
Does Queen + King =
Checkmate ?

Supercomputing Challenge

Final Report

April 6, 2011

Team 014

Aspen Elementary

Alex Ionkov and Donald Poston

Teacher: Zeynep Unal

Summary

Our project was based on game theory. People have been trying to make
chess programs since computers were invented but it was a challenge to
make such a program. Famous computer scientists like Robert Wiener and
Alan Turing made the first attempts to solve the problem. Los Alamos
scientists created the first program to play chess in 1956. In 1981 the first
computer program has made a US masters rating. After 2000 computers are
strong enough to beat the worlds best grandmasters rated 2700 and above.

We chose the queen and king vs king because we knew how to do the king-
queen checkmate in chess and thought it would be better to start out easy.
Our mentor recommended that we start out with less pieces because it was
our first year of the Supercomputing Challenge.

Our main goals are: to learn how to write computer programs, and learn how
to write a computer programs that play chess.

Our main accomplishments are: we learned how to use NetLogo to write
computer programs, we learned how to create a chess board and chess
pieces, we learned how to write report procedures that return all the possible
moves for a piece, and we learned how to create procedures that find the best
move black or white using the minimax algorithm.

We had issues like: NetLogo was to slow to play against the program with
the decision tree deeper than 3 levels with depth less than or equal to three, it
was easy to get a draw due to three-fold repetition or 50 moves.

Problem Statement

We are trying to write a program that would find the best move for
a player with a king and a queen against an opponent with a single
king.

Method

The program has to follow the rules of chess [1].

The only way black can win is by check-mating. The best thing
that can happen to white is if black draws white by either losing it's
queen, 3-fold-repetition (when the exact same position occurs 3
times), if black and white have each made 50 moves, or if black
stalemates (white has no moves at all and is not in check).

We are trying to write a program that would find the best move for
a player with a king and a queen against an opponent with a single
king. In order to find the best move we create a tree that starts from
the current position and goes to all possible positions to a certain
number of moves. Then we evauluate all positions and choose the
best one.

We used the minimax algorithm to find the best move. This is the
pseudocode for the algorithm:
to report best-move [position depth]

ifelse is-checkmate? or is-stalemate? or depth < = 0 [
report eval-position

]
[

let moves calculate-all-moves
let val -1
foreach moves [

move-piece ?

val = max val -(best-move depth -1)
move-piece-back ?

]
report val

]
end

We wanted to use the alpha-beta algorithm[3][4], but we didn't
have time to. We used the following table to evaluate the position.

Stalemate 1
Check -0.2

Check-mate -1
Black queen taken 1

Accomplishments

We used NetLogo for our project, we created a model that has 64
patches that look like a chess board. The model has three agents:
black queen, black king, and white king. The human can use the
mouse to move the white king and the computer moves the black
queen and king.

Depth Time (seconds)
0 0.01
2 0.73
4 70.91
6 1181.13

This is a screenshot of our program interface.

Conclusion:

We learned how to use some advanced programming concepts like
lists of values, recursion, and procedures.

Our choices of algorithms and programming language weren't very
appropriate for the problem we picked. We are planning to try to
use better algorithms (like alpha-beta search) and a programming
language that is faster like Python or Go. If we do programming
again we might use Python because it will be easier to do a more

complicated problem and because we could add more decision tree
levels.

References:

 1. United States Chess Federation's Official Rules of Chess,
Fifth Edition

2. C. Shannon Programming a Computer For Playing Chess,
National IRE Convention, March 1949

3. R. Feldmann Computer Chess: Algorithms and Heuristics
for a Deep Look into the Future, Proc. of the 24th Seminar
on Current Trends in Theory and Practice of Informatics
(SOFSEM-97) LNCS 1338, 511-522, Springer Verlag.

4. D.E. Knuth, R.W. Moore An Analysis of Alpha – Beta
Prunning, Artifical Intelligence, 6, pp 293-326, 1975

Program Code:
breed [blackqueens blackqueen]
breed [blackkings blackking]
breed [whitekings whiteking]
breed [grayqueens grayqueen]
breed [graykings grayking]

to setup
 clear-all
 create-blackqueens 1 [
 set color black
 set shape "chess queen"
]
 create-blackkings 1 [
 set color black
 set shape "chess king"
]

 create-whitekings 1 [
 set color white
 set shape "chess king"
]
 ask patches [
 ifelse (pxcor + pycor) mod 2 = 0
 [
 set pcolor [64 96 0]
]
 [
 set pcolor [192 208 0]
]
]
 scatter-pieces
 if check-end? whiteking-moves [
 stop
]
end

to scatter-pieces
 loop [
 ask turtles
 [
 set ycor random 8
 set xcor random 8
]

 let dostop true

 ; check if kings are next to each other
 ask blackkings[
 if count whitekings-on neighbors = 1 [
 set dostop false
]
]

 ; check if two pieces on same square
 ask turtles [
 if any? other turtles-here[
 set dostop false
]
]

 if dostop [
 stop
]
]
end

to-report blackking-moves
 let moves []
 ask blackkings [
 ask neighbors [
 if count whitekings-on neighbors = 0 [
 set moves lput (list pxcor pycor) moves
]
]
]
 report moves
end

to-report whiteking-moves
 let moves []
 let x 0
 let y 0

 ask whitekings [
 set x xcor
 set y ycor
 ask neighbors [
 if count blackkings-on neighbors = 0 [
 set moves lput (list pxcor pycor) moves
]
]
]

 ask whitekings [
 die
]

 let qmoves blackqueen-moves false
 create-whitekings 1 [
 set color white
 set shape "chess king"
 setxy x y
]

 foreach moves [
 if member? ? qmoves [
 set moves remove ? moves
]
]

 report moves
end

to-report line-moves [L x0 y0 tx ty can-take]
 let x x0 - tx
 let y y0 - ty
 while [x >= 0 and y >= 0 and x < 8 and y < 8] [
 ifelse can-take
 [
 ifelse (any? blackkings-on (patch x y)) [
 set x -1
]
 [
 set L lput (list x y) L
 set x x - tx
 set y y - ty
]
]
 [
 ifelse (any? turtles-on (patch x y)) [
 set x -1
]
 [
 set L lput (list x y) L
 set x x - tx
 set y y - ty
]
]

]
 report L
end

to-report blackqueen-moves [can-take]
 let moves []

 ask blackqueens [
 set moves line-moves moves xcor ycor 1 0 can-take
 set moves line-moves moves xcor ycor -1 0 can-take

 set moves line-moves moves xcor ycor 0 1 can-take
 set moves line-moves moves xcor ycor 0 -1 can-take
 set moves line-moves moves xcor ycor 1 1 can-take
 set moves line-moves moves xcor ycor -1 -1 can-take
 set moves line-moves moves xcor ycor -1 1 can-take
 set moves line-moves moves xcor ycor 1 -1 can-take
]

 report moves
end

to go
 if mouse-down? [
 let x round mouse-xcor
 let y round mouse-ycor
 let moves whiteking-moves
 if member? (list x y) moves [
 ask whitekings [
 setxy x y
]

 ask patch x y [
 if any? blackqueens-here [
 ask blackqueens [
 die
]
]
]

 if check-end? moves [
 stop
]

 move-black
]
]
end

to-report check-end? [moves]
 if empty? moves [
 ifelse is-check?
 [
 user-message "checkmate"
]
 [
 user-message "stalemate"
]

 report true
]

 if count blackqueens = 0 [

 user-message "draw"
 report true
]

 report false
end

to-report is-check?
 let qmoves blackqueen-moves true
 let bkpos []
 ask whitekings [
 set bkpos (list xcor ycor)
]

 let qpos []
 ask blackqueens [
 set qpos (list xcor ycor)
]

 report member? bkpos qmoves
end

to move-black
 reset-timer
 let move black-best-move 6

 show timer
 let piece (item 0 move)
 let x (item 1 move)
 let y (item 2 move)

 ifelse piece = "k"
 [
 ask blackkings [
 setxy x y
]
]
 [
 ask blackqueens [
 setxy x y
]
]
end

to show-white-moves
 let qmoves blackqueen-moves false
 let kmoves blackking-moves

 foreach qmoves [
 let x (item 0 ?)
 let y (item 1 ?)
 ask patch x y [

 if not any? turtles-here [
 sprout-grayqueens 1 [
 set color [64 64 64]
 set shape "chess queen"
]
]
]
]

 foreach kmoves [
 let x (item 0 ?)
 let y (item 1 ?)
 ask patch x y [
 if not any? turtles-here [
 sprout-graykings 1 [
 set color [64 64 64]
 set shape "chess king"
]
]
]
]
end

to hide-white-moves
 ask graykings [
 die
]

 ask grayqueens [
 die
]
end

to-report white-best-move [level]
 let best-value -1
 let best-x -1
 let best-y -1
 let best-piece ""
 foreach whiteking-moves [
 let x (item 0 ?)
 let y (item 1 ?)
 let oldx 0
 let oldy 0
 ask whitekings [
 set oldx xcor
 set oldy ycor
 setxy x y
]

 let queen-taken false
 ask patch x y [
 if any? blackqueens-here [

 set queen-taken true
 ask blackqueens [
 die
]
]
]

 let val -1
 ifelse level = 0 [
 set val eval-position
]
 [
 set val (item 3 (black-best-move (level - 1)))
]

 if val > best-value [
 set best-value val
 set best-x x
 set best-y y
]

 ask whitekings [
 setxy oldx oldy
]

 if queen-taken [
 create-blackqueens 1 [
 set color black
 set shape "chess queen"
 setxy x y
]
]
]

 report (list "k" best-x best-y best-value)
end

to-report black-best-move [level]
 let best-value 1
 let best-x -1
 let best-y -1
 let best-piece ""
 foreach black-moves [
 let piece (item 0 ?)
 let x (item 1 ?)
 let y (item 2 ?)
 let oldx 0
 let oldy 0

 ifelse piece = "k"
 [
 ask blackkings [

 set oldx xcor
 set oldy ycor
 setxy x y
]
]
 [
 ask blackqueens [
 set oldx xcor
 set oldy ycor
 setxy x y
]
]

 let val -1
 ifelse level = 0 [
 set val eval-position
]
 [
 set val (item 3 (white-best-move (level - 1)))
]

 if val < best-value [
 set best-value val
 set best-x x
 set best-y y
 set best-piece piece
]

 ifelse piece = "k"
 [
 ask blackkings [
 setxy oldx oldy
]
]
 [
 ask blackqueens [
 setxy oldx oldy
]
]
]

 report (list best-piece best-x best-y best-value)
end

to-report black-moves
 let L []
 let qmoves blackqueen-moves false
 foreach qmoves [
 set L lput (list "q" (item 0 ?) (item 1 ?)) L
]
 let kmoves blackking-moves
 foreach kmoves [

 set L lput (list "k" (item 0 ?) (item 1 ?)) L
]

 report L
end

to-report eval-position
 if is-stalemate? [
 report 1.0
]

 if is-check? [
 report -0.2
]
 if is-checkmate?[
 report -1.0
]
 if count blackqueens = 0 [
 report 1.0
]

 report 0.0
end

to-report is-stalemate?
 if is-check? [report false]
 if length whiteking-moves = 0 [report true]
 report false
end

to-report is-checkmate?
 if is-check? and length whiteking-moves = 0 [report true]
 report false
end

