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EXECUTIVE SUMMARY

America’s air traffic control system is becoming overloaded. With our national economy and 

national security relying on this critical infrastructure, a reliable and efficient air traffic control system is 

necessary. Even now, airports such as O’Hare in Chicago have only 53.49 percent of its flights arrive on 

time; air traffic issues like concession caused the majority of these delays. 

In finding a solution to this dire situation, UPS has proposed a system known as “Continuous 

Descent Arrivals” to expedite the arrivals procedure. By offloading air traffic control for this process to 

pilots equipped with specialized instruments, UPS believes that the system could have large efficiency, 

environmental, and cost benefits. 

Our project creates a computational simulation of the arrival process, a major bottleneck for the 

air traffic control system. Using UPS’s “Continuous Descent Arrivals” system as an example, we created 

a simulation that policy and decision makers could use to test and determine the benefits and drawbacks 

of new, proposed systems to improve the efficiency and security of our nation’s air traffic control 

structure. 

We created an object-oriented model in Java to simulate the two systems under identical 

conditions. Run from the class Driver, the program also used other classes like Airplane to create a 

framework that allowed for full functionality with intuitive inheritance. The simulation modeled 

specifically what we needed: from the moment when the airplanes enter its holding patterns (where they 

hold due to heavy airport traffic) to when the airplanes land at the airport. Using two systems to space 

each aircraft as it approaches the airstrip, we were able to test each of the different air traffic control 

systems. The current system spaced based on distances, while the UPS system spaced based on time. The 

program also created string snapshots that contained all of the major information about each plane in the 

system. These snapshots were used in a separate MATLAB visualization software that we developed to 

debug and analyze the simulation as well as gain a greater perspective on what is happening in the model 

at any given time. 

The results showed that the present-day air traffic control procedures for airplane arrivals are in 

fact more efficient. Using visualization software that we developed in MATLAB, we were able to see 

how models of the present-day and proposed systems diverged after a simulated hour.  

However, testing this one solution was only part of our problem. We conclude that we 

successfully created a framework that can be used to test future solutions. By appropriately applying the 

principles of object-oriented programming along with effective algorithms to make the program 

simulation run reliably and efficiently, this program can provide the basis for many future studies. This is 

certainly an important conclusion of the capabilities of our work and also a very important achievement. 

With numerous areas to expand upon this project that we list in our report, this idea of a strong framework 

is ever more valuable. 
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INTRODUCTION 

Our nation’s air traffic control system is an important piece of infrastructure supporting 

our nation’s economic and national security goals. As air travel is a key tool to quickly transport 

cargo, business travelers, and more, an efficient air traffic control system is essential. 

Additionally, the attacks on 9/11 demonstrated the need for a secure and reliable system of air 

traffic control for broader national security. Specifically, the 9/11 Commission Report cited our 

nation’s failures in imagination, policy capabilities, and management in many areas of 

government, including air traffic control. This project fits into the larger puzzle of fixing this 

system by addressing issues of reliability and efficiency. While the system is facing a number of 

new challenges, like a large number of retiring controllers over the next decade or implementing 

the 9/11 Commission recommendations, the ideas presented in this report and project would be 

valuable in securing aspects of our nation’s economy and security. 

 

THE CURRENT AIR TRAFFIC CONTROL SYSTEM 

The Federal Aviation Administration (FAA) manages the air traffic control system. 

Through the course of a flight, a plane passes through a number of phases as outlined in 

Appendix A, Figure 1. Through the phases, air traffic responsibly of the plane is transferred 

between numerous controllers. 

In order to manage the traffic for the whole nation, the United States is divided into 21 

control airspaces, each managed by its own air route traffic control center (ARTCC) (see 

Appendix A, Figure 2). The ARTCCs control airplanes in the “en route” phase. As planes cross 

between the various control centers’ airspaces, centers pass the flight information and 

responsibilities onto the next center. 

4 



Within each center’s airspace, there are TRACON (Terminal Radar Approach CONtrol) 

centers and air traffic towers that control the air space surrounding airports. During planes’ 

ascent and descent phases, the local air traffic towers control the planes’ movement. By directing 

departing and arriving airplanes through specific paths known as air corridors until the planes 

leave the TRACON’s airspace, air traffic controllers are able to better manage the airplanes and 

prevent crashes in the high-traffic airspaces around airports. 

While there may be approximately 5,000 planes above America during peak traffic 

periods, the current system for managing air traffic during the “en route” phase generally only 

needs to concentrate on keeping a safe separation between planes and on ensuring planes avoid 

areas with bad weather. With increasing air traffic, the FAA has reduced the horizontal safe 

separation distance to 5 mi. at cruising altitude. 

While there may be significant traffic in various parts of the country, the bottleneck for 

air traffic has become the airports themselves. While there is significant space far above in the 

air to accommodate a number of planes, airports can only have a limited number of arriving and 

departing flights per minute. The number of available runways dictates this maximum rate. 

Under today’s system, air traffic controllers are directing planes as they pass into and 

through air corridors during the departure or arrival sequences. Planes are first directed to the 

initial approach fixes (IAF), specific points where airplanes congregate before entering the air 

corridors (see Appendix A, Figure 3). From the IAF, they go to the intermediate fix (IF), where 

airplanes go into “holding pattern.” Here, the planes travel in a circle or oval that takes two to 

four minutes to travel per revolution. If multiple planes are in holding pattern, than air traffic 

controllers vertically space each plane by 1000 ft (see Appendix A, Figure 4). Each plane moves 
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down 1000 ft as planes are cleared for landing. When a plane is at the bottom on the holding 

pattern queue, then it is next in line to be cleared for landing. 

After air traffic controllers clear a plane for landing, the airplane exits its holding pattern 

and proceeds to the runway. Air traffic controllers are responsible for setting the distances 

between the planes that are making their way to the runway. If one plane encounters an air 

current that makes it faster or slower, the air traffic controller must compensate and adjust the 

spacing for all the planes behind it. For obvious safety reasons, this system requires significant 

spacing between individual planes to account for unforeseen velocity variations and for the time 

it takes air traffic controllers to correct these variations. 

 

THE PUSH FOR A NEW SYSTEM 

While this system has served the nation well for the past decades, with increasing air 

traffic, airports need to be able to land more planes per minute. John F. Kennedy Airport in New 

York City is currently handling 100 takeoffs/landings during peak hours even though it was only 

designed to handle 80. While JFK Airport has tried to apply flight caps during peak hours and 

use higher fares to encourage people to travel during off-peak hours, this only hurts consumers 

and detracts from the convenience that air travel is supposed to provide. 

New, proposed systems of dealing with landings and arrivals have emerged because of 

these issues. A system that the FAA has been seriously considering and that we explore in our 

program was first proposed by the United Parcel Service (UPS). The name of the proposed 

system is “Continuous Descent Arrivals.” Rather than having TRACON and air tower controllers 

set the distances for landing and departing planes, UPS proposed that individual planes upgrade 

their 50-year old, onboard equipment to automatically space the plane based on the velocity and 
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distance of the plane in front so that the planes would really be spaced by time. Initial trials by 

UPS showed that this system would allow nearly 50-100 gallons of fuel to be saved per flight as 

pilots can both turn off thrusters and other gas guzzling equipment as well as land a few minutes 

earlier. With the cost of gas hitting over $100 per barrel, they calculated that this improvement 

could account for millions of dollars in savings per year for their organization and improvements 

in the environmental impact of their business. 

Other potential benefits of the proposed system include more on-time flights. O’Hare 

International Airport in Chicago had only 53.49 percent of flights arriving on time in January 

2008 according to Department of Transportation statistics. The vast majority of these delays 

were related to air traffic delays, and only 0.7 percent of the O’Hare flights experienced weather-

related delays. Clearly, these types of improvements are vital and will have a very significant 

impact on the reliability of our air travel system, both today and in the future. Therefore, it is 

essential that the nation and its government through the FAA fully analyze potential solutions as 

this project does. 
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PROBLEM STATEMENT 

Our project investigates new solutions to our nation’s air traffic dilemma. Specifically, 

we investigate how the FAA can improve the air traffic procedures associated with arriving and 

departing planes to make the overall air travel system more reliable. By simulating solutions to 

this key bottleneck in the air traffic control system, we can determine the benefits and drawbacks 

of each a potential solution compared to both the current system and to other proposed solutions. 

Described in the introduction, we concentrate on the “Continuous Descent Arrivals” 

solution championed by UPS. Our project thoroughly investigates this solution as an example of 

a use and benchmark of our simulation. With the model and software we develop, we hope to 

answer how much the UPS system can improve air traffic efficiency during the arrival phase of a 

flight (specifically, the time between entering the holding pattern to touching down on the 

runway). Furthermore, we hope to make this framework expandable so that our solution can be 

applied to future proposals to solving our country’s critical situation regarding air traffic control. 
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METHOD & COMPUTATIONAL MODEL 

BASIC OVERVIEW 

In order to achieve our goal of simulating both a model of the current aircraft system and 

our proposed model, we decided to use a two program system. The first program would be our 

computational program in Java. We choose Java because it is an object-oriented language, it is 

easy to find compilers for it, it can be used on multiple platforms, it is fairly easy to program in, 

and we are more familiar with it than other languages. This allows us to use dynamic data 

structures as well as other intricate and beneficial features of the language easily without using 

up time looking through a textbook when we could be improving our algorithm. 

This program runs both the current and proposed model. It simulates an hour at an airport 

where airplanes are randomly received at the holding fix, allowed to begin approach, and finally 

land at the airport. Even though the airplanes come to the airport randomly, the times that the 

airplanes arrive are saved so that each model runs the same simulation. This was implemented so 

that there aren’t any anomalies causing one of the models to perform better when in reality it 

would have performed worse in either situation. 

After the data is displayed on the screen, it is copied, saved, and entered into our 

visualization program. This program, written in MATLAB, provides us with an important visual 

representation of what is happening in the simulation. It is difficult to understand what is truly 

going on if all one sees is numbers displayed from a program, while a screen that shows were all 

the airplanes are and where they are going really lets people understand what the program is 

doing and what it is telling us. We used MATLAB because of its ease with three dimensional 

graphics. 

Each of these components to the program are discussed in the following subsections. 
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COMPUTATIONAL JAVA SIMULATION 

At the heart of our project is the Java simulation. It consists of 6 classes: Airplane, 

Airport, Debugger, Driver, Program, and Runway. Debugger was used to test some other classes 

to make sure they worked properly. Runway and Airport, are classes implemented in the 

program, but they are mostly for generalization purposes and will not be thoroughly discussed, 

through are important for applying our simulation outside of this single test of the UPS system. 

Program is a class that all the other inherits from, and it has some nice functions that all the 

classes might use like a random integer generator and calculations for how fast an airplane may 

travel in certain areas (as well as other related methods). The main classes are Airplane, which 

gives all the information about the airplane as well as what it can do, and Driver, which contains 

the main method and runs the simulation. 

Because we have a simulation, the program has to define a time interval in which to run. 

In doing so, we decided that the program should run during precisely 1 hour and run on time-

steps equivalent to 1 second each. Our original program had time steps of 15 seconds, but 

noticing that the program ran almost instantaneously, we decided to make it more precise with 1 

second time-steps, giving greater precision to our outputs. 

When the program runs, its first action is to create 30 random “times” in the range of 0 to 

3600 (including 0, excluding 3600). This is equivalent of the program choosing 30 different 

times within the course of an hour. These times will then be sorted using an insertion sort method 

so that they can be used in the program’s model methods as the times when airplanes first arrive 

at the holding fix. Each model then runs almost completely inside one for loop which goes from 

0 to 3600 (excludes 3600) to essentially run through an hour of aircraft traffic. We define each 

cycle through this for loop to be one time step. 
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Next, the program runs a simulation of what will happen if the current model for aircraft 

landing is used. Here, aircraft will wait in the holding pattern above the fix until they are cleared 

to begin landing (meaning that the aircraft in front of them is at least 5 nautical miles away). The 

method begins by seeing if an aircraft arrives or not. If an aircraft is supposed to arrive, a new 

object is placed at the beginning of the linked list of aircraft and plane is placed either at 3000 

feet in the holding pattern above the fix (which is 10 nautical miles away from the airport) if 

there are no other aircraft there, or 1000 feet above the highest plane at the fix if aircraft are 

present. The planes will then begin to approach once as they are cleared (5 nautical miles away 

from plane in front of them) and the planes above that one will descend to fill in the gap below. 

At this point in running the program, the planes are descending in their holding pattern. 

The program calls up each plane one-by-one starting with the one closest to land. It sets this 

plane to begin its approach to the runway while moving each of the other planes down in 

altitude. A method in the Airplane class called hasClearance() returns true if the plane can 

approach and false if it cannot. If it returns false, the plane stays in its holding pattern, but if it 

returns true, then the plane will move forward. The program then calculates precisely how far the 

plane may move in one second and how far it descends. The altitude (in feet) is always 300 times 

the number of nautical miles the plane is away from the airport. This gives a steady descent that 

is reasonable with given real life parameters. 

The plane maintains a safe distance away from the one in front of it, and it will slow 

down if necessary. It will also try to go the speed that is designated inside of its zone. These 

speeds are: 200 knots for 5-10 nautical miles away from the airport, 170 knots for 3-5 nautical 

miles, 160 knots for 2-3 nm, 150 knots for 1-2, and 140 knots within 1 nautical mile. This insures 

that the planes travel at safe speeds and approach evenly. If a plane lands at any time, it is 
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immediately removed from the linked list because it is on the ground and not affecting our 

simulation. 

While all of this is going on, a method called makeMATLABMatrix(Airplane plane, int 

timeStepNumber) is called every 30 time steps. This method takes all the information of the 

planes and outputs it in a string that can then be copied into our visualization program so that we 

can see what is going on for that time step. 

These above state procedures describe the current air traffic control system. The UPS 

system follows the majority of these steps as well with one key difference. Instead of making 

spacing calculations so that the aircraft are always 5 nautical miles apart, the UPS system’s 

simulation makes sure that the planes are always 2 minutes apart, our assumption for the 

maximum capacity of the runway. Therefore, the only methods that change are the 

hasClearance() method and the approach() method since they both are affected by how far the 

next plane is from the current plane. This key difference reflects the basic principle 

differentiating the current system to the UPS system, according to our background research. 

The program then gives us the data we need to input into our MATLAB program to see if 

the backups occur more in the current system or the UPS system. 

 

ASSUMPTIONS AND THEIR EFFECTS ON THE  SIMULATION 

In order to construct the program, we made many assumptions and simplifications that 

we were able to reason would not significantly affect our results. First, planes that are outside of 

the system – i.e. aircraft that are taking off, en-route, approaching the fix, etc. – are not critical to 

our program as these aircrafts do not interfere with the arrival procedures and the proposed 

Continuous Descent Arrival system. Similarly, once the aircraft are on the runway, they no 
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longer interfere with the arrival system and thus are removed from the simulation. Even the 

movement of planes within their holding pattern doesn’t matter, so our program doesn’t model 

those movements and just makes the planes in the holding patter stationary for our purposes. 

Ultimately, the only planes that are given a vector for movement are the planes that have been 

given the authorization to land and are directly approaching the airstrip. 

Other minor assumptions were made about the approach (like the precise speed of the 

aircraft, how long it takes pilots to react to commands from both systems, variations from the 

exact course, weather, etc.), but those assumptions were made in simulating both the new and old 

air traffic control systems and thus should not positively or negatively affect their relative 

performance. Many of these assumptions were based on research including FAA manuals 

anyway, and thus are close approximations. We also assumed the simplest model for our airport: 

one with no weather, situated in a flat area at sea level, containing only one runway which is due 

north, and possessing a standard T-shape design fix pattern. For our purposes, these are all safe 

assumptions, and most of the assumptions can be generalized by just rotating and translated our 

grid system. Overall, the simulation we made is a fairly good indicator of what would happen in 

reality as long as we remember that we are only simulating the planes between their entrances 

into their holding pattern to the moment their tires touch the runway. 

 

VISUALIZATION OF SIMULATION 

In order to benchmark, test, and fully understand the nature of our program’s outputs, we 

created a program in MATLAB to display planes in relation to the airport. By seeing a 

visualization, we can quickly and easily see if planes are crashing with each other without being 
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detected in the simulation and other such anomalies as well as garner a greater understanding of 

how each solution we test works. 

We used MATLAB for the output due to its numerous built-in packages that allowed for 

us to create an elegant graphing solution. For example, when creating a 3D figure in MATLAB, 

there are numerous tools built in to change camera position relative to the graph, zoom, and 

lighting. Each of these manipulations done in real-time gives the user a very accurate perception 

about what is going on at a specific time step. 

The grapher.m MATLAB function graphs each plane as a vector arrow and graphs a dot 

for the location of the airport (see an example output in Appendix B, Figure 3 or 4). The graph is 

time-dependant; in other words, the graph changes for each time step and only offers a snapshot 

of a specific time step. While we explored outputting the simulation to a video format, we found 

the technical constrains to be significant for first-time MATLAB programmers. Additionally, 

with a constantly changing graph, the viewer would not be able to see what is going on a specific 

time because it takes a few rotations and views to fully understand where each plane is in 3-

space. 

Grapher takes four inputs: the airport coordinates, the planes’ coordinates, the handle for 

the figure, and the time step number as a string. The last two inputs are used to output the graph 

to the correct figure with an appropriate title. The airport coordinates are constant for every time 

step and are inputted as a 1x3 matrix in the form [x y z] were (x,y,z) is the location of the airport. 

The Java-based simulation outputs a string in a specific form that complies with 

MATLAB’s syntax for the matrix input representing the planes’ coordinates. Two points define 

each airplane’s arrow: the point at the base of the vector arrow, (x, y, z), and the point at the head 

of the vector arrow, (u, v, w). If plane1’s vector is from (x1,y1,z1) to (u1,v1,w1), plane2’s vector is 
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from (x2,y2,z2) to (u2,v2,w2), ...., and planen’s vector (where n is the index for the last plane) is 

from (xn,yn,zn) to (un,vn,wn), then the format of the string outputted by the Java simulation is: 

  

[x1 y1 z1 u1 v1 w1; x2 y2 z2 u2 v2 w2; .......; xn yn zn un vn wn] 

 

This matrix ultimately looks like the one shown in Appendix A, Figure 5. The numbers between 

each semicolon form individual, successive rows of the matrix. 

By copying this MATLAB syntax compliant string into the MATLAB command window 

and setting a variable equal to the matrix that the string represents, we avoid any data entry 

mistakes in trying to manually input each plane’s coordinates and save time to concentrate on 

analyzing the data and visualization. 

After clearing and setting up the visual styles of the figure that it will output to, grapher 

uses the built-in scatter3 function to plot the yellow dot representing the airport. 

Afterwards, the planes are graphed onto the same figure. Using a for loop, grapher 

extracts the positions of each plane from the inputted matrix representing the airplane vectors. 

While we intend to graph each plane as a vector, planes in holding pattern are better represented 

by dots because they remain in very close proximity to a specific position and we would like to 

visually differentiate between planes in their difference phases of motion. Therefore, grapher 

first determines if the plane is in holding pattern. In our matrix, we set the arrow’s base and head 

points to be the same if the plane is in holding pattern. If the planes are in holding pattern, we 

graph the dot using the scatter3 function.  

If the plane is not in holding pattern, then we graph it as an arrow using the quiver3 

function. We directly input the base arrow point into quiver3 and calculate the difference 
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between the inputted arrowhead point and base point, passing the difference to quiver3; the 

function requires the relative (rather than absolute) position of the arrowhead point compared to 

the base point. Having set the “hold” option for the visualization we are creating to “on,” each of 

the visual elements, namely each plane we extract from the inputted matrix, are added onto the 

figure rather than replace all of the previous contents as is the default. This allows us to construct 

a single visualization containing all of the airplanes together. 
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RESULTS & ANALYSIS 

The results are nicely summarized in Figure 1 and 2 in Appendix B. Figure 1 represents 

the current air control system shown at the time step 3570 (I.e., 59 minutes and 30 seconds). As 

described in the caption, the arrows represent the planes, the big yellow dot at (0, 0, 0) represents 

the airport, and the other dots represent the various planes in holding pattern. Figure 2 represents 

the Continuous Descent Arrivals system proposed by UPS also shown at time step 3570. 

In comparing these two figures, we ensured that the same colored arrow represents the 

same airplane. By analyzing the figures, it appears that the current system is ahead of the UPS 

system. Comparing Figure 1 to Figure 2, we can see that in the current air traffic system 

simulation, the white plane has already landed, the blue plane is further along, the green plane 

has already been given clearance to land, and its planes in holding pattern are at a lower altitude, 

indicating that they are going to land sooner. After running the computational model for a 

simulated 59 minutes, 30 seconds, it is clear that there is a significant divergence between the 

present-day and proposed air traffic control systems. 
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CONCLUSIONS 

In general, our project was successful in achieving its objectives and allows us to draw 

valuable conclusions. These conclusions include the following: 

 In the simulation, the present-day air traffic control system actually seemed to perform better 

than the Continuous Descent Arrivals system. As described in the Results & Analysis 

section, the simulation for the current air traffic system seems to be significantly ahead of 

the UPS system after a simulated hour. Thus the current system is more efficient in terms 

of airplanes landed per hour. However, this does not commend about the reliability of the 

systems. Human error was never a factor in either system, and thus we have no way of 

determining whether which system is more reliable when the “human factor” is added. 

 The simulation seemed to accurately model the key components of air traffic arrival 

procedures. We intended to model planes from when they reached the intermediate fix 

(where planes go into their holding pattern) to the time when their tires touched the ground. 

The airplanes in our model seemed to follow the expected patterns as outlined in the 

Federal Aviation Administration’s Aeronautical Information Manual, where the procedures 

on air traffic control are published. This benchmarking of our outputs is a key step that 

helps make our project and its conclusion relevant and useful. 

 The simulation worked to compare two different air traffic control system. The quickness and 

efficiency of a computer are key difference between our simulations and the real world. 

While the two air traffic control systems we tested can play out differently in the real-

world, often the speed of a computer could have made the control systems appear infinitely 

efficient. Nevertheless, our simulation produced results that, based on the rules established 

by each air traffic control system, were significantly different for separate control systems. 
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 The framework we have established in our software is expandable and can be enhanced for 

professional applications beyond the Supercomputing Challenge. Apart from simple 

practices like documentation and well-named variables and methods, the basic framework 

utilizing objects, such as for airplanes, has allows us to expand to program to account for 

the factors between the air traffic control systems. These are important capabilities to give 

this project relevance outside of the Supercomputing Challenge, and the results of working 

in this framework show that our organization works. 

 

These results and conclusions are validated by the visualization environment that displays 

our findings in an easy to understand and approach format. This format clearly worked to test 

and debug the program to ensure that our findings were both reasonable and are possible and 

helpful in the real world. 
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ACHIEVEMENTS OF THE PROJECT 

Our project was able to effectively test the arrival procedures of a proposed solution to 

our impending air traffic predicament. As discussed in the introduction, the necessity of efficient 

and reliable air traffic control are important for a safe and secure nation. This project took the 

first step towards those goals by providing a computational simulation that not only tested the 

Continuous Descent Arrivals technique against the current system, but also provided a robust, 

flexible framework for future tests. 

While programming, we proved, mostly to ourselves, that even if one doesn’t ultimately 

use everything that was in an original program and framework, the ability to choose where to go 

later on makes new programs and accomplishments come with ease.  This ability to modify and 

generalize our program and not worry about the smaller details like linking the planes together in 

a list allowed and will allow us to program quickly and effectively. So even though there are 

many variable, methods, comments, and debugging algorithms that we never used in our end 

program, we still kept those so that future expansion could be done easier and more efficiently. 

The Continuous Descent Arrivals system certainly won’t be the last proposed solution to 

our country’s air traffic dilemma. By providing this framework, our program can be used for new 

tests and in new contexts. This is a major achievement. 
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RECOMMENDATIONS 

As we feel this framework is such a critical achievement, we feel it is also important to 

list a few recommendations and suggestions on how to build upon our system. Our simulation, 

while useful in testing the Continuous Descent Arrival system and in establishing a basis for 

future work, has certain important limits. With these recommendations, we can test many more 

and broader cases and analyze more specific problems and issue when comparing possible air 

traffic control systems. 

One direction we can take the project from here is to determine the performance 

differences of systems between peak and non-peak hours. By varying traffic, we may find some 

solutions are best during rush hours, while other solutions work better during off hours. This 

could help dictate decision as solutions that appear to improve the system overall may fail at the 

critical peak hours when the real traffic-related issues arise. Other variations that we can test 

include how bad weather, turbulence, and other factors that influence a pilot’s ability to 

effectively control their plane could affect the particular air traffic control system’s viability for 

general use. 

Another possible direction that would require much more background research would be 

to take into account the “human factor.” By creating a sort of artificial intelligence engine that 

errors at rates similar to humans, we can see how robust each air traffic control system would be 

in correction errors. If a system completely failed even after the most trivial of errors, we would 

see that the reliability of the system is low and would involve to great of a risk for use in the real 

world. 

One last recommendation is to modify the spacing between aircraft and see if safety and 

reliability are still within standards.  With even a slight reduction we may be able to reduce 
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delays tremendously due to a snowball effect (every second more a plane takes to land means a 

second for the one behind it as well, and then another second or two may be added there until the 

system fails). A simulation like this would most certainly prove to be of great use to Air Traffic. 
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APPENDICES 

APPENDIX A: FIGURES FROM THE REPORT 

 

 

Figure 1: The various phases of a flight. Source: HowStuffWorks.com 
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Figure 2: The Air Traffic Control Centers’ zones and codes for the United States. Source: 

HowStuffWorks.com 
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Figure 3: The radar fixes are represented by the stars. Planes converge at the various initial 

approach fixes (IAF) depending on where they are coming from, but eventually go to the 

intermediate fix (IF), where holding patterns take place. Source: FAA Aeronautical Information 

Manual 
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Figure 4: This diagram shows various planes in their holding pattern. Each are separated by 

1000 ft in altitude. Source: FAA Aeronautical Information Manual 
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Figure 5: The matrix outputted by the Java-based simulation to input airplane positions, 

directions, and velocities into the MATLAB visualization software. 
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APPENDIX B: PROGRAM OUTPUTS 

 
Figure 1: Output of airplane vectors in the MATLAB visualization at time step 3570 using the 

present-day air traffic control system. The arrows each represent and airplane and its respective 

location, direction, and velocity. The yellow dot at (0, 0, 0) represents the location of the airport. 

The dots along the right represent various planes in their holding pattern. 
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Figure 2: Another output of airplane vectors in the MATLAB visualization. While this 

visualization is at time step 3570 like in Figure 1, it uses UPS’s “Continuous Descent Arrivals” 

system. In comparing the two graphs, note that the axis measure are slightly different and each 

arrow colors represent the same plane between the two figures. Thus, the dark blue plane is much 

further along in landing in the present-day system and the green plane is still in its holding 

pattern in the UPS system. 
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 APPENDIX C: CLASS DRIVER 

/***************************************************************************** 
 * Modernizing the U.S. Air Traffic Control System 
 * Super Computing 2008 
 * Team 7 
 * Jack Ingalls & Punit Shah 
 * v1.1a 
 
*****************************************************************************/ 
 
import java.util.*; 
 
public class Driver extends Project 
{  
 public static void main(String[] args) 
 { 
  int n = 30; // Number of total airplanes 
  int times [] = new int [n]; 
  populateTimes(times); 
 
  System.out.println("\n Beginning model for the current Air Traffic Control 
System."); 
  runModel(times, false); 
 
  System.out.println("\n Beginning model for the proposed Air Traffic Control 
System."); 
  runModel(times, true); 
 
  System.out.println("DONE!!!"); 
 } 
 
 public static void runModel (int times [], boolean newMethod) 
 { 
  int planeNum = 0; 
  Airplane firstPlane = null; 
  Airplane currentPlane = firstPlane; 
  Airplane prevPlane = null; 
 
  for (int time = 0; time < 3600/* || firstPlane != null*/; time ++) 
  { 
   while (planeNum < times.length && time == times[planeNum]) 
   { 
    if (firstPlane != null && firstPlane.isAtFix()) 
    { 
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     firstPlane = new Airplane(1000 + firstPlane.getAltitude(), 
firstPlane, newMethod); // Creates a new plane at the holding point. 
    } 
    else 
    { 
     firstPlane = new Airplane(3000, firstPlane, newMethod);
 // Creates a new plane at the holding point. 
    } 
    planeNum ++; 
   } 
 
   currentPlane = firstPlane; 
   prevPlane = null; 
 
   while (currentPlane != null) 
   { 
    if (currentPlane.getXCord() == 10) 
    { 
     if (currentPlane.getAltitude() > 3000) 
     { 
      if ((currentPlane.getAltitude() - 
currentPlane.getNext().getAltitude()) > 1000) 
      { 
       currentPlane.descend(); 
      } 
     } 
     else 
     { 
      if(currentPlane.hasClearance()) 
      { 
       currentPlane.approach(); 
      } 
     } 
    } 
    else 
    { 
     currentPlane.approach(); 
    } 
 
    if (currentPlane.getXCord() == 0) 
    { 
     if (prevPlane != null) 
     { 
      prevPlane.setNext(null); 
     } 
     else 
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     { 
      firstPlane = null; 
     } 
    }     
    else 
    { 
     prevPlane = currentPlane; 
    } 
    currentPlane = currentPlane.getNext(); 
   } 
   if (time % 30 == 0) 
   { 
    makeMATLABMatrix(firstPlane, time); 
   } 
  } 
 } 
 
 public static void populateTimes (int times []) 
 { 
  Random rand = new Random(); 
  int temp = 0; 
  int j = 0; 
 
  for (int i = 0; i < times.length; i++) 
  { 
   temp = rand.nextInt(3600); 
   j = i; 
   while (j > 0 && times[j - 1] > temp) 
   { 
    times[j] = times[j - 1]; 
    j--; 
   } 
   times[j] = temp; 
  } 
 } 
 
 public static void outputTimes (int times []) 
 { 
  for (int i = 0; i < times.length; i++) 
  { 
   System.out.println(times[i]); 
  } 
 } 
 
 public static void makeMATLABMatrix (Airplane inputPlane, int timeStepNumber) 
 { 
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  Airplane plane = inputPlane; 
  double u; 
  double v; 
  int w; 
 
  System.out.println ("Time step: " + timeStepNumber); 
  System.out.print ("["); 
 
  while (plane != null) 
  { 
 
   if (plane.hasClearance()) 
   { 
    u = plane.getXCord() - plane.getSpeed() / 240.0; 
    v = 0; 
    w = (int)(u*300); 
   } 
 
   else 
   { 
    u = plane.getXCord(); 
    v = plane.getYCord(); 
    w = plane.getAltitude(); 
 
   } 
 
   System.out.print (plane.getXCord() + " " + plane.getYCord() + " " + 
plane.getAltitude() + " "); 
   System.out.print (u + " " + v + " " + w + "; "); 
 
   plane = plane.getNext(); 
 
 
  } 
 
  System.out.println ("]"); 
 
 } 
} 
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APPENDIX D: CLASS AIRPLANE 

/***************************************************************************** 
 * Modernizing the U.S. Air Traffic Control System 
 * Super Computing 2008 
 * Team 7 
 * Jack Ingalls & Punit Shah 
 * v1.1a 
 
*****************************************************************************/ 
 
public class Airplane extends Project 
{ 
 private int speed; // Expressed in miles/hour 
 private int heading; // Expressed in degrees, values range from 0 to 359. 
 private int altitude; // Expressed in feet 
 private Airport closestAirport; 
 // private String flightNumber; // Found unnecessary. 
 // private int bearing; // Found unnecessary. 
 private double x; // x component of position in nautical miles 
 private double y; // y component of position in nautical miles 
 private Airplane next; 
 private boolean newMethod; 
 
 public Airplane() 
 { 
  setSpeed(0); 
  setHeading(0); 
  setAltitude(2000); 
  x = 10; 
  y = 0; 
  next = null; 
 } 
 
 public Airplane(int a, Airplane nextPlane, boolean NM) 
 { 
  setSpeed(200); 
  setHeading(0); 
  setAltitude(a); 
  x = 10; 
  y = 0; 
  setNext(nextPlane); 
  newMethod = NM; 
 } 
 
 public Airplane(String flight, int s, int h, int a, Airport port) 
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 { 
  setSpeed(s); 
  setHeading(h); 
  setAltitude(a); 
  closestAirport = port; 
  x = randomInt(0, 100); 
  y = randomInt(0, 100); 
  next = null; 
 } 
 
 public boolean isAtFix() 
 { 
  if (x == 10 && y == 0) 
  { 
   return true; 
  } 
  return false; 
 } 
 
 public void takeOff() 
 { 
  setSpeed(140); 
  ascend(); 
  System.out.println(); 
  System.out.println("Aircraft took-off."); 
  stateStatus(); 
 } 
 
 public void land() 
 { 
  setAltitude(closestAirport.getAltitude()); 
  setSpeed(0); 
  System.out.println(); 
  System.out.println("Aircraft landed."); 
  stateStatus(); 
 } 
 
 public boolean hasClearance() 
 { 
  if (next == null) 
  { 
   return true; 
  } 
  else 
  { 
   if (newMethod == false && x - next.getXCord() >= 5) 
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   { 
    return true; 
   } 
   if (newMethod == true && next.getXCord() <= 43.0 / 12.0) 
   { 
    return true; 
   } 
  } 
  return false; 
 
 } 
 
 public void approach() 
 { 
  if (newMethod == false) 
  { 
   if (next != null) 
   { 
    double newNextX = next.getXCord() - next.getSpeed() / 3600.0; 
    int newNextSpeed = speedAtDist(newNextX); 
    newNextX = next.getXCord() - newNextSpeed / 3600.0; 
    if (newNextX <= 0) 
    { 
     double nextAriveTime = next.getXCord() / newNextSpeed;
 // In hours 
     setSpeed (checkedSpeed((int)((x - 5) / nextAriveTime), x)); 
    } 
    else 
    { 
     setSpeed (checkedSpeed((int)((x - newNextX - 5) * 3600), 
x)); 
    } 
   } 
   else 
   { 
    setSpeed(speedAtDist(x)); 
   } 
  } 
  else 
  { 
   setSpeed(speedAtDist(x)); 
  } 
 
  if (differentSpeeds(x, x - speed / 3600.0)) 
  { 
   double remainingTime = 1 / 3600.0 - (x - (int)x) / speed; 
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   x = (int)x; 
   setSpeed(speedAtDist(x)); 
   x = x - remainingTime * speed; 
  } 
  else 
  { 
   x -= speed / 3600.0; 
  } 
 
  if (x < 0) 
  { 
   x = 0; 
  } 
 
  altitude = (int)(x * 300); 
 } 
 
 public void stateStatus() 
 { 
  System.out.println(); 
  System.out.println("We are travelling at " + speed + " miles per hour"); 
  System.out.println("in a heading of " + heading + " degrees"); 
  System.out.println("at an altitude of " + altitude + " feet."); 
 } 
 
 public void turn(int degrees) 
 { 
  setHeading(heading + degrees); 
  System.out.println(); 
  System.out.println("Aircraft turned " + degrees + " degrees."); 
  stateStatus(); 
 } 
 
 public void ascend() 
 { 
  setAltitude(altitude + 20); 
 } 
 
 public void descend() 
 { 
  setAltitude(altitude - 20); 
 } 
 
 public void setHeading(int newHeading) 
 { 
  heading = newHeading % 360; 
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 } 
 
 public void setAltitude(int newAltitude) 
 { 
  if (newAltitude >= 0) 
  { 
   altitude = newAltitude; 
  } 
  else 
  { 
   throw new RuntimeException ("Altitude cannot be negative."); 
  } 
 } 
 
 public void setSpeed(int newSpeed) 
 { 
  if (newSpeed >= 0) 
  { 
   speed = newSpeed; 
  } 
  else 
  { 
   throw new RuntimeException ("Speed cannot be negative."); 
  } 
 } 
 
 public int getSpeed() 
 { 
  return speed; 
 } 
 
 public int getHeading() 
 { 
  return heading; 
 } 
 
 public int getAltitude() 
 { 
  return altitude; 
 } 
 
 public Airport getAirport() 
 { 
  return closestAirport; 
 } 
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 public double getXCord() 
 { 
  return x; 
 } 
  
 public double getYCord() 
 { 
  return y; 
 } 
 
 public Airplane getNext() 
 { 
  return next; 
 } 
 
 public void setNext(Airplane nextPlane) 
 { 
  next = nextPlane; 
 } 
 
 public double Distance() 
 {  
  return Math.sqrt(x*x + y*y); 
 } 
} 
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APPENDIX E: CLASS AIRPORT 

 
/***************************************************************************** 
 * Modernizing the U.S. Air Traffic Control System 
 * Super Computing 2008 
 * Team 7 
 * Jack Ingalls & Punit Shah 
 * v1.1a 
 
*****************************************************************************/ 
 
public class Airport extends Project 
{ 
 private Runway myRunway; 
 private int altitude; 
 
 public Airport() 
 { 
  altitude = 0; 
 } 
 
 public Airport(int A) 
 { 
  altitude = A; 
 } 
 
 public Airport(Runway Run) 
 { 
  altitude = 0; 
  myRunway = Run; 
 } 
 
 public Airport(int A, Runway Run) 
 { 
  altitude = A; 
  myRunway = Run; 
 } 
 
 public void stateStatus() 
 { 
  System.out.println(); 
  System.out.println("This is the airport."); 
  System.out.println("We are at an altitude of " + altitude + " feet."); 
  System.out.println(myRunway.getDesignation() + " is cleared for landing."); 
 } 
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 public Runway getRunway() 
 { 
  return myRunway; 
 } 
 
 public int getAltitude() 
 { 
  return altitude; 
 } 
} 
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APPENDIX F: CLASS RUNWAY 

/***************************************************************************** 
 * Modernizing the U.S. Air Traffic Control System 
 * Super Computing 2008 
 * Team 7 
 * Jack Ingalls & Punit Shah 
 * v1.1a 
 
*****************************************************************************/ 
 
public class Runway extends Project 
{ 
 private int direction; // Expressed in degrees from 0 to 179 
 private String designation; 
 
 public Runway() 
 { 
  direction = 0; 
  setDesignation(direction); 
 } 
 
 public Runway(int dir) 
 { 
  direction = dir % 180; 
  setDesignation(direction); 
 } 
 
 private void setDesignation(int degrees) 
 { 
  designation = "Runway " + degrees; 
 } 
 
 public int getDirection () 
 { 
  return direction; 
 } 
 
 public String getDesignation () 
 { 
  return designation; 
 } 
} 
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APPENDIX G: CLASS DEBUGGER 

/***************************************************************************** 
 * Modernizing the U.S. Air Traffic Control System 
 * Super Computing 2008 
 * Team 7 
 * Jack Ingalls & Punit Shah 
 * v1.1a 
  
*****************************************************************************/ 
 
public class Debugger 
{ 
 public static void main(String[] args) 
 { 
  boolean bugs = false; 
  Runway testRunway = new Runway(); 
  Airport testPort = new Airport(testRunway); 
  testPort.stateStatus(); 
  Airplane testPlane = new Airplane(testPort, 2000); 
  testPlane.stateStatus(); 
  testPlane.approach(testRunway); 
  testPlane.land(); 
  testPlane.turn(180); 
  testPlane.takeOff(); 
  testPlane.ascend(); 
  testPlane.stateStatus(); 
   
  statusOfProgram(bugs); 
 } 
 
 public static boolean checkPlane(Airplane plane) 
 { 
  return false; 
 } 
 
 public static boolean checkPort(Airport port) 
 { 
  return false; 
 } 
  
 public static void statusOfProgram(boolean bugs) 
 { 
  if (!bugs) 
  { 
   System.out.println(); 
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   System.out.println("Everything checks out."); 
   System.out.println("No bugs were found."); 
  } 
 } 
} 
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APPENDIX H: CLASS PROJECT 

/***************************************************************************** 
 * Modernizing the U.S. Air Traffic Control System 
 * Super Computing 2008 
 * Team 7 
 * Jack Ingalls & Punit Shah 
 * v1.1a 
  
*****************************************************************************/ 
 
import java.util.*; 
 
public class Project 
{ 
 Random rand; 
 
 public Project() 
 { 
  rand = new Random(); 
 } 
 
 public int randomInt(int min, int max) // inclusive min, exclusive max 
 { 
  return min + rand.nextInt(max - min); 
 } 
 
 public int speedAtDist(double dist) 
 { 
  if(dist > 5) 
  { 
   return 200; 
  } 
  else if (dist > 3) 
  { 
   return 170; 
  } 
  else if (dist > 2) 
  { 
   return 160; 
  } 
  else if (dist > 1) 
  { 
   return 150; 
  } 
  else 
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  { 
   return 140; 
  } 
 } 
 
 public boolean differentSpeeds (double x1, double x2) 
 { 
  if (speedAtDist(x1) == speedAtDist(x2)) 
  { 
   return false; 
  } 
  return true; 
 } 
 
 public int checkedSpeed (int speed, double x) 
 { 
  return Math.min(speed, speedAtDist(x)); 
 } 
} 
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APPENDIX I: MATALB VISUALIZATION FUNCTION: GRAPHER.M 

% Punit Shah & Jack Ingalls 
% Team 7 
% Albuquerque Academy 
% 2008 Supercomputing Challenge 
% Modernizing the U.S. Air Traffic Control System 
  
function [] = grapher (runway, planes, h, t) 
    % Program to graph the planes 
    % Inputs: 
    %   runway: 1x3 matrix containing location of airport 
    %   planes: nx6 matrix containing the location of the n planes 
    %     where the first three cols are the coordinates for the base of the  
    %     arrow, while the second three rows are the coordinates for the head 
    %   h: figure handle 
    %   t: time for which this plot is running (passed as string) 
  
    %SETUP THE PLOT 
    % set the current plot the user requested figure #: 
    figure(h); 
    % clear the figure: 
    clf 
    % set the figure to a nice color scheme: 
    colordef(gcf,'black') 
    % set the plot to hold (rather than clear) each element as we build the 
    % plot: 
    hold on      
  
    %PLOT THE AIRPORT 
    scatter3(runway(1), runway(2), runway(3),'o','filled','SizeData',125) 
     
    %PLOT THE PLANES 
    n = size(planes); 
    % we only want the height of the matrix to count the total planes: 
    n = n(1); 
     
    for i=1:n, 
  
        x=planes(i,1); 
        y=planes(i,2); 
        z=planes(i,3); 
        u=planes(i,4); 
        v=planes(i,5); 
        w=planes(i,6); 
        u=u-x; 
        v=v-y; 
        w=w-z; 
         
        % draw dot if zero vector 
        if (u==0 && v==0 && w==0) 
            % plane is in holding pattern 
            scatter3(x,y,z,'o','filled','SizeData',80); 
        else 
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            % plane is not in holding pattern 
            quiver3(x,y,z,u,v,w,'LineWidth',2.5); 
        end 
         
    end 
  
    %FINALIZE PLOT FOR VIEW 
    box on; 
    grid off; 
    name = ['Airplane plot for time ', t]; 
    set(gcf, 'Name', name); 
    title(['\bf\fontsize{16}' name]); 
    ylim([-100 100]); 
    xlabel('x axis (in nautical miles)'); 
    ylabel('y axis (in nautical miles)'); 
    zlabel('z axis, altitude (in ft)') 
end 
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