warning);

 47

 }
 //the FFT algorithm can only transform data with dimension lenghths that are powers of 2
 else if (pHetero.sqLength / 64 != 1 && pHetero.sqLength / 128 != 1 && pHetero.sqLength / 256 != 1 &&
pHetero.sqLength / 512 != 1)
 {
 MessageBox.Show("Size of simulation square must be a power of 2 and in the given range", "Warning",
MessageBoxButtons.OK, MessageBoxIcon.Warning);
 }
 //the image size has to match the simulation square size; otherwise, BitmapConverter will read past the end of
the pattern file
 else if (getImgSize(tb_patternFileC1.Text) < Math.Pow(pHetero.sqLength, 2) ||
getImgSize(tb_patternFileC2.Text) < Math.Pow(pHetero.sqLength, 2))
 {
 MessageBox.Show("The size of one or both of the image files is smaller than the input for the simulation
square size", "Warning", MessageBoxButtons.OK, MessageBoxIcon.Warning);
 }
 else
 {
 BitmapConverter bmpC = new BitmapConverter(pHetero);
 bmpC.convert(tb_patternFileC1.Text, tb_patternFileC2.Text);
 }
 }

 //---
 /**
 * This returns the size of the image file
 */
 private int getImgSize(String imgFilename)
 {
 int picSize = 0;
 StreamReader rd = new StreamReader(imgFilename);
 for (; ;)
 {
 rd.Read();
 picSize++;

 if (rd.EndOfStream == true)
 break;
 }

 rd.Close();
 return (picSize - 54);
 }

 //---
 /**
 * This opens the browse dialog box where the user can choose a
 * pattern file
 */
 private void bt_patternBrowse_Click_1(object sender, EventArgs e)
 {
 openPatternFile("C1");
 }

 //---
 /**
 * This opens the browse dialog box where the user can choose a
 * pattern file
 */
 private void patternFileToolStripMenuItem_Click(object sender, EventArgs e)
 {
 openPatternFile("C1");

 48

 }

 //---
 /**
 * This opens the browse dialog box where the user can choose a
 * pattern file
 */
 private void bt_patternBrowseC2_Click(object sender, EventArgs e)
 {
 openPatternFile("C2");
 }

 //---
 /**
 * This opens the browse dialog box where the user can choose a
 * pattern file
 */
 private void patternFileC2ToolStripMenuItem_Click(object sender, EventArgs e)
 {
 openPatternFile("C2");
 }

 //---
 /**
 * This opens the browse dialog box where the user can choose a
 * parameter file
 */
 private void bt_parameterBrowse_Click(object sender, EventArgs e)
 {
 openParameterFile();
 }

 //---
 /**
 * This opens the browse dialog box where the user can choose a
 * parameter file
 */
 private void parameterFileToolStripMenuItem_Click(object sender, EventArgs e)
 {
 openParameterFile();
 }

 //---
 /**
 * This reloads the parameters from the selected file
 */
 private void bt_reload_Click(object sender, EventArgs e)
 {
 readInParam();
 }

 //---
 /**
 * Method for saving parameters
 */
 private void saveToolStripMenuItem_Click(object sender, EventArgs e)
 {
 SaveFileDialog sfd = new SaveFileDialog();
 sfd.Filter = "Text File|*.txt";
 sfd.Title = "Save Paramters";
 sfd.FileName = "";

 49

 if (sfd.ShowDialog() == DialogResult.OK)
 {
 System.IO.StreamWriter writer = new System.IO.StreamWriter(sfd.FileName);

 writer.WriteLine(tb_Q1.Text);
 writer.WriteLine(tb_Q2.Text);
 writer.WriteLine(tb_Q3.Text);
 writer.WriteLine(tb_S.Text);
 writer.WriteLine(tb_H.Text);
 writer.WriteLine(tb_bond012.Text);
 writer.WriteLine(tb_bond112.Text);
 writer.WriteLine(tb_bond013.Text);
 writer.WriteLine(tb_bond113.Text);
 writer.WriteLine(tb_bond023.Text);
 writer.WriteLine(tb_bond123.Text);
 writer.WriteLine(tb_initTemp.Text);
 writer.WriteLine(tb_noise.Text);
 writer.WriteLine(tb_delta.Text);
 writer.WriteLine(tb_alpha12.Text);
 writer.WriteLine(tb_alpha13.Text);
 writer.WriteLine(tb_alpha23.Text);
 writer.WriteLine(tb_beta.Text);
 writer.WriteLine(tb_deltaE.Text);

 writer.Close();
 }
 }

 //---
 /**
 * This is the method for opening a pattern file for C1 or C2
 */
 private void openPatternFile(String C1orC2)
 {
 ofd.Filter = "Bitmap Image|*.bmp";
 ofd.Title = "Open an Image File";
 ofd.FileName = "";
 ofd.ShowDialog();

 if (C1orC2.Equals("C1"))
 {
 tb_patternFileC1.Text = ofd.FileName;
 }
 else
 {
 tb_patternFileC2.Text = ofd.FileName;
 }
 }

 //---
 /**
 * This is the method for opening a parameter file
 */
 private void openParameterFile()
 {
 ofd.Filter = "Text File|*.txt";
 ofd.Title = "Open Parameter File";
 ofd.FileName = "";
 ofd.ShowDialog();

 tb_parameterFile.Text = ofd.FileName;

 50

 readInParam();
 }

 //---
 /**
 * This reads in the parameters from the selected file
 */
 private void readInParam()
 {
 if (tb_parameterFile.Text.Equals(""))
 {
 }
 else
 {
 StreamReader paramRd = new StreamReader(tb_parameterFile.Text);

 tb_Q1.Text = paramRd.ReadLine();
 tb_Q2.Text = paramRd.ReadLine();
 tb_Q3.Text = paramRd.ReadLine();
 tb_S.Text = paramRd.ReadLine();
 tb_H.Text = paramRd.ReadLine();
 tb_bond012.Text = paramRd.ReadLine();
 tb_bond112.Text = paramRd.ReadLine();
 tb_bond013.Text = paramRd.ReadLine();
 tb_bond113.Text = paramRd.ReadLine();
 tb_bond023.Text = paramRd.ReadLine();
 tb_bond123.Text = paramRd.ReadLine();
 tb_initTemp.Text = paramRd.ReadLine();
 tb_noise.Text = paramRd.ReadLine();
 tb_delta.Text = paramRd.ReadLine();
 tb_alpha12.Text = paramRd.ReadLine();
 tb_alpha13.Text = paramRd.ReadLine();
 tb_alpha23.Text = paramRd.ReadLine();
 tb_beta.Text = paramRd.ReadLine();
 tb_deltaE.Text = paramRd.ReadLine();

 paramRd.Close();
 }
 }
 //---
 }
}

BitmapConverter.cs
//==
//
// File Name : BitmapConverter.cs
// Purpose : To interpret the colors from a pattern file as concentration
// : values
//
// Author : Micheal Wang
// Albuquerque Academy
// Created on : December 2007
// Copyright : All Rights Reserved.
//
//==

using System;
using System.IO;
using System.Collections.Generic;
using System.Text;

 51

namespace NanoSimulator
{
 class BitmapConverter
 {
 Parameters pBmpConv;

 /**
 * constructor
 */
 public BitmapConverter(Parameters p)
 {
 pBmpConv = p;
 }

 //---
 /**
 * This calls the converting method and then calls the simulation
 * window
 */
 public void convert(String filenameC1, String filenameC2)
 {
 pBmpConv.C1Mat = colorToConcentration(filenameC1);
 pBmpConv.C2Mat = colorToConcentration(filenameC2);

 formSimWindow fsm = new formSimWindow(pBmpConv);
 fsm.heterogeneousArray();
 fsm.Show();
 }

 //---
 /**
 * This returns the concentrations corresponding to the colors in
 * the bmp file
 */
 private double[] colorToConcentration(String filename)
 {
 double[] Mat = new double[pBmpConv.cMatSize];
 byte hex1, hex2, hex3;
 int pixelColor;

 FileStream file = new FileStream(filename, FileMode.Open, FileAccess.Read);
 BinaryReader reader = new BinaryReader(file);

 // read past the 54 byte header
 for (int i = 0; i < 54; i++)
 {
 reader.ReadByte();
 }

 for (int i = 0; i < pBmpConv.cMatSize; i += 2)
 {
 hex1 = reader.ReadByte();
 hex2 = reader.ReadByte();
 hex3 = reader.ReadByte();
 pixelColor = (hex1 << 16) + (hex2 << 8) + hex3;
 switch (pixelColor)
 {
 case 0x000000://black
 Mat[i] = 0.99;
 break;
 case 0x061310:
 Mat[i] = 0.95;

 52

 break;
 case 0x0E2520:
 Mat[i] = 0.9;
 break;
 case 0x143830:
 Mat[i] = 0.85;
 break;
 case 0x1D4940:
 Mat[i] = 0.8;
 break;
 case 0x245B4F:
 Mat[i] = 0.75;
 break;
 case 0x2B6F60:
 Mat[i] = 0.7;
 break;
 case 0x32816F:
 Mat[i] = 0.65;
 break;
 case 0x37957D:
 Mat[i] = 0.6;
 break;
 case 0x3EA88D:
 Mat[i] = 0.55;
 break;
 case 0x48B798:
 Mat[i] = 0.5;
 break;
 case 0x59BFA8:
 Mat[i] = 0.45;
 break;
 case 0x6CC6B4:
 Mat[i] = 0.4;
 break;
 case 0x7ECDBD:
 Mat[i] = 0.35;
 break;
 case 0x93D2C5:
 Mat[i] = 0.3;
 break;
 case 0xA4DBCE:
 Mat[i] = 0.25;
 break;
 case 0xB6E2D9:
 Mat[i] = 0.2;
 break;
 case 0xC8EAE3:
 Mat[i] = 0.15;
 break;
 case 0xDAF1ED:
 Mat[i] = 0.1;
 break;
 case 0xEDF8F5:
 Mat[i] = 0.05;
 break;
 default:
 Mat[i] = 0.05;
 break;
 }
 Mat[i + 1] = 0;
 }

 53

 reader.Close();
 file.Close();

 return Mat;
 }
 }
}

formSimWindow.cs
//==
//
// File Name : fromSimWindow.cs
// Purpose : To display the new concentration as well as time elapsed, etc.
//
// Author : Micheal Wang
// Albuquerque Academy
// Created on : December 2007
// Copyright : All Rights Reserved.
//
//==

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;

namespace NanoSimulator
{
 public partial class formSimWindow : Form
 {
 Parameters pSimWin;
 FFTandCalc calc;
 Random r = new Random();
 bool warningAlreadyDisp = false;
 bool loadNextIsClicked = false;
 double tempVar;
 double timeStep;
 double timeElapsed;
 int numTimeStepsPerDisp;

 /**
 * constructor
 */
 public formSimWindow(Parameters p)
 {
 pSimWin = p;
 InitializeComponent();
 }

 //---
 /**
 *
 */
 private void formSimWindow_Load(object sender, EventArgs e)
 {

 }

 //---

 54

 /**
 * A random noise is added to each concentration based on the "percent
 * noise" input. If the sum of the concentrations is greater or
 * equal to 1, they are scaled by their sum.
 */
 public void heterogeneousArray()
 {
 for (int i = 0; i < pSimWin.cMatSize; i += 2)
 {
 pSimWin.C1Mat[i] = pSimWin.C1Mat[i] + pSimWin.percentNoise * (r.NextDouble() - 0.5);
 pSimWin.C2Mat[i] = pSimWin.C2Mat[i] + pSimWin.percentNoise * (r.NextDouble() - 0.5);

 tempVar = pSimWin.C1Mat[i] + pSimWin.C2Mat[i];
 if (tempVar > 1)
 {
 if (warningAlreadyDisp == false)
 {
 MessageBox.Show("Note: C1 + C2 must be < 1. Otherwise, C2[i, j] will scaled i.e. will be divided by
(C1Mat[i] + C2Mat[i])",
 "Warning", MessageBoxButtons.OK, MessageBoxIcon.Warning);
 warningAlreadyDisp = true;
 }
 pSimWin.C1Mat[i] = pSimWin.C1Mat[i] / tempVar;
 pSimWin.C2Mat[i] = pSimWin.C2Mat[i] / tempVar;
 }
 }

 tb_timeStep.Text = "0.001";
 tb_temp.Text = pSimWin.iTemperature + "";
 calc_k();
 }

 //---
 /**
 * The homogeneous arrays are assigned the input values. The addition
 * of noise and scaling are similar to those in heterogeneousArray().
 */
 public void homogeneousArray()
 {
 pSimWin.C1Mat = new double[pSimWin.cMatSize];
 pSimWin.C2Mat = new double[pSimWin.cMatSize];

 for (int i = 0; i < pSimWin.cMatSize; i += 2)
 {
 pSimWin.C1Mat[i] = pSimWin.homoC1 + pSimWin.percentNoise * (r.NextDouble() - 0.5);
 pSimWin.C2Mat[i] = pSimWin.homoC2 + pSimWin.percentNoise * (r.NextDouble() - 0.5);

 pSimWin.C1Mat[i + 1] = 0.0;
 pSimWin.C2Mat[i + 1] = 0.0;

 tempVar = pSimWin.C1Mat[i] + pSimWin.C2Mat[i];
 if (tempVar > 1)
 {
 if (warningAlreadyDisp == false)
 {
 MessageBox.Show("Note: C1 + C2 must be < 1. Otherwise, C2[i, j] will scaled i.e. will be divided by
(C1Mat[i] + C2Mat[i])",
 "Warning", MessageBoxButtons.OK, MessageBoxIcon.Warning);
 warningAlreadyDisp = true;
 }

 pSimWin.C1Mat[i] = pSimWin.C1Mat[i] / tempVar;

 55

 pSimWin.C2Mat[i] = pSimWin.C2Mat[i] / tempVar;
 }
 }

 tb_timeStep.Text = "0.0001";
 tb_temp.Text = pSimWin.iTemperature + "";
 calc_k();
 }

 //---
 /**
 * Since the frequencies in Fourier space remain unchanged throughout
 * the entire simulation, they are calculated ahead of time (see
 * Final Report for details on calculating k).
 */
 private void calc_k()
 {
 double freq1 = 0;
 double freq2 = 0;
 double fourCellSize = 2 * Math.PI / (pSimWin.sqLength * pSimWin.delta);
 int j = 0;

 pSimWin.k = new double[pSimWin.kSize];

 for (int i = 0; i < pSimWin.kSize; i++)
 {
 pSimWin.k[i] = Math.Sqrt(freq1 * freq1 + freq2 * freq2);

 if ((i + 1) % pSimWin.sqLength <= pSimWin.sqLength / 2)
 freq1 += fourCellSize;
 else
 freq1 -= fourCellSize;

 if ((i + 1) % pSimWin.sqLength == 0)
 {
 if ((j + 1) <= pSimWin.sqLength / 2)
 freq2 += fourCellSize;
 else
 freq2 -= fourCellSize;

 freq1 = 0;
 j++;
 }
 }
 }

 //---
 /**
 * This closes simulation window
 */
 private void bt_close_Click(object sender, EventArgs e)
 {
 this.Dispose();
 }

 //---
 /**
 * This calls the calculations class when the button is clicked and
 * the displaying method when the calculations a finished
 */
 private void bt_next_Click(object sender, EventArgs e)
 {

 56

 timeStep = Double.Parse(tb_timeStep.Text);
 numTimeStepsPerDisp = Int16.Parse(tb_dispEvery.Text);
 timeElapsed += numTimeStepsPerDisp * timeStep;

 //This prevents calling FFTandCalc again and erasing some of the calculated parameters
 if (loadNextIsClicked == false)
 {
 calc = new FFTandCalc(pSimWin);
 loadNextIsClicked = true;
 }

 bt_next.Hide();
 bt_close.Hide();
 tb_dispEvery.Hide();
 tb_timeStep.Hide();
 tb_temp.Hide();

 calc.calc_TempConstants(Double.Parse(tb_temp.Text));
 calc.calcNext(numTimeStepsPerDisp, timeStep); //contains a loop

 bt_next.Show();
 bt_close.Show();
 tb_dispEvery.Show();
 tb_timeStep.Show();
 tb_temp.Show();

 Graphics g = p_graphics.CreateGraphics();
 Rectangle r = new Rectangle(0, 0, 1165, 559);
 PaintEventArgs e1 = new PaintEventArgs(g, r);
 p_graphics_Paint(sender, e1);
 }

 //---
 /**
 * This displays the calcultated concentrations. In addition, the
 * outline rectangles, component labels, color scheme, time, and
 * tmperature are displayed.
 */
 private void p_graphics_Paint(object sender, PaintEventArgs e)
 {
 int xyShift = (512 - pSimWin.sqLength) / 2; //recenters simulation squares when their size is changed
 int locationX, locationY;
 int xy_to_i;
 SolidBrush colorBrush;
 SolidBrush stringBrush = new SolidBrush(Color.Black);
 Pen pen = new Pen(Color.Black, 1);
 Font font;

 //outline rectangles
 int simRectSize = pSimWin.sqLength + 1;
 locationX = 15 + xyShift;
 locationY = 25 + xyShift;

 e.Graphics.DrawRectangle(pen, locationX, locationY, simRectSize, simRectSize);
 e.Graphics.DrawRectangle(pen, locationX + 620, locationY, simRectSize, simRectSize);

 //color scheme
 font = new Font(FontFamily.GenericMonospace, 9);
 for (int i = 0; i < 100; i += 5)
 {
 colorBrush = new SolidBrush(getColor(i / 100.0));
 e.Graphics.FillRectangle(colorBrush, 597, 447 - 4 * (i - 2), 30, 10);

 57

 e.Graphics.DrawString(i / 100.0 + "-" + (i + 5) / 100.0, font, stringBrush, 533, 445 - 4 * (i - 2));
 }

 //simulation square labels
 font = new Font(FontFamily.GenericMonospace, 12);
 e.Graphics.DrawString("Species 1", font, stringBrush, locationX, locationY - 20);
 e.Graphics.DrawString("Species 2", font, stringBrush, locationX + 620, locationY - 20);

 //total scaled time elapsed and current temperature
 time.Text = timeElapsed + "";
 temperature.Text = tb_temp.Text + " K";

 //display new concentrations
 for (int y = 0; y < pSimWin.sqLength; y++)
 {
 for (int x = 0; x < pSimWin.sqLength; x++)
 {
 xy_to_i = 2 * (pSimWin.sqLength * y + x);
 locationX = xyShift + x + 16;
 locationY = 25 + xyShift + pSimWin.sqLength - y;

 colorBrush = new SolidBrush(getColor(pSimWin.C1Mat[xy_to_i]));
 e.Graphics.FillRectangle(colorBrush, locationX, locationY, 1, 1);

 colorBrush = new SolidBrush(getColor(pSimWin.C2Mat[xy_to_i]));
 e.Graphics.FillRectangle(colorBrush, locationX + 620, locationY, 1, 1);
 }
 }
 }

 //---
 /**
 * Returns a color corresponding to a range of concentrations.
 */
 private Color getColor(double CValue)
 {
 if (CValue < 1 && CValue > 0.95)
 return Color.Black;
 else if (CValue <= 0.95 && CValue > 0.9)
 return Color.FromArgb(16, 19, 6);
 else if (CValue <= 0.9 && CValue > 0.85)
 return Color.FromArgb(32, 37, 14);
 else if (CValue <= 0.85 && CValue > 0.8)
 return Color.FromArgb(48, 56, 20);
 else if (CValue <= 0.8 && CValue > 0.75)
 return Color.FromArgb(64, 73, 29);
 else if (CValue <= 0.75 && CValue > 0.7)
 return Color.FromArgb(79, 91, 36);
 else if (CValue <= 0.7 && CValue > 0.65)
 return Color.FromArgb(96, 111, 43);
 else if (CValue <= 0.65 && CValue > 0.6)
 return Color.FromArgb(111, 129, 50);
 else if (CValue <= 0.6 && CValue > 0.55)
 return Color.FromArgb(125, 149, 55);
 else if (CValue <= 0.55 && CValue > 0.5)
 return Color.FromArgb(141, 168, 62);
 else if (CValue <= 0.5 && CValue > 0.45)
 return Color.FromArgb(152, 183, 72);
 else if (CValue <= 0.45 && CValue > 0.4)
 return Color.FromArgb(168, 191, 89);
 else if (CValue <= 0.4 && CValue > 0.35)
 return Color.FromArgb(180, 198, 108);

 58

 else if (CValue <= 0.35 && CValue > 0.3)
 return Color.FromArgb(189, 205, 126);
 else if (CValue <= 0.3 && CValue > 0.25)
 return Color.FromArgb(197, 210, 147);
 else if (CValue <= 0.25 && CValue > 0.2)
 return Color.FromArgb(206, 219, 164);
 else if (CValue <= 0.2 && CValue > 0.15)
 return Color.FromArgb(217, 226, 182);
 else if (CValue <= 0.15 && CValue > 0.1)
 return Color.FromArgb(227, 234, 200);
 else if (CValue <= 0.1 && CValue > 0.05)
 return Color.FromArgb(237, 241, 218);
 else if (CValue <= 0.05 && CValue > 1E-6)
 return Color.FromArgb(245, 248, 237);
 else
 return Color.White;
 }
 //---
 }
}

FFTandCalc
//==
//
// File Name : FFTandCalc.cs
// Purpose : To perform all of the calculations
//
// Author : Micheal Wang
// Albuquerque Academy
// Created on : December 2007
// Copyright : All Rights Reserved.
//
//==

using System;
using System.Collections.Generic;
using System.Text;

namespace NanoSimulator
{
 class FFTandCalc
 {
 Parameters pfc;

 /**
 * constructor
 */
 public FFTandCalc(Parameters p)
 {
 pfc = p;
 }

 double tempExpTerm, tempTermA12, tempTermA13, tempTermA23, tempTermBeta, tempRatio;

 //---
 /**
 * This calculates the temperature constants used in calculations
 */
 public void calc_TempConstants(double newTemp1)
 {
 double R = 8.314472; //ideal gas constant J/(mol K)
 double iTemp = pfc.iTemperature;

 59

 tempExpTerm = Math.Pow(Math.E, 1000 * pfc.activationEnergy / R * (1 / iTemp - 1 / newTemp1));
 tempTermA12 = 1 + pfc.a_12 * (iTemp - newTemp1);
 tempTermA13 = 1 + pfc.a_13 * (iTemp - newTemp1);
 tempTermA23 = 1 + pfc.a_23 * (iTemp - newTemp1);
 tempTermBeta = 1 + pfc.beta * (iTemp - newTemp1);
 tempRatio = newTemp1 / iTemp;
 }

 //---
 /**
 * This calculates the next timestep.
 *
 * Because of the natural log in the P1 and P2 functions, C1 and C2
 * cannot equal zero and their sum cannot exceed one. These
 * restrictions are checked for.
 *
 * The next timestep is calculated.
 */
 public void calcNext(int numLoops, double timeStep)
 {
 int[] ithDimLength = { pfc.sqLength, pfc.sqLength };
 double[] P1 = new double[pfc.cMatSize];
 double[] P2 = new double[pfc.cMatSize];
 double C1, C2, C11, C22, tempVar, tempVar1;

 for (int numTimeSteps = 0; numTimeSteps < numLoops; numTimeSteps++)
 {
 for (int i = 0; i < pfc.cMatSize; i += 2)
 {
 C11 = (C1 = pfc.C1Mat[i]);
 C22 = (C2 = pfc.C2Mat[i]);

 tempVar = 1 - C1 - C2;

 if (C1 <= 0)
 {
 C11 = 1E-20;
 C1 = 0;
 pfc.C1Mat[i] = 0;
 }

 if (C2 <= 0)
 {
 C22 = 1E-20;
 C2 = 0;
 pfc.C2Mat[i] = 0;
 }

 tempVar1 = C1 + C2;
 if (tempVar1 >= 1)
 {
 C1 = (pfc.C1Mat[i] = pfc.C1Mat[i] / tempVar1);
 C2 = (pfc.C2Mat[i] = pfc.C2Mat[i] / tempVar1);
 tempVar = 1E-20;
 }

 // calculate P1 and P2, "Simulation on nanoscale self-assembly of ternary-epilayers" page 25
 P1[i] = Math.Log(C11 / tempVar, Math.E) * tempRatio;
 P1[i] += C2 * (pfc.o_0_12 + pfc.o_1_12 * ((2 * C1) - C2)) * tempTermA12;
 P1[i] -= C2 * (pfc.o_0_23 + pfc.o_1_23 * ((2 * C1) + (3 * C2) - 2)) * tempTermA23;
 P1[i] += (pfc.o_0_13 * (1 - (2 * C1) - C2) + pfc.o_1_13 *

 60

 ((6 * C1) + (2 * C2) - (6 * C1 * C1) - (C2 * C2) - (6 * C1 * C2) - 1)) * tempTermA13;

 P2[i] = Math.Log(C22 / tempVar, Math.E) * tempRatio;
 P2[i] += C1 * (pfc.o_0_12 + pfc.o_1_12 * (C1 - (2 * C2))) * tempTermA12;
 P2[i] -= C1 * (pfc.o_0_13 + pfc.o_1_13 * ((3 * C1) + (2 * C2) - 2)) * tempTermA13;
 P2[i] += (pfc.o_0_23 * (1 - C1 - (2 * C2)) + pfc.o_1_23 *
 ((2 * C1) + (6 * C2) - (C1 * C1) - (6 * C2 * C2) - (6 * C1 * C2) - 1)) * tempTermA23;

 P1[i + 1] = 0;
 P2[i + 1] = 0;
 }

 nDimFFT(P1, P2, ithDimLength, 1);//transform P1 and P2 from real to Fourier space
 nDimFFT(pfc.C1Mat, pfc.C2Mat, ithDimLength, 1);//transform C1 and C2 from real to Fourier space

 // update concentrations, "Simulation on nanoscale self-assembly of ternary-epilayers" page 25
 double a, b, c, d, determinant;
 double termC1P1r, termC1P1i, termC2P2r, termC2P2i, term1, term2;
 int ii;
 for (int i = 0; i < pfc.cMatSize; i += 2)
 {
 ii = i >> 1; // i/2
 term1 = pfc.k[ii] * pfc.k[ii] * timeStep * tempExpTerm;
 term2 = 2 * term1 * pfc.k[ii];

 a = 1 + term2 * (pfc.k[ii] - pfc.Q1 / tempTermBeta);
 b = -pfc.Q2 / tempTermBeta * term2;
 c = pfc.S * b;
 d = 1 + term2 * pfc.S * (pfc.H * pfc.k[ii] - pfc.Q3 / tempTermBeta);
 determinant = 1 / (a * d - b * c); //used to find inverse of the matrix

 termC1P1r = pfc.C1Mat[i] - term1 * P1[i]; //real part
 termC1P1i = pfc.C1Mat[i + 1] - term1 * P1[i + 1]; //imaginary part
 termC2P2r = pfc.C2Mat[i] - term1 * pfc.S * P2[i]; //real part
 termC2P2i = pfc.C2Mat[i + 1] - term1 * pfc.S * P2[i + 1]; //imaginary part

 pfc.C1Mat[i] = determinant * (d * termC1P1r - b * termC2P2r);
 pfc.C1Mat[i + 1] = determinant * (d * termC1P1i - b * termC2P2i);
 pfc.C2Mat[i] = determinant * (-c * termC1P1r + a * termC2P2r);
 pfc.C2Mat[i + 1] = determinant * (-c * termC1P1i + a * termC2P2i);
 }

 nDimFFT(pfc.C1Mat, pfc.C2Mat, ithDimLength, -1); //transform C1 and C2 from Fourier to real space
 for (int i = 0; i < pfc.cMatSize; i += 2)
 {
 //The FFT algorithm returns the real data times the product of the lengths of each dimension
 pfc.C1Mat[i] = pfc.C1Mat[i] / pfc.kSize;
 pfc.C2Mat[i] = pfc.C2Mat[i] / pfc.kSize;

 pfc.C1Mat[i + 1] = 0; //reduce numerical error. Imaginary part supposed to be zero anyways.
 pfc.C2Mat[i + 1] = 0; //reduce numerical error

 tempVar1 = pfc.C1Mat[i] + pfc.C2Mat[i];
 if (tempVar1 > 1)
 {
 pfc.C1Mat[i] = pfc.C1Mat[i] / tempVar1;
 pfc.C2Mat[i] = pfc.C2Mat[i] / tempVar1;
 }
 }
 }
 }

 61

 //---
 /**
 * FFT algorithm. Slightly altered to transform two sets of data at
 * once.
 *
 * Adopted from "Numerical Recipes in C++", pages 528-529.
 */
 private void nDimFFT(double[] data1, double[] data2, int[] nn, int isign)
 {
 int idim, i1, i2, i3, i2rev, i3rev, ip1, ip2, ip3, ifp1, ifp2;
 int ibit, k1, k2, n, nprev, nrem, ntot;
 double theta, tempi, tempr, wi, wpi, wr, wpr, wtemp, tempSwap;

 int ndim = nn.Length;
 ntot = data1.Length >> 1;
 nprev = 1;
 //bit reverse section
 for (idim = ndim - 1; idim >= 0; idim--)
 {
 n = nn[idim];
 nrem = ntot / (n * nprev);
 ip1 = nprev << 1;
 ip2 = ip1 * n;
 ip3 = ip2 * nrem;
 i2rev = 0;
 for (i2 = 0; i2 < ip2; i2 += ip1)
 {
 if (i2 < i2rev)
 {
 for (i1 = i2; i1 < i2 + ip1 - 1; i1 += 2)
 {
 for (i3 = i1; i3 < ip3; i3 += ip2)
 {
 i3rev = i2rev + i3 - i2;

 //swap data1[i3] and data1[i3rev]
 tempSwap = data1[i3];
 data1[i3] = data1[i3rev];
 data1[i3rev] = tempSwap;

 //swap data1[i3 + 1] and data1[i3rev + 1]
 tempSwap = data1[i3 + 1];
 data1[i3 + 1] = data1[i3rev + 1];
 data1[i3rev + 1] = tempSwap;

 //swap data2[i3] and data2[i3rev]
 tempSwap = data2[i3];
 data2[i3] = data2[i3rev];
 data2[i3rev] = tempSwap;

 //swap data2[i3 + 1] and data2[i3rev + 1]
 tempSwap = data2[i3 + 1];
 data2[i3 + 1] = data2[i3rev + 1];
 data2[i3rev + 1] = tempSwap;
 }
 }
 }
 ibit = ip2 >> 1;
 while ((ibit >= ip1) && (i2rev + 1 > ibit))
 {
 i2rev -= ibit;
 ibit >>= 1;

 62

 }
 i2rev += ibit;
 }
 ifp1 = ip1;
 //FFT calculations section
 while (ifp1 < ip2)
 {
 ifp2 = ifp1 << 1;
 theta = isign * 6.28318530717959 / (ifp2 / ip1);
 wtemp = Math.Sin(0.5 * theta);
 wpr = -2.0 * wtemp * wtemp;
 wpi = Math.Sin(theta);
 wr = 1.0;
 wi = 0.0;
 //Another name for the following method if the "Butterfly method"
 for (i3 = 0; i3 < ifp1; i3 += ip1)
 {
 for (i1 = i3; i1 < i3 + ip1 - 1; i1 += 2)
 {
 for (i2 = i1; i2 < ip3; i2 += ifp2)
 {
 k1 = i2;
 k2 = k1 + ifp1;

 //Danielson-Lanczos Formula for data 1
 tempr = wr * data1[k2] - wi * data1[k2 + 1];
 tempi = wr * data1[k2 + 1] + wi * data1[k2];
 data1[k2] = data1[k1] - tempr;
 data1[k2 + 1] = data1[k1 + 1] - tempi;
 data1[k1] += tempr;
 data1[k1 + 1] += tempi;

 //Danielson-Lanczos Formula for data 2
 tempr = wr * data2[k2] - wi * data2[k2 + 1];
 tempi = wr * data2[k2 + 1] + wi * data2[k2];
 data2[k2] = data2[k1] - tempr;
 data2[k2 + 1] = data2[k1 + 1] - tempi;
 data2[k1] += tempr;
 data2[k1 + 1] += tempi;
 }
 }
 wr = (wtemp = wr) * wpr - wi * wpi + wr;
 wi = wi * wpr + wtemp * wpi + wi;
 }
 ifp1 = ifp2;
 }
 nprev *= n;
 }
 }
 }
}

Parameters.cs
//==
//
// File Name : Parameters.cs
// Purpose : To store all of the parameter that get tranferred around a lot
//
// Author : Micheal Wang
// Albuquerque Academy
// Created on : December 2007
// Copyright : All Rights Reserved.

 63

 64

//
//==

using System;
using System.Collections.Generic;
using System.Text;

namespace NanoSimulator
{
 public struct Parameters
 {
 public double[] C1Mat; //concentration 1 array
 public double[] C2Mat; //concentration 2 array
 public double[] k; //magnitude of frequency vector

 public double homoC1; //homogeneous concentration 1 value
 public double homoC2; //homogeneous concentration 2 value

 public int sqLength; //length of a side of the simulation sq
 public double delta; //nanometers per pixel
 public double iTemperature; //initial temperature

 public int cMatSize; //size of the concentrations arrays
 public int kSize; //size magnitude of frequency vector

 public double Q1; //constant
 public double Q2; //constant
 public double Q3; //constant

 public double S; //ratio of moltilities (M2/M1)
 public double H; //ratio of energies per species (h2/h1)

 //o is omega
 public double o_0_12; //bonding strength 0 from species 1 to 2
 public double o_1_12; //bonding strength 1 from species 1 to 2
 public double o_0_23; //bonding strength 0 from species 2 to 3
 public double o_1_23; //bonding strength 1 from species 2 to 3
 public double o_0_13; //bonding strength 0 from species 1 to 3
 public double o_1_13; //bonding strength 1 from species 1 to 3
 //a is alpha
 public double a_12; //temperature constant
 public double a_13; //temperature constant
 public double a_23; //temperature constant
 public double beta; //temperature constant

 public double activationEnergy; //Energy required for a reaction to start

 public double percentNoise; //percent of disturbance on the surface
 }
}

