Package Sorting Logistics

New Mexico Supercomputing Challenge
Final Report
April 6, 2011
Team 69
Los Alamos Middle School

Team Members:
Sudeep Dasari
David Murphy
Colin Redman
Teachers:

Wyatt Dumas
Mentors:
Elizabeth Cooper

Jim Redman

Page 1

Executive Summary

Our project this year is to create a program that would simulate a
package sorting facility and to examine factors that cause inefficiencies in
the sorting times. We decided to try to simulate the huge Memphis sorting
facility of FedEx. The FedEx facility is laid out with many circular conveyor
systems with “run outs” between them and to where the boxes are loaded
into cargo carriers. The packages come in on flights from around the world
and are sorted into nine primary regions (based on population and
location), which in turn are all sorted into nine other local regions (final
destinations), each going out on one or more cargo planes’. The FedEx
Memphis hub handles 150-160 incoming (and therefore outgoing) flights
during the big night sort 2. The night sort is the most critical sort for FedEx
due to the limited time (about 10pm to 3am) in which the sort must be
completed 2. Our simulation is set up to try to sort packages in any random
input order and find out how much time it takes to sort all the packages to
their final destination cargo carriers. Our goal was to find out if human error
and package spacing problems (collisions) would affect the results.

The simulation was created in a Java environment called Greenfoot °.
We used Greenfoot to create a sorting facility that was similar to the FedEx
Memphis hub. Greenfoot was used to layout the components of the sorting
facility, which was represented by a grid in the background, with agents
(actors) representing conveyers, sensors, box outlets, and box inputs. The
program uses a database to store the package order used for the
experiments and to store the experimental results.

We timed the sort for random package orders and assessed the
efficiency of the facility we created inside the program using the time for all
the boxes to be sorted to their final destination cargo carriers.

Page 2

Our Team

Our team this year has three members; Colin Redman is our head
programmer and has over four years of programming (Java)
experience. He has been participating every year in the
Supercomputing Challenge, since he was in 5th grade, so this is his
fourth project. Sudeep Dasari is our project organizer and this is his
third year of Supercomputing Challenge experience. David Murphy is
our primary artist and writer. This is his first year doing a
Supercomputing Challenge project. We all actively participated in all
stages of the project including coding reviews, discussions, weekly
meetings (every week except over Christmas break), research, and
writing this report.

Problem Statement

We learned a lot about how FedEx and UPS sorts from our research.
A YouTube video originally televised by the PBS Reading Rainbow gave us
good background information °. Our problem is to study how sorting
facilities work and how inefficiencies occur. Most shipment companies like
FedEx and UPS lose millions of dollars due to inefficiencies in their sorting
facilities because of a combination of weather delays, equipment
breakdowns, and human errors 2. A prime example of this is the large
scale weather disaster suffered by a FedEx shipping facility in Memphis in
2004 *. Over a course of a few days during the Christmas rush Memphis
was hit by an icy snow storm and planes that would normally take
packages to and from the FedEx super hub were stopped cold when they
needed to leave between 11pm and 3am. FedEx lost millions of dollars to
the effects of the weather storm itself and lost even more money to the
aftershock of delayed packages. The cause of the package delays were a
combination of package collisions and other shipment problems. Problems
like the weather disaster occurring at shipment facilities are a way of life
and are unavoidable, however more efficient package movement, and

Page 3

redesigned facilities will decrease the amount of money lost due to bad
package handling. Every year FedEx and UPS experience similar
situations and if they could sort the packages faster they may be able to
avoid storms at either their sorting hub or at their final local destinations.

Before we can stop large scale problems like the large scale
repercussions from poor package handling, we must first understand how
companies like FedEx, and UPS lose money in a shipping facility. The most
basic explanation for this is the more time a plane stays grounded at a
runaway the more money is lost 2. The planes can’t take off without
receiving every package that is sorted through the main packaging facility.
The loss of money because of slow package movement is the main reason
that efficient package logistics is so important. The main variable that
contributes to lower package efficiency is package collisions and pileups 2.
These collisions are caused due to the crowded nature of most shipment
facilities and errors in the packages spacing . If a conveyor stops moving
package pileups occur. When the force of the impacts are high enough,
and the boxes smash into each other with enough force, as a conveyor fills
up, some of the packages on a particular belt will be derailed *. The sorting
system at FedEXx relies on critical package spacing so that the machinery
that reads the barcodes and signals the arms that push boxes off onto
different conveyors will work correctly. The spacing of packages will
become a problem if they start to pile up. The entire purpose of our project
is to make the package logistics inside the shipment facility as efficient as
possible. We will do this by creating a program with a set of algorithms that
create a simulated facility, and move boxes around it as efficiently as
possible.

Problem Solution

In order to solve this problem we started with plain Java without a
graphical system but found that that we had trouble displaying the
simulation. Then we tried NetLogo but we could not manage to find a way
to make it handle the complexity of the problem. We found out how to add
Java extensions to NetLogo but we still had problems with this solution. So
we finally created a facility simulation in a Java environment called

Page 4

Greenfoot °. Greenfoot is a live Java object world in which you can create
multiple objects (agents) and tell them to do certain tasks. Each object can
be separately coded in Java, but the environment takes care of the agent
interactions. To simulate the FedEx facility we set up the conveyor system
so we had multiple inputs (boxes placed into the sorting system) and
multiple outputs (cargo carriers to various final destinations). We created a
facility using multiple agents like conveyor tracks, nodes, inputs, outputs,
and boxes. The facility represented by a grid in the background, with agent
icons representing conveyers, box outlets, and box inputs. This facility was
arranged in a nine by nine configuration. Because of our research we
understood that the FedEx facility was laid out with circular conveyor
systems, similar to (but much bigger than) the baggage carrousels in
airports. FedEx has over 300 miles of conveyor belts in its Memphis sorting
hub °. The main conveyor sorts to nine regional destinations, which in turn
are all circular conveyor systems with eight to nine outputs (to the cargo
carriers). We simulated this by making the circular conveyors straight, but
assumed that a box that did not make it to its final destination on that
conveyor would go around again (be put back to the start of the conveyor it
is currently on). This is how we simulated a circular conveyor system.

In our original simulation the boxes’ destination was set at random.
For our final simulation each destination had the same number of boxes. In
other words, if we were sorting 1200 boxes, and we had 40 final
destinations, there would be 30 boxes randomly arranged for each
destination in the experimental set of 1200 boxes. Our final simulation runs
used 4050 boxes, 50 for each of the 81 destinations. A database was used
to keep track of these box orders and destinations. The experiments
(random box orders) were set up prior to running the boxes through the
simulation and one set of these randomly ordered boxes was used at a
time to run the simulation experiments. The results of each experiment
were stored in the database along with which set of boxes were used to
determine this result. Time results were compared for the same number of
boxes sorted regardless of the order in which the boxes were sorted.

Page 5

As an example of an experimental data set, the boxes are
represented by a regional code and an local code. The range of regional
codes was 1-9, and likewise the local codes are 1-9. In a simple system
that only had 3 regional and 3 local destinations, and 18 packages (two for
each destination) the list of packages (the “experiment”) could be
something like: 21,22,13,21,33,33,11,12,23,32,11,12,13,22,23,31,31,32
where “21” would mean regional sort “2” and local sort “1”. In our final
simulation we had 4050 boxes, 50 for each of the 81 destinations, leading
to a random list of 4050 of these box destination, much larger than the
simple example shown above.

The simulation starts by selecting one set of boxes at random from
the database. Each box (agent) has knowledge of its destination. In a real
sorting facility scanners are used to read the barcode destination on the
box. The boxes then follow the route laid out by the conveyor belts to
separate nodes where scanners (agents) tell the box whether or not it
should exit to a different conveyor for local destination sorting. Each node
then acted like a junction which changed the direction of the boxes’ route
that lead to another set of conveyers and nodes, or an exit. The boxes
traveled throughout this system until they reach their respective exits.
When all boxes for a certain destination were fully sorted, the time was
recorded and stored in the database.

Page 6

Figure 1. Part of the final simulation system showing 4 separate
inputs and part of the multiple output system.

In reality humans normally handle the boxes twice during the whole
sort 2°. The first time is when the boxes are added to the system
(represented by the inputs in our simulation) and the last time when the
boxes are loaded on their final cargo carriers. In the real FedEx system the
operators take the boxes from the input cargo carriers and place them on
the input conveyors at certain increments in time, (for example 4-5 seconds
apart). The real FedEx system relies on this package spacing. The most
likely place for human error is in the inputs. If the spacing is wrong in the
real system the boxes will not scan correctly (barcode is not read correctly).
Occasionally a box will be placed in the system face down so the bar code
cannot be read at all "?°. If this is the case the box will not know its

Page 7

destination in our simulation and must be “handled” again and placed back
on the conveyor any other way other than face down.

One other way that package sorting is delayed is when the “run out”
conveyors to the final destinations (cargo carriers) become so full that the
conveyor system cannot handle any more boxes. The sort is delayed for
this destination. We did not simulate this condition but it would be
something that we might want to consider in the future.

Another factor that affects the sorting facility efficiency is that some
cargo planes have longer distances to travel to get their sorted packages to
their final destinations. For example, planes to the east coast and west
coast should be allowed to leave first, or as soon as their packages are
sorted and loaded. Some destinations, such as those to the mid-west, can
be delayed in favor of letting these flights out first. This was not taken into
account in our simulation but we might want to look at the effect of
prioritizing the package sort so that if any delays or slowdowns during the
sort occur they impact the higher priority destinations less.

I T . N b 7 (Sl

I

<]

<]
[
=

[
<]

Figure 2. Image of one of our earliest simple models. This has one
input and only 9 outputs (9 final destinations).

Page 8

Code Summary

The conveyor, sensors (nodes), inputs and outputs of the simulation
had to be hand coded for placement in the system so that the boxes had
realistic routes through the system. This was very time consuming and the
whole team participated in getting this task done. The box was the active
agent object that contained data related to its current position and its final
destination. If a box were the last one put into the system for a specific
destination it also had a flag to indicate that the timer was to be stopped for
the destination when it reached the output node (so the total time to sort all
boxes to that destination was calculated). The conveyor agent moves a box
from one side to the next (directional). The sensor nodes were at the critical
locations where a box needed to be “scanned” to send it to a different
conveyor if necessary.

Before the simulations were run, a separate Java program was used
to add experiments to the database. Various humbers of boxes were used
for the experiments as we developed and tested the simulation. We
wanted to keep the box orders in the database in case we wanted to run
the same experiment later with different parameters such as conveyor
delays, weather problems, human errors, scanner errors, etc. Hundreds of
experiments were set up in the database, each with a unique “experimenta”
id. The results table records also contained the experiment number so we
could keep the time results together with the time for the sorts, as well as
the number of inputs, destinations, and total number of boxes sorted. Only
time results for the same number of boxes, inputs, and destinations were
compared.

The database we used runs as a Java application from the command
line. This database is called HSQLDB, (HyperSQL DataBase), and is the
leading SQL relational database engine written in Java ’. It is used as the
back-end for Open Office and many other open source commercial
products. The main benefit for us is that it uses standard SQL, is Java

Page 9

based (so we could access it from our program), and is portable (easy to
move from one system to another).

The database is run from a jar which contains its JDBC driver and
other supporting files. The specific database to run is set up in the
server.properties file and the database is run from the hsqldb_1 8 1 1.jar.

set classpath=./hsqldb_1 8 1 1 jar;

java org.hsqldb.Server

SQL commands can be entered using the HSQLDB database
manager which we used to set up and maintain the tables and to look at
the results. The separate java program (GeneratePackageSets.java) was
used to set up the experiments. It wrote the package orders to the
Packages table of the database (along with the number of destinations and
total number of packages). The experimental results data was stored in the
Results table of the database and was written from the Greenfoot
simulation code when the simulation was finished. The Greenfoot code also
did database lookups to get the experimental starting conditions (the box
orders) for specific conditions (number of inputs, destinations and number
of boxes to sort).

When the simulation starts it opens a socket connection to the
database and reads a random set of data for the experiment based on how
many inputs, destinations, and packages are to be sorted. Then the
simulation is started by taking packages one at a time from the package list
and sending them into the input nodes. The next package is placed on the
conveyor as soon as there is space (the input node is empty) until all
packages in the experimental list are gone.

As the packages travel down the conveyor they will reach a sensor
node that asks the package where it is going (if it needs to be redirected
onto another conveyor system). The package knows its destination and this
value is compared to the destinations accessible from the node. If the
package needs to be put on the new conveyor system it is transferred to

Page 10

that system. As destination nodes are passed on the system, the same
process is applied. If a package needs to turn off to its final destination it
will do that. When a package is correctly sorted to its output (cargo carrier)
it is removed from the system. The time for the individual package to the
final cargo carrier is not important. The only time that is recorded is the total
time to sort the first to last package for the destination. When all packages
are sorted the time results are recorded to the database for each
destination. In real time it took about 5 minutes of computer time to run the
4050 boxes through the simulation at the fastest Greenfoot speed.

The code we wrote for the experimental set up and Greenfoot
simulation is in Appendix A. The database table schemas are shown in
Appendix B.

Results

We were able to program the simulation in Greenfoot and use the
HSQLDB database to store our experimental parameters and results. We
collected data from many experimental runs. The raw data (time it took to
sort to each of the 81 destinations) was stored in the database. Data was
extracted from the database for sample runs and this data was analyzed
using a spreadsheet by “binning” or finding the number of destinations that
took a certain range of time to complete. For example, a set of raw data for
a 3 regional, 3 local (9 total destinations) might look like:

Page 11

ST

File ‘Wiew Command Recent Options Tools Schemas Help

J ‘ i Clearsal | R Execute SQL

hj jdbe:hsgldb:hsqgl:flocalhost/Packages]
#-{C3) PUBLIC.PACKAGES

({3 PUBLIC.RESULTS

#-{C5) PUBLIC. RESLLTS486

{5 PUBLIC. TABLE40S0

--Q Properties

select ™ from results

P

RUNDATE] 11 1z 13 23 33 22 z1 31 32
2011-02-12 14:12:158.485 73 20 164 156 137 176 163 128 151 16z AI
2011-02-13 13:30:30.947 fiL] 114 145 166 140 176 163 155 160 114 J
2011-02-13 14:035:19.726 741 126 142 108 152 121 156 169 160 166
2011-02-13 14:22:45.581 757 147 145 114 155 139 159 165 172 144
2011-02-19 10:17:55.837 756 153 145 170 169 145 102 137 133 153
2011-02-19 10:23:48.957 77l 138 a8 170 165 151 153 158 165 141
2011-0Z2-19 10:39:15.576 fiLx] 159 157 132 169 176 156 125 151 102
2011-02-19 12:35:06.965 765 6 151 170 104 145 156 165 164 108
2011-02-19 12:50:25.545 T3 132 145 159 143 176 167 113 157 1TILI

L3

Kl | mijiin

‘- | Ready | 46 rows retrigved

Figure 3. A set of experiments stored in the database for 9
destinations.

In our final simulation we had 81 columns of data, so it was much more
complex, a table with 81 columns instead of the 9 shown above.

Time in the Greenfoot simulation was equivalent to Greenfoot “tics”.
Each tic the boxes that are on the conveyors moved to a different conveyor
section or were scanned and redirected to a new conveyor section, until
they finally reached their exit. When all boxes for a certain exit (destination)
were sorted, the total time (Greenfoot tics) was recorded for the database
record. So the count of how many destinations completed for each 50 tic
interval was calculated for these sample runs and the data examined.

Shown below are a few examples for experimental id’s are; 833,
1664, 969, and 951. The y-axis is the number of destinations completed in
the time interval represented on the x-axis. Each bar represents a 50 time

Page 12

tic interval.

Data Set for 1664

Figure 4- Frequency Graph of data set 1664, our median data set.

Data Set for 951

20 -

15 ~

10 -
® Amount Sorted

5

© O © O O O O
SELESL PP
F Q7 gV P P

O]

Figure 5- Frequency Graph of data set 951

Page 13

Data Set 833

20 -
15 -
10 - I M Frequency of
c Destinations
IIIII Sorted

0_

O OO O O OO0 O O O O

O O OO0 O OO 6 o & S

O I~ 00 OO O A N 0N < 1n WO

0 0O O OO0 O OO O OO OO O O

Figure 6- Frequency Graph of data set 833

Data Set 969
20 -
15 -
10 I M Frequency for
5 - I I I I I destination sorted
O .
O O O O o o o
o LN o LN (] LN o
(o] ™~ o o on (N
o0 o0 o0 (@) (@) (@) (@)

Figure 7- Frequency Graph of data set 969

Each set of data showed a fairly consistent pattern to sort the 4050
packages. A few destinations were sorted in a short time (8600 — 9200

Page 14

Greenfoot tics). Most destinations took 9300-9500 Greenfoot tics, as seen
by the peaks in these frequency charts. Generally the further away the
destination, the more likely the boxes were to take more time to finish the
sort to their destination. But if a lot of boxes were going to a single
destination and were the last to enter the system this destination would end
up with the longest sorting times.

One thing we could see from the results is that the distribution of
sorting times was not a simple bell curve. It was skewed heavily toward the
longer sorting times. Since the outbound flights could not leave for a
destination until all packages are sorted for this destination, the skew
toward the right (longer times) will have an impact on the overall efficiency
of the system. If anything were to go wrong with the sort we would expect
more of the destinations to fall into the longer sort times.

Conclusion

This year, we were able to create a mock version of the package
facility, in Memphis, run by FedEx using the Greenfoot environment. We
were also able to make the simulation sort boxes which had
preprogrammed destinations stored in a database. The boxes were sorted
throughout the facility, by the program, which then recorded the frequency
for destination sorted, our primary result, in the database. The results
clearly showed that there was a distribution of sorting times. The sort time
distribution curve indicated that most of the destinations would be sorted at
the longer times, and that the sort times were not evenly distributed.

Accomplishments

We prevailed over many obstacles throughout the course of our
project’s development. We made attempts to work in four programming
languages or combinations of languages, Java, NetLogo, NetLogo with
Java extensions, and finally Greenfoot with SQL, a database language that
we didn’t know about until recently. We also managed to replicate the
Memphis Distribution Center owned by FedEX, allowing us to accurately
test our program. We also learned a great deal about the Greenfoot
environment and how a package makes its way from one part of the

Page 15

country to its destination. We also learned how to use SQL, a database
language.

Some of the most significant accomplishments were getting
Greenfoot to run the complex conveyor system, getting the data (results)
into the database after each simulation run. So one thing we did was
integrate Greenfoot with HSQLDB which may have never been done before
now.

Acknowledgments

Many domain experts advised us on the development of our project
and we would like to recognize their valuable input and assistance. Paul
Fisher aided us by explaining the functions of a distribution center and
shared with us many other insights into the shipping business, which he
worked in for many years. Jim Redman provided us with information during
an interview on the issues that can occur in a FedEx facility. Elizabeth
Cooper helped us with creating the simulation and reviewing the final
report. Wyatt Dumas introduced us to the Greenfoot environment which we
used to create our simulation. We would also like to thank Tom Laub for
giving us feedback on the interim report and we also want to thank those
who evaluated our project at the Northern New Mexico Community College.

Future Work

In future expansions of this project, that we may try next year, we will
try to better replicate the sorting center environment, adding things such as
conveyer belt breakdowns and other errors that could possibly occur in a
sorting center. We may also try to replicate the results of Dr. Bowden’s
team that wrote the paper titled “Improving the Operation Intermodal Cargo
Terminals Using Simulation and Optimization” which simulated the Hub in
Memphis 8. We might start by converting the source code they used for
ProModel into Java code.

We also want to create another simulation that we can design that
would theoretically be the most efficient yet feasible facility any shipment
company could make. We will create it by eliminating what should be the

Page 16

part of the facility most at risk. The “backbone” stretch of conveyer that ran
the length of the entire facility. We will change the simulation of the real life
facility into a more decentralized version that had a fork system. Each fork
will have exits on both sides of either node in place in the fork system
which created a much closer packed facility. It also got rid of the central
backbone that would be a large collision risk in a real life facility. This
design should allow more packages to be sorted throughout the facility
while decreasing the amount of time that each box would be in travel.

o = i
_HI:H _IHIH__ __HI:H__

o\ r
3 E]

El [ElE gu 3 EliEl |El 5]
i H'\I H"\I H"H H H H H H H H H H H_

E [EFE [E

H H H \I H \I H H H H H H H H H H H H_
H H H \I H H _H H H H
=3

H H _H H 3
el o]

_H \I _H H
=3 =@

Figure 8. Part of the improved simulation showing the 3 inputs and
the forks they divide into

We may also create another facility in Greenfoot that would be a,
“perfect” scenario. The facility will consist of nine inputs each leading to
nine outputs. The reason we called it the perfect loop is, in order to create a
facility this simple, boxes would have to be half presorted going into the
facility.

Page 17

=
IHI II:I_IIiI IHI IHI II:I_IIiI IHI IIiI_

Figure 9. Part of the perfect loop simulation showing the
9inputs leading to the 9 outputs they are connected to

References

[1] "Jim Redman on How the Memphis FedEx Sorting Facility Is
Arranged and the Problems That Occur." Personal interview.

[2] UPS and FedEx Air Hubs: Comparing Louisville and Memphis Cargo
Hub Operations by Alex Cosmas and Bastien Martini, December 14th,
2007.

[3] Greenfoot (The Java Object World) http://www.greenfoot.org/

[4] IMPACTS OF THE DECEMBER 22, 2004 WINTER STORM ON
FEDEX'S MEMPHIS OPERATION, Erik A. Proseus and Trevor K. Hansen,
FedEx Express, Memphis, TN.

Page 18

[5] Reading Rainbow, How FedEx Sorts Their Packages,
www. youtube.com/watch?v=Ug4GH3IPjal , 1998.

[6] FedEx Fact Sheet, “The FedEx Express Super Hub in Memphis, TN”,
http://news.van.fedex.com/.../FedEx%20Express%20Super%20Hub%20in
%20Memphis.pdf

[7] HSQLDB, http://hsqgldb.org/, 100% Java Database

[8] R. Bowden, S. Gadiraju, G. Reginelli, and C.R. Cassady, Improving
the Operation of Overnight IntermodalCargo Terminals Using
Simulation and Optimization. Rep.FedEx. Web. 5 Apr. 2011

Page 19

Appendix A. Source Code

GeneratePackageSets.java

This was used to create the many experimental randomly ordered
packages for the simulation. These package lists were stored in the
database table “Packages”.

import java.sqgl.Connection;
import java.sqgl.DriverManager;
import java.sgl.ResultSet;
import java.sqgl.SQLException;
import java.sgl.Statement;

import java.util.Random;

//Utility to write all or some combinations of packages and
destinations to the database

public class GeneratePackageSets {
static Connection conn = null;
static Statement st = null;
static int numberOfExits = 3;
static int numberOfPackages = 4050;
static boolean distributeEvenly = true;
static int numberOfRuns = 1000;
public static void main (String[] args) {

String dburl =
"jdbc:hsgldb:hsgl://localhost/PackageSorting";

String user = "SA";
String password = "";
try
{
Class.forName ("org.hsgldb.jdbcDriver") ;

conn = DriverManager.getConnection (dburl, user,
password) ;

System.out.println ("Database connection
established") ;

Page 20

}

catch (Exception ex)

{

System.out.println ("Exception: " +
ex.getMessage ()+ ". Did you forget to start the database?");

}
//test database

try {

ResultSet rs = null;
st

conn.createStatement () ;

rs = st.executeQuery ("SELECT COUNT (*)as rowcount
FROM packages");

rs.next () ;

System.out.println ("Number of Package experiments
in database is : " + rs.getInt ("rowcount"));

st.close () ;
}
catch (Exception ex) {

System.out.println ("SQLException: " +
ex.getMessage ()) ;

}
if (distributeEvenly) {
for (int i=0;i<numberOfRuns;i++) {

String list =
generatePackagelist (numberOfPackages, numberOfExits) ;

//check if this is not already in the
database

if
(checkDatabase (list, numberOfPackages, numberOfExits)) {
//write new package list to the database
try {

st = conn.createStatement () ;

Page 21

String sgl = "INSERT into packages
(packages,destinations, total) wvalues
(""+list+"', "+numberOfExits+", "+numberOfPackages+")";

st.execute(sql);
st.close();

}

catch (Exception ex)

{

System.out.println ("SQL Exception
trying to write new package list to database: " +
ex.getMessage ()) ;

/** generates a list of package destinations in some random
order.

* This method assumes you want the same number of packages
going to each destination */

public static String generatePackagelist (int packages, int
destinations) {

String packageList="";

int numberForEachExit = packages/destinations;
String packageDestinations/[];

Random r = new Random() ;

packageList="1";

for (int j=1;]j<destinations;j++) {

packagelist=packageList+", "+ (j+1);

Page 22

for (int i=1;i<numberForEachExit;i++) {
for (int j=0;]j<destinations;j++) {

packagelist=packageList+", "+ (j+1);

}
//System.out.println (packagelList) ;

packageDestinations = packageList.split(","):;
for (int i=0;i<packages;i++) {
//swap postions for two random values
int indexl = r.nextInt (packages);

r.nextInt (packages) ;

int index?2
String valuel=packageDestinations[indexl];

packageDestinations[indexl]=packageDestinations[index2];
packageDestinations[index2]=valuel;
}
packagelist=packageDestinations[0];

for (int i=1;i<packages;i++) {

packagelist=packageList+", "+packageDestinations[i];
}
System.out.println (packagelList) ;

return packagelist;

/** this returns true if the package list is a new one (not

in the database) */
public static boolean checkDatabase (String list,int

packages, int exits) {
ResultSet rs = null;

try {
st = conn.createStatement () ;
String sgl = "select id,destinations from
packages where packages = ""+list+"'";

Page 23

rs = st.executeQuery(sql);
//st.close();
boolean found = rs.next();
if (found) {

st.close();

return false;
} else {

st.close();

return true;

} catch (SQLException e) {

e.printStackTrace() ;

return false;

Greenfoot Code

The skeleton code for each of these agents was generated by Greenfoot
and edited to add custom code in the Greenfoot environment. Most of the
code shown in this Appendix was written by us (the skeleton code for
Greenfoot can be used as a guide but it does not do anything). Greenfoot
compiles the changed code before each run and allows you to stop and
start the simulation and set the time interval for the simulation clock so that
it can be run faster or slower. Debugging in Greenfoot is not as convenient
as in a real Java IDE such as Eclipse. Most of the time we have to put in
println statements (which are commented out) to check on variable
changes and program logic.

Page 24

Facility.java

The facility is the simulation “world” or environment. This class contains all
the conveyor, sensor, exits, and inputs setup for the simulation. Most of the
database communication code is in this class. It also writes the results for
the simulation run to the database. Interesting features of this code is the
section where the agents are placed in their positions to form the conveyor
system, and the SQL code that creates the database columns if they do not
already exist (to avoid manually entering SQL for each of these 81 columns
in the final simulation).

import greenfoot.Greenfoot;
import greenfoot.World;

import java.sqgl.Connection;
import java.sgl.DriverManager;
import java.sgl.ResultSet;
import java.sgl.Statement;
import java.util.List;

import java.util.Random;

/**
* Write a description of class facility here.
*

* @author (your name)

* @version (a version number or a date)

*/

public class Facility extends World ({

int step = 0;
// String[] destinations = {"1","2","3"};
int listIndex = 0;
int totalPackages = 4050;
int numberOfPrimaryExits = 9;

int numberOfSecondaryExits 9;

int experimentsInDatabase=0;

int packageSet = 1;//randomly determined for the run
// packagelList is read from the database

String packagesList = "";

String[] packageDestination = null;

Connection conn = null;

Statement st = null;
int finalStep;

/*k*k

Page 25

* Constructor for objects of class facility.
*

*/
public Facility () {

// Create a new world with 600x400 cells with a cell
size of 1x1 pixels.
//getBackground () .scale (60, 60) ;

super (30, 30, 40, true);

// connect to database so we have a source of packages

// String dburl = "jdbc:hsgldb:data/PackageSorting";

String dburl =
"Jdbc:hsgldb:hsqgl://localhost/PackageSorting";

String user = "SA";

String password = "";

String drivename = "org.hsqgldb.jdbcDriver";
try {

Class.forName ("org.hsgldb.jdbcDriver") ;
conn = DriverManager.getConnection (dburl, user,
password) ;
System.out.println ("Database connection
established") ;
} catch (Exception ex) {
System.out.println ("Exception: " + ex.getMessage ()
+ ". Did you forget to start the database?");
}
// test database
try {

ResultSet rs = null;

st = conn.createStatement();

rs = st.executeQuery ("SELECT COUNT (*)as rowcount
FROM packages where (total="+totalPackages+" and
primarysort="+numberOfPrimaryExits+" and
secondarySort="+numberOfSecondaryExits+")") ;

rs.next () ;

experimentsInDatabase=rs.getInt ("rowcount") ;

System.out

.println ("Number of Package experiments for
"+ totalPackages +" packages and " + numberOfPrimaryExits + "
primary exits in database is "
+ experimentsInDatabase);

Page 26

st.close();
} catch (Exception ex) {
System.out.println ("SQLException: " +

ex.getMessage ()) ;

}
setUpFullLoop () ;

}
int timer = 3;

public List checkNodeNeighbours () {
List nodes = getObjects (Node.class);
for (int i = 0; i < nodes.size(); i++) {
Node node = (Node) nodes.get(i);
node.checkNeighbours (this) ;

}

return nodes;

}

public void act () {

if (getObjects (BluePackage.class) .size ()==0) {
endSimulation () ;

}
stept++;

/*1if (timer == 3 && (listIndex < totalPackages)) {//
make sure we still
// have
some packages to
// sort

// BluePackage pack = new BluePackage
// (destinations[Greenfoot.getRandomNumber (3)]);
BluePackage pack = new
BluePackage (packageDestination[listIndex]) ;
// if this is the LAST package mark the box
if (listIndex == totalPackages - 1) {
pack.markAsLast (true) ;
}
pack.setStartStep(step) ;
listIndex++;
addObject (pack, 1, 1);
timer = 0;
checkNodeNeighbours () ;
} else {
timer++;

Page 27

step++;
p*/
// if we have sorted all the packages get the statistics
and quit

}
public BluePackage getNextPackage () {

if ((listIndex < totalPackages)) {// make sure we still
// have
some packages to
// sort
// BluePackage pack = new BluePackage
// (destinations[Greenfoot.getRandomNumber (3)]);
//System.out.println (packageDestination.length);
BluePackage pack = new
BluePackage (packageDestination[listIndex]) ;
// if this is the LAST package mark the box
if (listIndex == totalPackages - 1) {
pack.markAsLast (true) ;
}
pack.setStartStep(step) ;
listIndex++;
// addObject (pack, 1, 1);
timer = 0;
checkNodeNeighbours () ;
return pack;

} else{
return null;

}

public void setUpBasicLoop () {

placeConveyor(l, 1, 180);
placeConveyor (1, 2, 180);
placeConveyor (1, 3, 180);
placeConveyor (3, 5, 180);
placeConveyor (5, 5, 180);
)

placeConveyor (7, 5, 180
Node node = new Node () ;
addObject (node, 1, 4
node.putRoute ("1", 9
node.putRoute ("2", 9

) ;
0);
0);

14

Page 28

node.putRoute ("3", 90);
placeConveyor (2, 4, 90);
Node node?2 = new Node ()
addObject (node2, 3, 4);
node?2.putRoute ("1™, 180);
nodeZ.putRoute ("2", 90);
node?2.putRoute ("3", 90);
System.out.println (node2.preRoutes.get (1)
+ " place destination of node 2");
placeConveyor (4, 4, 90);
Node node3 = new Node ()
addObject (node3, 6, 4);
node3.putRoute ("1", 270);
node3.putRoute ("2", 180)
node3.putRoute ("3", 90);
placeConveyor (6, 4, 90);
Node noded4d = new Node () ;
addObject (noded, 7, 4);
noded .putRoute ("1™, 270);
noded .putRoute ("2", 270);
noded .putRoute ("3", 180);
placeExit (3, 6, 1);
placeExit (5, 6, 2);
placeExit (7, 6, 3);

14

14

for (int i = 0; 1 < node.preRoutes.size(); i++) {
// System.out.println (node.preRoutes.get (i)+" The
list of locations for node 1");
}
// get a set of packages from the database
ResultSet rs = null;
try {
st = conn.createStatement();
//we are going to get some random database entry for
this number of exits and packages
String sgl = "SELECT id,packages FROM Packages where
(primaryExits=" + numberOfPrimaryExits+ " and total=" +
totalPackages + " and secondaryExits="+numberOfSecondaryExits+")
ORDER BY RAND() limit 1";
System.out.println(sql);
rs = st.executeQuery(sqgl); // run the query
rs.next () ;
packageSet = rs.getInt ("id");
packagesList = rs.getString("Packages");
packageDestination = packagesList.split(",");
System.out.println ("experiement setup # " +
packageSet + " package order: " + packagesList);

Page 29

st.close () ;

} catch (Exception ex) {

System.out.println ("SQLException:

ex.getMessage ()) ;

}

}

// placeConveyor (5,4,90);

public void setUpBetterLoop ()

placeConveyor (
placeConveyor (
placeConveyor (
placeConveyor (
placeConveyor (
placeConveyor (
placeConveyor (
placeConveyor (
placeConveyor (
placeConveyor (
placeConveyor (9,

~ ~ ~

~

~ ~ ~ ~

O O JJJ00 01w
~

~

O
~

180) ;
180) ;
180) ;
180) ;
180) ;
180) ;
)i
)i
)i
)i
)i

14
4
14

14

180
180
180
180
180

14

4

14

14

4

Node node = new Node () ;

addObject (node,

1,

node.putRoute ("1",
node.putRoute ("2",
node.putRoute ("3",

placeConveyor(Z

Node node2 = new Node

addObject (node?2,

4,

3,

node?2.putRoute ("1",
node?2.putRoute ("2",
nodeZ.putRoute ("3",
System.out.println (node2.preRoutes.get (1)

+ " place destination of node 2");

placeConveyor (4,
placeConveyor (5,

4,
4,

) ;
O)
0);
Q)7

90) ;
()7
4);

180) ;
90) ;
90);

90) ;
90) ;

Node node3 = new Node ()

addObject (node3,

6,

node3.putRoute ("1",
node3.putRoute ("2",
node3.putRoute ("3",

placeConveyor (7,
placeConveyor (8§,

4,
4,

4);
270) ;
180) ;
90);
90) ;
90) ;

{

"

+

Page 30

Node noded4d = new Node();
addObject (node4d, 9, 4);
noded .putRoute ("1", 270);
noded .putRoute ("2", 270);
node4 .putRoute ("3", 180);
node = new Node() ;
node.setSortNumber (2) ;
addObject (node, 3, 6);
node.putRoute ("1", 90);
node.putRoute ("2", 180);
node.putRoute ("3", 180)
node = new Node() ;
node.setSortNumber (2) ;
addObject (node, 3, 8);
node.putRoute ("1", 90);
node.putRoute ("2", 90);
node.putRoute ("3", 180);
node = new Node() ;
node.setSortNumber (2) ;
addObject (node, 3, 10)
node.putRoute ("1", 90);
node.putRoute ("2", 90)
node.putRoute ("3", 90)
node = new Node() ;
node.setSortNumber (2) ;
addObject (node, 6, 6);
node.putRoute ("1", 90);
node.putRoute ("2", 180);
node.putRoute ("3", 180)
node = new Node () ;
node.setSortNumber (2) ;
addObject (node, 6, 8);
node.putRoute ("1", 90);
node.putRoute ("2", 90);
node.putRoute ("3", 180);
node = new Node() ;
node.setSortNumber (2) ;
addObject (node, 6, 10)
node.putRoute ("1", 90);
node.putRoute ("2", 90)
node.putRoute ("3", 90)
node = new Node() ;
node.setSortNumber (2) ;
addObject (node, 9, 6);
node.putRoute ("1", 90);
node.putRoute ("2", 180);
node.putRoute ("3", 180)

Page 31

node = new Node() ;
node.setSortNumber (2) ;

addObject (node, 9, 8);

node.putRoute ("1", 90);
node.putRoute ("2", 90);
node.putRoute ("3", 180);
node = new Node() ;

node.setSortNumber (2
addObject (node, 9, 1
node.putRoute ("1", 9
node.putRoute ("2", 9
node.putRoute ("3", 9

(

(
placeExit (4, 6, 11);
placeExit (4, 8, 12);
placeExit (4, 10, 13);
placeExit (7, 6, 21);
placeExit (7, 8, 22);
placeExit (7, 10, 23);
placeExit (10, 6, 31);
placeExit (10, 8, 32);
placeExit (10, 10, 33);
placeInput(l, 1, 180);

for (int i 0; 1 < node.preRoutes.size(); it++) {
// System.out.println (node.preRoutes.get (i)+" The
list of locations for node 1");
}
// get a set of packages from the database
ResultSet rs = null;
try {
st = conn.createStatement|();
//we are going to get some random database entry for
this number of exits and packages
String sgl = "SELECT id,packages FROM Packages where
(primarysort=" + numberOfPrimaryExits+ " and total=" +
totalPackages + " and secondarysort="+numberOfSecondaryExits+")
ORDER BY RAND() limit 1";
System.out.println(sql);
rs = st.executeQuery(sqgl); // run the query
rs.next () ;
packageSet = rs.getInt ("id");
packagesList = rs.getString("Packages");
packageDestination = packagesList.split(",");

System.out.println ("experiement setup # " +
packageSet + " package order: " + packagesList);
st.close();

} catch (Exception ex) {

Page 32

System.out.println ("SQLException: " +
ex.getMessage()) ;

}

// placeConveyor (5,4, 90);

public void setUpFullLoop () {

placeConveyor (18, 1, 270);

placeConveyor (17, 1, 270);
placeConveyor (16, 1, 270);
placeConveyor (14, 1, 270);
placeConveyor (13, 1, 270);
placeConveyor (12, 1, 270);
placeConveyor (11, 1, 270);
placeConveyor (10, 1, 270);
placeConveyor (9, 1, 270);
placeConveyor (8, 1, 270);
placeConveyor (7, 1, 270);
placeConveyor (6, 1, 270);
placeConveyor (5, 1, 270);
placeConveyor (4, 1, 270);
placeConveyor (3, 1, 270);
)

placeConveyor (2, 1, 270);
Node node = new Node() ;
addObject (node, 1, 1);

node.putRoute ("1", 180

14

)
node.putRoute ("2", 180);
node.putRoute ("3", 180);
node.putRoute ("4", 180);
node.putRoute ("5", 180);
node.putRoute ("6", 180);
node.putRoute ("7", 180);
node.putRoute ("8", 180);
node.putRoute ("9", 180)

placeConveyor (1, 2, 180);
placeInput (19, 3, 270);
node = new Node ()
addObject (node, 1, 3);
node.putRoute ("1", 180);
node.putRoute ("2", 180);
node.putRoute ("3", 180);

Page 33

4", 180
"5", 180

node.putRoute (")
node.putRoute ()
node.putRoute ("6", 180);
node.putRoute ("7", 180)
()
(
(1

.
4

.
4

node.putRoute ("8", 180);
node.putRoute ‘9" 180) ;
placeConveyor 3, 270);

placeConveyor(17, 3, 270);
//placeConveyor (16, 3, 270);
placeConveyor (15, 3, 270);

3

placeConveyor (14, 3, 270);
placeConveyor (13, 3, 270);
placeConveyor (12, 3, 270);
placeConveyor (11, 3, 270);
placeConveyor (10, 3, 270);
placeConveyor (9, 3, 270);
placeConveyor (8, 3, 270);
placeConveyor (7, 3, 270);
placeConveyor (6, 3, 270);
placeConveyor (5, 3, 270);
placeConveyor (4, 3, 270);
placeConveyor (3, 3, 270);
placeConveyor (2, 3, 270);
placeConveyor (1, 4, 180);
placeInput (19, 5, 270);

14
node = new Node () ;
addObject (node, 1, 5);
node.putRoute ("1", 180

)
node.putRoute ("2", 180);
node.putRoute ("3", 180);
node.putRoute ("4", 180);
node.putRoute ("5", 180);
node.putRoute ("6", 180);
node.putRoute ("7", 180);
node.putRoute ("8", 180);
node.putRoute(‘9", 180);
placeConveyor (1 5, 270);
placeConveyor (1 5, 270);
placeConveyor (1 5, 270);
placeConveyor (1 5, 270);
placeConveyor (1 5, 270);
placeConveyor (1 5, 270);
placeConveyor (1 5, 270);
placeConveyor (1 5, 270);
placeConveyor(l 5, 270);
placeConveyor (9, 5, 270) ;
placeConveyor (8, 5, 270);

Page 34

placeConveyor (7, 5,
placeConveyor (6, 5,
placeConveyor (5, 5,
placeConveyor (4, 5,
placeConveyor (3, 5,
placeConveyor (2, 5,
placeConveyor(l, 6,
placeInput (19, 7, 2
node = new Node () ;
addObject (node, 1, 7
node.putRoute ("1",
node.putRoute ("2",
node.putRoute ("3",
node.putRoute ("4",
node.putRoute ("5",
node.putRoute ("6",
node.putRoute ("7",
node.putRoute ("8",
node.putRoute('9"
placeConveyor (1 7
placeConveyor (1 7
placeConveyor (1 7
placeConveyor (1 7
placeConveyor (1 7
placeConveyor (1 7
placeConveyor (1 7
placeConveyor (1 7
placeConveyor(l 7
placeConveyor (9, 7,
placeConveyor (8, 7,
placeConveyor (7, 7,
placeConveyor (6, 7,
placeConveyor (5, 7,
placeConveyor (4, 7,
placeConveyor (3, 7,
placeConveyor (2, 7,
placeConveyor(l, 8,
node= new Node () ;
addObject (node, 1,
node.putRoute ("1",
node.putRoute ("2",
node.putRoute ("3",
node.putRoute ("4",
node.putRoute ("5",
node.putRoute ("6",
node.putRoute ("7",
node.putRoute ("8",

270
270
270
270
270
270
180
70) ;

) ;

180
180
180
180
180
180
180
180
180

, 270
, 270
, 270
, 270
, 270
, 270
, 270
, 270
, 270
270) ;

)
)
)
)
)
)
)
)

~— — — ~— ~— ~— ~—

.
14
.
14
.
4
.
14
.
14
.
4
.
14

.
14

) ;

)
)
)
)
) .
)
)
)
)

Page 35

node.putRoute ("9", 180);
placeConveyor (2, 9, 90);
node= new Node () ;
addObject (node, 3, 9);
node.setSortNumber (2) ;
node.putRoute ("1", 180);

node.putRoute ("2", 90);
node.putRoute ("3", 90);
node.putRoute ("4", 90);
node.putRoute ("5", 90);
node.putRoute ("6", 90);
node.putRoute ("7", 90);
node.putRoute ("8", 90);
node.putRoute ("9", 90);

placeExit (3, 10, 11);
placeConveyor (4, 9, 90);
node= new Node () ;
addObject (node, 5, 9);
node.setSortNumber (2) ;
node.putRoute ("1", 270);
)

node.putRoute ("2", 180);
node.putRoute ("3", 90);
node.putRoute ("4", 90);

(
(
()
node.putRoute ("5", 90)
("e", 90);
()
()
)

node.putRoute
node.putRoute ("7", 90);
node.putRoute ("8", 90);

node.putRoute ("9", 90
placeExit (5, 10, 12);
placeConveyor (6, 9, 90);
node= new Node () ;

addObject (node, 7, 9);
node.setSortNumber (2) ;
node.putRoute ("1", 270

)
node.putRoute ("2", 270);
node.putRoute ("3", 180);
node.putRoute ("4", 90);

(

(

(
node.putRoute ("5", 90

(

(

(

node.putRoute ("6", 90);
node.putRoute
node.putRoute ("8", 90);

)
)
"7", 90);
)
)

node.putRoute ("9", 90
placeExit (7, 10, 13);
placeConveyor (8, 9, 90);
node= new Node () ;
addObject (node, 9, 9);
node.setSortNumber (2) ;

Page 36

node.putRoute ("1", 270);
node.putRoute ("2", 270);
node.putRoute ("3", 270);
node.putRoute ("4", 180);
node.putRoute ("5", 90);
node.putRoute ("6", 90);
node.putRoute ("7", 90);
node.putRoute ("8", 90);
node.putRoute ("9", 90);
placeExit (9, 10, 14);
placeConveyor (10, 9, 90);
node= new Node () ;
addObject (node, 11, 9);
node.setSortNumber (2) ;
node.putRoute ("1", 270);
node.putRoute ("2", 270);
node.putRoute ("3", 270);
node.putRoute ("4", 270);
node.putRoute ("5", 180);
node.putRoute ("6", 90);
node.putRoute ("7", 90);
node.putRoute ("8", 90);
node.putRoute ("9", 90);
placeExit (11, 10, 15);
placeConveyor (12, 9, 90);
node= new Node () ;
addObject (node, 13, 9);
node.setSortNumber (2) ;
node.putRoute ("1", 270);
node.putRoute ("2", 270);
node.putRoute ("3", 270);
node.putRoute ("4", 270);
node.putRoute ("5", 270);
node.putRoute ("6", 180);
node.putRoute ("7", 90);
node.putRoute ("8", 90);
node.putRoute ("9", 90);
placeExit (13, 10, 16);
placeConveyor (14, 9, 90);
node= new Node () ;
addObject (node, 15, 9);
node.setSortNumber (2) ;
node.putRoute ("1", 270);
node.putRoute ("2", 270);
node.putRoute ("3", 270);
node.putRoute ("4", 270);
node.putRoute ("5", 270);

Page 37

node.putRoute ("6", 270);

(
node.putRoute ("7", 180);
node.putRoute ("8", 90);
node.putRoute ("9", 90);

placeExit (15, 10, 17);
placeConveyor (16, 9, 90);
node= new Node () ;

addObject (node, 17, 9);
node.setSortNumber (2) ;
node.putRoute ("1", 270

)
node.putRoute ("2", 270);
node.putRoute ("3", 270);
node.putRoute ("4", 270);
node.putRoute ("5", 270);
node.putRoute ("6", 270);
node.putRoute ("7", 270);
node.putRoute ("8", 180);
node.putRoute ("9", 90);

placeExit (17, 10, 18);
placeConveyor (18, 9, 90);
node= new Node () ;

addObject (node, 19, 9);
node.setSortNumber (2) ;
node.putRoute ("1", 270

.
14

)
node.putRoute ("2", 270);
node.putRoute ("3", 270);
node.putRoute ("4", 270);
node.putRoute ("5", 270);
node.putRoute ("6", 270);
node.putRoute ("7", 270);
node.putRoute ("8", 270);
node.putRoute ("9", 180);

placeExit (19, 10, 19);
placeConveyor (1, 10, 180);
node= new Node () ;
addObject (node, 1, 11);
node.putRoute ("1", 180);

node.putRoute ("2", 90);
node.putRoute ("3", 180);
node.putRoute ("4", 180);
node.putRoute ("5", 180);
node.putRoute ("6", 180);

node.putRoute ("8", 180
node.putRoute ("9", 180
placeConveyor

(

(')

()

()

()

node.putRoute ("7", 180);
()

()

(2 0

node= new Node

(),

Page 38

addObject (node, 3, 11);
node.setSortNumber (2) ;
node.putRoute ("1", 180);

node.putRoute ("2", 90);
node.putRoute ("3", 90);
node.putRoute ("4", 90);
node.putRoute ("5", 90);
node.putRoute ("6", 90);
node.putRoute ("7", 90);
node.putRoute ("8", 90);
node.putRoute ("9", 90);

placeExit (3, 12, 21);

placeConveyor (4, 11, 90);

node= new Node () ;

addObject (node, 5, 11);

node.setSortNumber (2) ;

node.putRoute ("1", 270);
)

node.putRoute ("2", 180);
node.putRoute ("3", 90);
node.putRoute ("4", ;

14

node.putRoute ("7",
node.putRoute ("8",
node.putRoute ("9",
placeExit (5, 12, 22);
placeConveyor (6, 11, 90);
node= new Node () ;
addObject (node, 7, 11);
node.setSortNumber (2) ;
node.putRoute ("1", 270

(

(

(90)
node.putRoute ("5", 90);
node.putRoute ("6", 90);

(90)

(90)

90)

14

4

4

)
node.putRoute ("2", 270);
node.putRoute ("3", 180);
node.putRoute ("4", 90);

(

(

(
node.putRoute ("5", 90

(

(

(

node.putRoute ("6", 90);
nod