
1

ASL Detection
for

Practical Implementation

—

24th Annual Supercomputing Challenge
2013-2014

FINAL REPORT
Team №1

Team Members
Noah Caulfield, Academy for Technology and the Classics
Dmitri Malygin-Voorhees, Santa Fe High School

Sponsoring Teacher

Brady Gotcher, Academy for Technology and the Classics

Running tittle: ASL Detection for Real World Implementation

2

Table of Contents

Executive Summary………………………………………………………………………..3

1. Introduction……….…………..…………………………………………………...4

2. Background………………………………………………………………………...5

2.1 ASL Introduction………………………..5

2.2 Project Objectives………………………………….……….………… 8

3. Processing Development……………………………………..………………….… 9

 3.1 Why Kinect?.. 9

3.2 Method……... 10

3.3 Errors and Resolution……………………………………………….. 17

 4. Python Development ……………………………………………………..………. 18

 4.1 Concept……………………………………………………………….. 18

 4.2 Design………………………………………………………………… 18

 5. Conclusion…….……………………………………………………..…………… 24

 6. Significant Achievement…………………………………………………………. 24

 7. Acknowledgement………………………………………………………………… 24

 8. Source Code……………………………………………………………………….. 25

 9. Example Contour Image Library………………………………………………... 30

 10. Processing Code (Inconclusive)..………………………………………………... 34

 11. Works Noted....…………………………………………………………………….. 67

3

Executive Summary
 Deafness is a widespread problem that affects hundreds of thousands of Americans,

restricting their access to basic means of communication and expression. Hundreds of thousands

more are considered ‘functionally deaf,’ meaning that their hearing is impaired and they require

assistance though the means of hearing aids and other devices whose high price tags could

potentially limit their accessibility. Hearing is one of the body’s five core senses and the primary

means of conscious social interaction; individuals who can’t process audible communication face

great difficulty in interfacing with the outside world.

An attempt to alleviate some of this difficulty was the central aim of our project for the

24th Annual Supercomputing Challenge, in which we investigated whether it is feasible to have

conventionally built computers and devices recognize American Sign Language (ASL)

fingerspelling gestures and use them as input, an area which has received little to no real research

in the past. Although there are a number of consumer solutions for those who rely on ASL, many

of them are overly expensive or impractical to be considered adequately accessible. Our project

was imagined with the core concept of it being a catalyst, so that others, even outside the

Challenge, may view and build off of our work so that in the future a true method is successfully

implemented for the benefit of the posterity.

 We, Team No. 1, looked to utilize generic web cameras and the Xbox 360 Kinect sensor,

connected to a computer, to investigate our selected methods of recognition after eliminating

other options from a list of other means of creating accurate gestural recognition. Much ardor

was put into tweaking on the Kinect via the Processing language, yet we finally deemed that

there were too many core library issues at the time of development to be able to produce a

finalized prototype -- although this would be entirely possible in the foreseeable future. Python

was the other language implemented in the design and construction of our other prototype, a real

time contour comparison system that receives users’ gestural input via web camera and compares

it to our own set of previously compiled images to determine peak similarities, which determines

the actual gesture with a negligible margin of error when used in the correct environment. We

relied heavily on the OpenCV library, which deals mainly with computer vision, to define a

method of comparison to implement and to optimize the project in its entirety.

4

1. Introduction
American Sign Language, or ASL for short, was introduced in the United States nearly

200 years ago; today, and it serves as the most common means of face-to-face communication

for the deaf of hearing impaired. These groups, however, have difficulty making use of

technological resources without having the mastery of English that most of America takes for

granted. Factually, computers and similar devices are not intuitive to the hearing impaired, and

accessibility devices can be inconvenient, expensive, or both.

 Through the last several decades, there have been many advancements in the

areas of user accessibility and gestural recognition including the concept and now popular trend

of wearable technology, yet the question of true user accessibility and functionality is constant. A

device is only innovative if able to be successfully implemented among a significant group.

 Our project follows the path of early speech recognition technology. With previous

attempts to abet gestural recognition in computers, depth has been a constant factor within the

camera’s input, which limits processing and accuracy. We spent much time working on isolating

the ASL fingerspelling alphabet, which consists of individual (usually static) signs representing

the 26 Arabic letters used in English, as well as several integers and special-case devices. ASL

fingerspelling was chosen due to serving as the foundation of the language, which made it the

natural choice.

 Other forms of past designs of ASL recognition have relied on instrumented gloves or a

desktop based camera system, such as thermal cameras, to have the highest precision rates. After

investigating this trend, we noticed that it could be deducted that many of these options, although

some chosen for being case/design specific, were broadly chosen due to being of a high

resolution which lowered the background visual noise. From that, we decided to attempt to have

our program be, in theory, universally usable, which has impacted some of our coding techniques

and hardware testing/choosing.

 In its core, our project is to simply ask the question, is American Sign Language

detection and implementation possible at a true consumer level, and if so, what is a valid method

for doing such? If achieved, our program would serve as a basis for further implementation

within consumer level operating systems in an attempt to create true user accessibility- disabled

or not.

5

2. Background

2.1 American Sign Language Introduction

Sign Language was first introduced in America mainly by Thomas Hopkins

Gallaudet, a Congressional minister whom originally sought a method of communication

for his deaf neighbor. In 1815 he actually traveled to England to study the current

methods of sign language, which were much different from today’s standards, and

returned with modified versions to meet America’s reign specific colloquializations. He

even then founded the nation’s first school for the deaf in 1817, and he became our

nation’s first sign language teacher. Since then, sign language within the United States,

specifically called American Sign Language or ASL for short, has become a uniform

standard for which millions use daily.

The first concept to understand American Sign Language the Sign Space, which is

an area of which most signs should be made for formal and informal conversations.

Generally this space is centered to the left or right of one’s middle torso, and is a rather

natural feeling to the user. Main spelling is completed with the user’s dominant hand, and

generally one should not switch hands during simplistic signing or a conversation.

Figure 1. Illustration of stereotypical personal gestural space.

6

As of 1970, there was a record of over five hundred signs alone being used in everyday

American Sign Language Usage. That number has steadily increased since then, yet an estimate

has yet to be determined since.

Another important factor to remember about utilizing ASL is that the force and

momentum of the gestures within sequence can indicate emotion, questioning, and even regional

traits.

Figure 2. Illustration of ASL conversation translation with movement.

 Due to there being such a broad library of American Sign Language Gestures, we

determined that it was rather impractical to attempt to recognize all of them. As with most other

traditional languages, their basis is within their alphabet, and all words/ phrases are derived from

it. Fingerspelling, also known as the ASL alphabet, seemed like the natural solution to begin our

7

work with. We realized that due to the vast technological and programming steps necessary to

determine and complete a working basis for such specific recognition, we may not be able to

recognize all fingerspelling gestures, but we personally valued a working basis for further work.

Figure 3. Visualization of American Sign Language Alphabet.

 Another aspect we were determined to overcome, specifically within our Python build,

was the aspect of moving gestures within the library, specifically J and Z, and visually similar

gestures, such as M and N or U and V. These conflicts are further discussed and resolved within

development.

8

2.2 Project Objectives

To summarize our project, we asked the Question, “Is American Sign Language detection

currently possible for real world consumer level implementation?”, and we were

successful in answering it by maintaining primary and secondary goals as displayed

below.

 PRIMARY SECONDARY

• Study the fundamental concepts of ASL,

specifically those necessary to

incorporate.

• Define regional differences within ASL

to determine a standard to be used via

models library/recognition technique.

• Contact and work with NM School for

the Deaf while creating models library

(Technique dependent).

• Take note of consumer electronics

intake while determining hardware

choices.

• Optimize the program/build to be

textually minimalistic to avoid slow

performance or runtime errors.

• Define list of possible recognition techniques

and determine best specifically concerning

ASL.

• Develop prototypes to test whether means

would be successful or not.

• Choose one final method to fully design and

program.

9

3. Processing Development

3.1 Why Kinect?
 Microsoft’s Xbox 360 adaptor, the Kinect, was released on November 4th, 2010, and was

marketed a motion adaptor that could interact with the user without the need of a physical

controller. It was also produced to broaden the Xbox 360’s audience beyond the typical gamer

base. As of march, 2011, Microsoft announced that the sensor had already sold 10 million units,

which is quite a notable feat for an adaptor with an MSRP of $149.99. The key hardware

components to note are a RGB camera, depth sensor, multi-array microphones, a tilt monitor,

and even a three-axis accelerometer for mechanical motion control.

Figure 4. Diagram of Kinect’s components.

 At time of release, there was no open development kit, even for console development, yet

within literally hours of its initial availability many open-source options arose, until Microsoft

released the Kinect SDK for official development mainly within C, a language neither member

was familiar with. The most notable libraries are OpenNI and NITE, OpenKinect, and CLNUI.

By the winter of 2013 most of these libraries were either in the process of, or already ported to

the Processing language, making them appear to be a perfect choice, MAC or PC. We chose to

10

use the CLNUI library, as the original library, before being ported, was actually distributed via

Kinect’s original manufacturer, Prime Sense. The Processing language is also designed primarily

for visualizations, specifically in instances where user input via GUI is not entirely necessary.

Along with many fantastic features, Processing also comes with fantastic exportation feature to

have a project work on a number of devices- even Android, something we would like to see

development on in the future for ASL. Although a bold decision to work with such

hardware/software dependent on a rather underdeveloped library, we saw it as a solid possibility.

3.2 Method

 Most sensors of the 21st century use either the Charged Coupled Device (CCD) or the

Complementary Metal-oxide-semiconductor (CMOS) technology due to the vivacity and color

clarity offered. There are several monocular and binocular hues for depth sensory along with

infrared technologies in common practice, yet there currently stands no universally precise

method for depth interpretation visually for machine vision/learning.

 The Kinect, with its infrared sensor, delivers a 640*480 depth-map static image via live

feed that produces not only a relatively accurate depth sensor, but also background detection and

extraction, and even blob detection for moving aspects, more specifically the user.

Since we are dealing with specifically the hands of the user, hand extraction had to be

implemented, and the following concept was used due to having previous success shown within

sources:

• Hand and wrist detection and extraction

• Hand isolation from wrist via X and Y axis from creating projections

• Filtering to remove extra pixels, blank areas/distortions, and perimeter

• When completed, image was smoothed to perform trace search with an averaging lenses,

and removing layer due to enlargement

11

• Search algorithm used for redefinition of perimeter

• Features of hand defined by “Seeing” the angle between three points on the smoothed

trace to determine if a threshold requirement was met

• Neural network designed to take and classify inputs as static ASL hand gesture library

Figure 5. Color Visualization for Kinect raw depth sensor input.

Figure 6. Hand and wrist Detection and Extraction within input. (Step 1)

12

 While extracting the hand, the thickness on the Y axis at all positions can be created, and

the X axis merely corresponds to the total number of pixels in that single row, considering a row

was found. Vertical projections may be created by the same process by continuing the X

coordinate of each of the hand’s pixels, but changing the Y value so that it corresponds to the

number of X coordinate pixels.

Figure 7. Screen capture of code (Processing 2.1.1) that deals with X and Y axis projections.

13

Figure 8. Horizontal X projection of Hand.

Figure 6. Vertical Y projection of Hand.

14

Figure 7. Unsmoothed X Values with an average range of 3 Y coordinates.

Figure 8. Unsmoothed X values with an Average range of 11 Y coordinates in movement.

Difference is distinguishable when compared to Fig. 7.

15

Figure 9. Horizontal projection of Fig.8 with the red dot corresponding to the max. and the

green responding to the set min. Max. = Palm of hand; Min. = Wrist of isolated wrist.

Figure 10. Finalized hand isolation from the input.

16

3.2 Errors and Resolution

 Although we were able to isolate the hand from the arm/wrist, and also able to fix

deformities within the image, our development was halted when utilizing projections to display

the hand’s movement over time. Originally we considered the possibility of it possibly being a

hardware issue, so we moved our development from the Windows Platform to OSX, but were

only met with similar issues. Although CLNUI, our chosen library for using the Kinect sensor

with Processing, is a universal build, it is also completely open-sourced and rarely updated

alongside hardware, which proved to be the most rational cause.

 We considered porting our previous work to the OpenKinect library, another universal

build which is even supported within Processing’s official Library plug-in tab, making it quite a

choice. OpenKinect also would have given us more hardware freedom by allowing for even

more physical hardware feature support, such as rotation, tilt, and indicator lights. This would

have been quite efficient while tracking gestures in real time as the Kinect’s limits are +/-30

degrees.

Figure 11. Screen capture of source code example of Kinect tilt/rotation.

17

 Our decision to halt development was finalized after our February evaluation,

where it was recommended to us to focus more on our Python development, due to reasons noted

in Section 4 of this final report. Although the work put into this rather extensive method of

American Sign Language recognition using generic consumer hardware did result in being

inconclusive, and we were not able to find a finalized result, we personally view the work

compiled to be something to explore more outside of the Challenge (due to time restraints), for

when working, we can easily estimate an upwards of 90% accuracy- something most other

methods simply can’t currently realistically compare to.

18

4. Python Development

4.1 Concept
 From the original concept, we knew that Computer Vision would be heavily

utilized in the development and creation, if possible, of detecting American Sign Language

without various uncommon hardware. Python, is a dynamic, object oriented multipurpose

programming language which was initial designed to be quick and efficient when in uniform

syntax. OpenCV, also known as Open Source Computer Vision, is a library of programming

functions which were developed for the purpose of real-time Computer Vision. Originally

developed by Intel for C/C++, it is now supported by Willow Garage and Itseez. Due to being

focused on real-time image processing, it also has the ability to optimize routines to accelerate

itself if the Library finds Intel’s Integrated Performance Primitives. In recent years of computer

vision, even in other languages like C/C++ and Java, OpenCV has become one of many

standards in open-source solutions in development.

 4.2 Design
 Our original concept when concerning Python actually stems from the Histogram

Comparison tutorial within the OpenCV library. The example uses the compareHist function to

get a numerical parameter that expresses how well tow histograms match with eachother. To

compare two histograms, (and), one must choose a metric () to demonstrate

how well they match. OpenCV also offers four different metrics to compute the matching:

a. Correlation (CV_COMP_CORREL)

19

Where:

and is the total number of histogram bins.

b. Chi-Square (CV_COMP_CHISQR)

c. Intersection (method=CV_COMP_INTERSECT)

d. Bhattacharyya distance (CV_COMP_BHATTACHARYYA)

 A program like this can do a number of things including: loading two base images to be

compared, generate one image with the lower half of the base image, conversions to HSV

formatting, compare the histogram of the base while concerning two or more histograms, and

even display the numerical matching parameters obtained per cycle.

 For our program, we take this technique, after much work, and have the comparison

come from a live static input via web camera, and compare it to a .jpg located within a model

library. Also, rather than having the entire input compared, we rather just compare the gesture

space, which is visualized by its blue outlines within the GUI, which gives the program a rather

efficient feel. Also, we have our shell giving the output success rate within the live comparison

20

with a good comparison being <.1, bad being >.1, and an exact copy =0 (Which is highly

unlikely due to input environment).

 Also, the ROI (Region of Interest) within our code stands as our gesture space, which a

window of 400,200,200,200 given normal startup within Python. The ROI is converted to

contour, along with our image library to ensure a higher rate of comparison and eliminate color

errors rather than gestural. Being we chose to work with Python, 2.7.3. specifically, we also took

the liberty of importing cv2.cv, the most updated build of OpenCV, and calling upon it as simply

“cv”- a previous build. This was to ensure stability and being able to utilize the libraries

optimization techniques rather than implementing our own, which would enlarge the code and

possibly cause issues.

 Our Program can currently recognize six gestures with a 74% rate of success. These

gestures, A to F, were compiled in contour with the help of Aryssa Baca, a volunteer at New

Mexico School for the Deaf along with a number of other notable institutions. With her help, we

learned many aspects of fingerspelling and learned many techniques when dealing with capturing

ASL gestures for a model library.

Figure 12. Aryssa Bacca’s hands displaying the first four gestures of fingerspelling.

21

Figure 13. First four ASL fingerspelling gestures in contour.

 We plan on releasing all 26 gestures in contour on our website, asldetection.com when

completed and shown to be successful. Currently the library is compiled, but due to grainy

images due to environmental factors we do not feel confident on their release just yet. We also

intend on releasing our Processing attempt on our site, but do not consider it to be a notable

aspect of our project no a finalized product due to library issues previously mentioned.

22

Figure 14. Screen Capture of Python build.

23

5. Conclusion
In conclusion, We Team #1 can confidently state that ASL detection for real world consumer

level implementation is completely possibly, and we have accurately designed what we refer to

as a prototype to demonstrate such. Although our Processing/Kinect design was not successful

within the challenge, we do completely value the technique and plan on continuing its

development to release alongside future builds of our Python program on our website

asldetection.com, which will go live on April 14th, 2014 with the aim of not only having our

web-based presentation, but also serve as a center for anyone curious about ASL detection using

computer vision. We realize that our project is far away from a final product for all to use, but

we want it to serve as a catalyst for future research in this intriguing field.

6. Significant Achievement
It’s safe to say that our significant achievement was the addition of Dmitri Malygin-

Voorhees virtually days before our December report was due. We lost time by catching him up

to speed with the project’s development, but gained true teamwork- which is important in a

project of this magnitude.

7. Acknowledgement

We would like to personally thank Supercomputing Challenge Alumni Sara Hartse and

Bjorn Swenson for not only inspiring us to compete, but also being available at the most

inconvenient of times to help us out on whatever it may be.

We also would like to acknowledge Aryssa Baca for her much needed help on our project.

If it wasn’t for her knowledge of ASL, our project would not be where it is today.

24

 Finally, we would like to thank not only our February Evaluation judges for their

motivational help, but also everyone involved with the New Mexico Supercomputing Challenge

for making this incredible program possible.

25

8. Source Code
#---

Name: Contour ASL Gesture Recognition

Purpose: NM Supercomputing Challenge

Author: Noah Caulfield

Created: 31/03/2014

#---

import sys

import cv2

import cv2.cv as cv

import numpy as np

from time import clock

function to compare two forms and returns the result of comparing

Good result <0.1

Bad result> 0.1

exact matching =0

def compare_2_formes(Image1,Image2):

 mincontour=500 # minimum size of a form to be detected

 CVCONTOUR_APPROX_LEVEL=5# parameter for call contour

 img_edge1=cv.CreateImage(cv.GetSize(Image1),8,1) #egde image

26

img1_8uc3=cv.CreateImage(cv.GetSize(Image1),8,3)

 img_edge2=cv.CreateImage(cv.GetSize(Image2),8,1)

 # img2_8uc3=cv.CreateImage(cv.GetSize(Image2),8,3)

 cv.Threshold(Image1,img_edge1,123,255,cv.CV_THRESH_BINARY) # filter

threshold

 cv.Threshold(Image2,img_edge2,123,255,cv.CV_THRESH_BINARY)

 storage1=cv.CreateMemStorage()

 storage2=cv.CreateMemStorage()

 first_contour1=cv.FindContours(img_edge1,storage1) # pointer to the first edge

of the form 1

 first_contour2=cv.FindContours(img_edge2,storage2) # pointer to the first edge

of the form 2

 newseq=first_contour1

 newseq2=first_contour2

 if not(first_contour1) or not(first_contour2):

 return 0

 current_contour=first_contour1

 while 1:

 current_contour=current_contour.h_next() # path in the sequence of edges

of the first form

 if (not(current_contour)): # stop condition if the contour pointer = NULL

27

 break

 if cv.ContourArea(current_contour)> mincontour :

newseq=cv.ApproxPoly(current_contour,storage1,cv.CV_POLY_APPROX_DP,CV

CONTOUR_APPROX_LEVEL,0)

 # cv.CvtColor(Image1,img1_8uc3,cv.CV_GRAY2BGR);

 #

cv.DrawContours(img1_8uc3,newseq,cv.CV_RGB(0,255,0),cv.CV_RGB(255,0,0),0,2

,8);

 #

cv.NamedWindow("ContourImage2",cv.CV_WINDOW_AUTOSIZE)

 # cv.ShowImage("ContourImage2",img1_8uc3)

 current_contour=first_contour2

 # path of the second form of contours

 while 1:

 current_contour=current_contour.h_next()

 if (not(current_contour)):

 break

 if cv.ContourArea(current_contour)> mincontour :

newseq2=cv.ApproxPoly(current_contour,storage2,cv.CV_POLY_APPROX_DP,C

VCONTOUR_APPROX_LEVEL,0)

 # cv.CvtColor(Image2,img2_8uc3,cv.CV_GRAY2BGR);

 #

cv.DrawContours(img2_8uc3,newseq2,cv.CV_RGB(0,255,0),cv.CV_RGB(255,0,0),0,

2,8);

28

 #

cv.NamedWindow("ContourImage",cv.CV_WINDOW_AUTOSIZE)

 # cv.ShowImage("ContourImage",img2_8uc3)

 matchresult=1;

 matchresult=cv.MatchShapes(newseq,newseq2,1,2)

 return matchresult

 #print("Match result :"+str(matchresult))

#main

font = cv.InitFont(cv.CV_FONT_HERSHEY_SIMPLEX,5,5, 0, 3, 8) #initialize

SignsList=["a.jpg","b.jpg","c.jpg","d.jpg","e.jpg","f.jpg"] # list which contain all

images of signs

imagesList={"a.jpg":cv.LoadImage("signs/a.jpg",cv.CV_LOAD_IMAGE_GRAYS

CALE)}

for e in SignsList:

imagesList[e]=cv.LoadImage("signs/"+e,cv.CV_LOAD_IMAGE_GRAYSCALE)

#imagesList.append(cv.LoadImage("signs/"+e,cv.CV_LOAD_IMAGE_GRAYSCA

LE))

cv.NamedWindow("Input",cv.CV_WINDOW_AUTOSIZE)

cv.NamedWindow("Gesture Space",cv.CV_WINDOW_AUTOSIZE)

matchresult=1;

p_capWebcam=cv.CaptureFromCAM(0)

while 1 :

 p_imgOriginal =cv.QueryFrame(p_capWebcam)

 cv.Flip(p_imgOriginal,p_imgOriginal,1)

29

 # capture from webcam

 p_gray=cv.CreateImage(cv.GetSize(p_imgOriginal), 8, 1)

 cv.CvtColor(p_imgOriginal,p_gray,cv.CV_BGR2GRAY)

 cv.SetImageROI(p_gray,(400,200,200,200))

 # Region setting of fixed interest

 cv.Threshold(p_gray,p_gray,100,255,cv.CV_THRESH_BINARY_INV)

 cv.Rectangle(p_imgOriginal,(400,200),(600,400),(255,0,0),4);

 j=0

 for imageI in imagesList :# path of the image list and test each image with the

ROI (region of interest)

#image_to_test=cv.LoadImage("signs/"+image_path,cv.CV_LOAD_IMAGE_GRA

YSCALE)

 matchresult=compare_2_formes(p_gray,imagesList[imageI])

#comparison

 #print("le match est "+str(matchresult))

 if matchresult < 0.13 and matchresult!=0 :

 sign_name=imageI.split('.')[0]

 print("letter :"+sign_name+",with a matching of :"+str(matchresult))

 cv.PutText(p_imgOriginal,sign_name,(5,120),font,255)

 cv.ShowImage("Input",p_imgOriginal)

 cv.ShowImage("Gesture Space",p_gray)

 j=j+1

 checkchar=cv.WaitKey(27)

 if checkchar==27 :

 cv.DestroyAllWindows("Input")

 cv.DestroyAllWindows("Gesture Space")

 break

30

9. Example Contour Image Library
Note: .Jpg’s will differ than those released on asldetection.com

31

32

33

34

10. Inconclusive Processing Source
Note: Excessive Dashes indicate file separation within build.

 /////////////////Final///////////////////////

import SimpleOpenNI.*;

import com.sun.jna.Pointer;

import cl.nui.CLNUI;

import processing.opengl.*;

Pointer motor, camera;

PImage depthData,handSmooth,xProjection,yProjection, handTrace, hand,handFat,traceSmooth;

//height and width

int w=640;

int h=480;

//lens for average filter size

int xLens=3;

int yLens=3;

//outlier filter sensitivity ie removes taret pixel if fewer than proxFilter pixels in lens area.

int proxFilter=20;

PFont ft;

PFont ft2;

// x projection variables

int xOfXProj=0;//x position of x projection pixels

int yOfXProj=0;//y position of x projection pixels

int smoothYAmount = 30;

int [] xPos = new int [smoothYAmount];//array to hold 10 values x values of x projecton

int maxXOfXProj; //maximum x value in x projection

int maxYOfXProj; //max y valu in x projeciton

int xProjXAve=0;//mean of values in array

int prevXProjXAve=0;//previous mean of values in array

int relMinXOfXProj=w;//x coord of relative minimum of x projection

int relMinYOfXProj=h;//y coord of relative minimum of x projection

int tempRelMinYOfXProj=h-1;

35

// y projection variables

int xOfYProj=0;//x position of y projection pixels

int yOfYProj=0;//y position of y projection pixels

int smoothXAmount = 30;

int [] yPos = new int [smoothXAmount];//array to hold 10 values x values of x projecton

int maxYOfYProj; //maximum x value in x projection

int maxXOfYProj; //max y valu in x projeciton

int yProjYAve=0;//mean of values in array

int prevYProjYAve=0;//previous mean of values in array

//finds mid point on hand y coord

int tempMaxXOfXProj=0; // necessary becasue MaxXOfXProj is cleared and need this value to identify

midpoint of hands

int tempMaxYOfXProj=0; // necessary becasue MaxXOfXProj is cleared and need this value to identify

midpoint of hands

//finds mid point on hand x coord

int tempMaxXOfYProj=0; // necessary becasue MaxXOfXProj is cleared and need this value to identify

midpoint of hands

int tempMaxYOfYProj=0; // necessary becasue MaxXOfXProj is cleared and need this value to identify

midpoint of hands

//trace and edge detection

boolean boundary=false; // boundary test flag boundary = 0 means not boudanry

boolean boundaryBin=false; // boundary test flag boundary = 0 means not boudanry

int boundaryNeighbours; //test number of nieghbours that are also boundary n

int maxPoint=0; // fist point of edge array.

int edge [] = new int [w*4]; //edge array

int edgeSmooth [] = new int [w*4]; //edge array

//if true activates NN once

boolean analyse = false;

void setup()

36

{

 smooth();

 size(800, 600);

 frameRate(100);

 motor = CLNUI.INSTANCE.CreateNUIMotor();

 camera = CLNUI.INSTANCE.CreateNUICamera();

 CLNUI.INSTANCE.StartNUICamera(camera);

 CLNUI.INSTANCE.SetNUIMotorLED(motor, (byte)7);

 System.out.println("Kinect Serial: " + CLNUI.INSTANCE.GetNUIMotorSerial(motor));

 depthData = createImage(640, 480, RGB);

// handSmooth = createImage (640, 480, RGB);

 handTrace = createImage (640, 480, RGB);

// xProjection = createImage (640, 480, RGB);

// yProjection = createImage (640, 480, RGB);

// hand = createImage (640, 480, RGB);

 handFat = createImage (640, 480, RGB);

 traceSmooth = createImage (640, 480, RGB);

 ft = loadFont("IrisUPCBold-28.vlw");

 ft2=loadFont("DialogInput.bolditalic-150.vlw");

}

public void draw()

{

 smooth();

 CLNUI.INSTANCE.GetNUICameraDepthFrameRGB32(camera, depthData.pixels, 0);

 //reinterpret_cast<DWORD*>(uiDepthData));

 //System.out.println("Depth result: " + res);

 background(0);

 // image(handSmooth, 0, 0,400,300);

 // image(handTrace,0,0,800,600);

37

 // image(hand, 400,0,400,300);

// image(xProjection, 0,300,400,300);

// image(yProjection, 0,0,400,300);

 for (int y = 0; y < h; y++)

 {

 for (int x = 0; x < w; x++)

 {

 int loc = x+y*w;

 float bl = blue (depthData.pixels[loc]);

 float re = red (depthData.pixels[loc]);

 //clearXProjection (loc); //clears x projection

 // clearHandSmooth (x,y,loc); //clears handsmooth

 clearHandTrace (loc);//clears handTrace

 clearHandFat(loc);

 if(bl>250&&re>1&&y<h-10)

 {

 // maxPoint=loc-1-1*w;

 handFat(loc);

 }

 // xProjection(x,y,bl,re); //draws x projection

 // hand(loc,y,bl,re);//draws hand

 }

 }

 if (maxPoint>10+10*w)

 {

 edge(maxPoint);

 }

// for (int x = 0; x < w; x++)

// {

// for (int y = 0; y < h; y++)

38

// {

// int loc = x+y*w;

// float bl = blue (depthData.pixels[loc]);

// float re = red (depthData.pixels[loc]);

// clearYProjection (loc); //clears y projection

// yProjection(x,y,bl,re);

//

// }

// }

 // println(frameRate);

// xProjectionMax();

// xProjectionRelMin();

// yProjectionMax();

// midPoint(); //find mid point of hand

 depthData.updatePixels();

 // handSmooth.updatePixels();

// handTrace.updatePixels();

// handFat.updatePixels();

 traceSmooth.updatePixels();

 // hand.updatePixels();

// xProjection.updatePixels();

// yProjection.updatePixels();

}

void midPoint () //find mid poit on hand

{

 fill(0,0,255);

 ellipse(tempMaxXOfYProj*800/w,tempMaxYOfXProj*600/h,10,10);

}

39

void keyPressed()

{

 analyse = true;

}

void prnt (int loc,int i)

{

 //println("x"+loc%w+"y"+loc/w);

}

public void stop()

{

 CLNUI.INSTANCE.SetNUIMotorLED(motor, (byte)0);

 CLNUI.INSTANCE.DestroyNUIMotor(motor);

 CLNUI.INSTANCE.DestroyNUICamera(camera);

 super.stop();

}

///////////////////////Clear////////////////////////////////////

void clearHandSmooth(int x, int y,int loc)

{

 if(x<w-(xLens-1)/2-1&&y<h-(yLens-1)/2-1) // clears handSmooth one x and y value in front of the smoothing

lens

 {

 handSmooth.pixels[loc+(xLens-1)/2+(yLens-1)/2*w]=color(0);

 }

}

40

void clearXProjection(int loc) // clears xProjection

{

 xProjection.pixels[loc] = color (0);

}

void clearYProjection(int loc) // clears yProjection

{

 yProjection.pixels[loc] = color (0);

}

void clearHandTrace(int loc) // clears handTrace

{

 handTrace.pixels[loc] = color (0);

}

void clearHand(int loc) // clears hand

{

 hand.pixels[loc] = color (0);

}

void clearHandFat(int loc) // clears hand

{

 handFat.pixels[loc]=color(0);

}

void hand(int loc,int y,float bl,float re) //draws hand

{

 if(bl>250&&re>1&&y<tempRelMinYOfXProj)

 {

 hand.pixels[loc]=color(0,255,0);

 }

}

///////////////////////////Neural_Network/////////////////////////////

void neuralNetwork(float f1,float f2,float f3,float f4,float f5,float v1,float v2,float v3,float v4)

{

 //inputs

 float x1A = f1+0.1;

 float x2A = f2+0.1;

 float x3A = f3+0.1;

 float x4A = f4+0.1;

41

 float x5A = f5+0.1;

 float x6A = v1+0.1;

 float x7A = v2+0.1;

 float x8A = v3+0.1;

 float x9A = v4+0.1;

 //initial weights

 //input layer weights

 float w1A = -0.7730226;

 float w1B = 0.7183541;

 float w1C = -0.6928675;

 float w1D = 0.5296034;

 float w1E = 0.8375236;

 float w2A = -0.51678956;

 float w2B = -0.31572336;

 float w2C = -0.8320275;

 float w2D = -0.24141584;

 float w2E = -0.95364016;

 float w3A = -0.5566789;

 float w3B = 0.94730735;

 float w3C = 0.26510268;

 float w3D = 0.8865323;

 float w3E = -0.15867522;

 float w4A = -0.49440315;

 float w4B = 0.7721455;

 float w4C = -0.262894;

 float w4D = 0.94908196;

 float w4E = -0.39958116;

 float w5A = 0.08508696;

 float w5B = 0.27202654;

 float w5C = -1.0197405;

 float w5D = -0.008199202;

 float w5E = -1.0913138;

 float w6A = -0.49093857;

 float w6B = 0.8819983;

 float w6C = 0.10008627;

 float w6D = 1.0063748;

 float w6E = -0.21145786;

 float w7A = 0.44217157;

 float w7B = 0.0989018;

42

 float w7C = 0.3772578;

 float w7D = 0.3345932;

 float w7E = 0.987472;

 float w8A = 0.89786;

 float w8B = 1.0219779;

 float w8C = -0.3381234;

 float w8D = -0.8775543;

 float w8E = 0.581145;

 float w9A = -0.62561995;

 float w9B = 0.002124509;

 float w9C = -0.54920745;

 float w9D = 0.5327601;

 float w9E = -0.86570156;

 //output layer weights

 float w1 = -0.1945392;

 float w2 = 0.79378915;

 float w3 = -0.32651442;

 float w4 = 0.55492806;

 float w5 = -0.9274519;

 //node inputs and outputs

 float y;

 float y1_in;

 float y1_out;

 float y2_in;

 float y2_out;

 float y3_in;

 float y3_out;

 float y4_in;

 float y4_out;

 float y5_in;

 float y5_out;

String result;

 //euler's number

 float e = (float) Math.E;

43

 //forward pass and y output

 //calculate hidden layer inputs

 //calculate hidden layer inputs

 y1_in = x1A*w1A + x2A*w2A + x3A*w3A + x4A*w4A + x5A*w5A + x6A*w6A + x7A*w7A + x8A*w8A +

x9A*w9A;

 y2_in = x1A*w1B + x2A*w2B + x3A*w3B + x4A*w4B + x5A*w5B + x6A*w6B + x7A*w7B + x8A*w8B +

x9A*w9B;

 y3_in = x1A*w1C + x2A*w2C + x3A*w3C + x4A*w4C + x5A*w5C + x6A*w6C + x7A*w7C + x8A*w8C +

x9A*w9C;

 y4_in = x1A*w1D + x2A*w2D + x3A*w3D + x4A*w4D + x5A*w5D + x6A*w6D + x7A*w7D + x8A*w8D +

x9A*w9D;

 y5_in = x1A*w1E + x2A*w2E + x3A*w3E + x4A*w4E + x5A*w5E + x6A*w6E + x7A*w7E + x8A*w8E +

x9A*w9E;

 //calclute hidden layer outputs rounded to 4 decs

 y1_out = 1/(1+pow(e,-y1_in));

 y2_out = 1/(1+pow(e,-y2_in));

 y3_out = 1/(1+pow(e,-y3_in));

 y4_out = 1/(1+pow(e,-y4_in));

 y5_out = 1/(1+pow(e,-y5_in));

 // calculate y output to 4 decs

 y = y1_out*w1 + y2_out*w2 + y3_out*w3 + y4_out*w4 +y5_out*w5;

//displays result

fill(255);

textFont(ft2,100);

if(y<0.3)

{

 text ("U",w-40,h-50);

}

else if (y>=0.3&&y<0.5)

{

 text ("I",w-40,h-50);

44

}

if(y>=0.5&&y<0.7)

{

 text ("4",w-40,h-50);

}

else if (y>=0.7)

{

 text ("5",w-40,h-50);

}

 //prints the input values, outputs value, output target, pass number and learning rate

 println();

 print("_INPUTS");

 println();

 print("x1A = " + x1A);

 println();

 print("x2A = " + x2A);

 println();

 print("x3A = " + x3A);

 println();

 print("x4A = " + x4A);

 println();

 print("x5A = " + x5A);

 println();

 print("x6A = " + x6A);

 println();

 print("x7A = " + x7A);

 println();

 print("x8A = " + x8A);

 println();

 print("x9A = " + x9A);

 println();

 print("Output");

 println();

 print("y_out = " + y);

 println();

45

}

//////////////////////BoundaryBinTest////////////////////////////////

void boundaryBin(int loc)

{

 if (loc%w>0&&loc/w>0&&loc%w<w-1&&loc/w<h-1)

 {

 int neighbours =0; //clears value of number of pixels in a 3*3 square around the pixel at loc

 int xLens=3;

 int yLens=3;

 int x3=loc%w;

 int y3=loc/w;

 float bl=blue (handFat.pixels[loc]);

 float re=red (handFat.pixels[loc]);

 if (x3>(xLens-1)/2&&y3>(yLens-1)/2&&x3<w-(xLens-1)/2-1&&y3<h-(yLens-1)/2-1)//ensures averaging lense

stays within boundary of image

 {

 for (int x=0;x<xLens;x++)

 {

 for (int y=0;y<yLens;y++)

 {

 int locTemp = loc+x+y*w-(xLens-1)/2-((yLens-1)/2)*w; //temp position of pixel in square to be tested

 float blTemp=blue (handFat.pixels[locTemp]);

 float reTemp=red (handFat.pixels[locTemp]);

 if (blTemp>250&&reTemp>1)

 {

 neighbours++;

 }

 }

 }

 if(neighbours<xLens*yLens&&bl>250&&re>1&&loc/w<h-3)

 {

 boundaryBin=true;

 //handFat.pixels[loc]=color(255,0,0);

 }

 else

 {

46

 boundaryBin=false;

 }

 }

 }

 else

 {

 boundaryBin=false;

 }

}

///////////////////////BoundryNeighbours///////////////////////

void boundaryNeighbours (int loc) // test nnumber of neighbours that are boundary pixels

{

 boundaryNeighbours = 0;

 boundaryBin(loc-1);

 if(boundaryBin==true)

 {

 boundaryNeighbours++;

 }

 boundaryBin(loc-w);

 if(boundaryBin==true)

 {

 boundaryNeighbours++;

 }

 boundaryBin(loc+1);

 if(boundaryBin==true)

 {

 boundaryNeighbours++;

 }

 boundaryBin(loc+w);

 if(boundaryBin==true)

 {

 boundaryNeighbours++;

 }

}

///////////////////////////BoundaryTest////////////////////

void boundary(int loc)

{

 if (loc%w>0&&loc/w>0&&loc%w<w-1&&loc/w<h-1)

 {

 int neighbours =0; //clears value of number of pixels in a 3*3 square around the pixel at loc

47

 int xLens=3; //chagnes size of permiter removal

 int yLens=3;

 int x3=loc%w;

 int y3=loc/w;

 float bl=blue (depthData.pixels[loc]);

 float re=red (depthData.pixels[loc]);

 if (x3>(xLens-1)/2&&y3>(yLens-1)/2&&x3<w-(xLens-1)/2-1&&y3<h-(yLens-1)/2-1)//ensures averaging lense

stays within boundary of image

 {

 for (int x=0;x<xLens;x++)

 {

 for (int y=0;y<yLens;y++)

 {

 int locTemp = loc+x+y*w-(xLens-1)/2-((yLens-1)/2)*w; //temp position of pixel in square to be tested

 float blTemp=blue (depthData.pixels[locTemp]);

 float reTemp=red (depthData.pixels[locTemp]);

 if (blTemp>250&&reTemp>1)

 {

 neighbours++;

 }

 }

 }

 if(neighbours<xLens*yLens&&bl>250&&re>1&&loc/w<h-3)

 {

 boundary=true;

 //handTrace.pixels[loc]=color(255);

 }

 else

 {

 boundary=false;

 }

 }

 }

 else

 {

 boundary=false;

 }

48

}

////////////////////////EdgeTrace////////////////////////////

void edge(int maxPoint)

{

 boolean change=false;

 boolean complete=false;

 boolean firstSearch=true;

 int loc=maxPoint; //location

 int up=-w;

 int down=w;

 int left=-1;

 int right=1;

 int r = (int) random (0,255); //red

 int g = (int) random (0,255); //green

 int b = (int) random (0,255); //blue

 int locP1 =0;// 1st previous loc positon

 int locP2 =0;// 2nd previous loc

 int locP3 =0;// 3rd previous loc

 int locP4 =0;// 4th previous loc

 boolean junction =false; // true if there is a junction

 int junction1=1; //1st previous junction positon

 int junction1Prev=2;//position before junction position

 int junction1Post=3;//position after most recent junction

 int junction2=3;// 2nd previous junciton posiiton

 int junction2Prev=4; //2dn previous position before junction position

 int junction2Post=5; //position after 2nd last junction junction position

 int junction3=6;// 3rd previous junciton posiiton

 int junction3Prev=7; //3rd previous position before junction position

 int junction3Post=8; //position after 3rd last junction position

 int k=0; //edge array index

 int xPoint=0; //x point of vertex on smoothed hand

 int yPoint=0; //y point of vertex on smoothed hand

 int counter =1; //counts numberof indexes in edgeSmooth

 int centroidX=0;

 int centroidY=0;

 int aveX=0;

 int aveY=0;

49

 //to calculate angles between points

 int pass =0; //corresponds to previous m for identified point/valley

 int xPointP4=0; //2 previous x and y positions to find anles

 int yPointP4=0;

 int xPointP3=0;

 int yPointP3=0;

 int xPointP2=0; //2 previous x and y positions to find anles

 int yPointP2=0;

 int xPointP1=0;

 int yPointP1=0;

 float angleB=0; //angle abc between last three points

 int [] fingertip = new int [7]; // array and indexes to store fingertip and valley points

 int fin =0;

 int [] valley = new int [7];

 int val =0;

 int [] fingerDir=new int [7];

 float [] valleyNN = new float [7]; //distances for neural network

 float [] fingertipNN=new float [7];

 int flagTip=0; //test if a fingertip has been detected

 int xTipAve=0; //average of previous x fingertip coords for points in a small space

 int tipX =0; //last x coord of fingertip

 int yTipAve=0;

 int tipY =0;

 int xPointP12=0; //previous tip coordiantes for proximate tips

 int xPointP11=0;

 int yPointP12=0;

 int yPointP11=0;

 int avePass=1;

 int testXAve=0; //average loc of test for tips

 int testYAve=0;

 int testY1=0; //test coordiantes stored in the first instance before averaging

50

 int testX1=0;

 int testXP2=0; //previous tip test for proximate tips

 int testXP1=0;

 int testYP2=0;

 int testYP1=0;

 for(int i=1;complete==false&&i<w*3;i++)

 {

 //boundary neighbour check

 boundaryNeighbours(loc);// checks how many neighbour pixels are also edge pixels above,below left and right

(max4)

 if (boundaryNeighbours>2)

 {

 junction3=junction1; //3rd previous junction

 junction3Prev=junction1Prev;//pixel before 3rd previous junction

 junction2=junction1; //2nd previous junction

 junction2Prev=junction1Prev;//pixel before 2nd previous junction

 junction1=loc; //pixel is a juncton

 junction1Prev=locP1; //edge pixel before first junction pixels

 // r= (int) random(0,255);

 // g= (int) random(0,255);

 // b= (int) random(0,255);

 junction = true;

 }

 //left

 boundaryNeighbours(loc+left);//tests for dead end (if<2)

 boundaryBin(loc+left); //check if left pixel is part of edge

 if (boundaryBin==true&&boundaryNeighbours>1&&loc+left!=locP1&&loc+left!=junction1Post) // if so

colour it

 {

 locP4=locP3;

 locP3=locP2;

 locP2=locP1;

 locP1=loc;

 loc=loc+left;

51

 // handTrace.pixels[loc]=color(r,g,b);

 edge[k] = loc;

 k++;

 change=true;

 prnt(loc,i);

 if (junction==true) //test if previos position was junction and remembers position after last 3 junctions

 {

 junction3Post=junction2Post;

 junction2Post=junction1Post;

 junction1Post=loc;

 junction=false;

 }

 }

 if (firstSearch==false&&loc==maxPoint)

 {

 complete=true;

 }

 // up

 //boundary neighbour check

 boundaryNeighbours(loc);// checks how many neighbour pixels are also edge pixels above,below left and right

(max4)

 if (boundaryNeighbours>2)

 {

 junction3=junction1; //3rd previous junction

 junction3Prev=junction1Prev;//pixel before 3rd previous junction

 junction2=junction1; //2nd previous junction

 junction2Prev=junction1Prev;//pixel before 2nd previous junction

 junction1=loc; //pixel is a juncton

 junction1Prev=locP1; //edge pixel before first junction pixels

 // r= (int) random(0,255);

 // g= (int) random(0,255);

 // b= (int) random(0,255);

 junction = true;

 }

 //up

 boundaryNeighbours(loc+up); //tests for dead end (if<2)

 boundaryBin(loc+up); //check if up pixel is part of edge

 if (boundaryBin==true&&boundaryNeighbours>1&&loc+up!=locP1&&loc+up!=junction1Post) // if so

colour it

52

 {

 locP4=locP3;

 locP3=locP2;

 locP2=locP1;

 locP1=loc;

 loc=loc+up;

 // handTrace.pixels[loc]=color(r,g,b);

 edge[k] = loc;

 k++;

 if (junction==true) //test if previos position was junction and remembers position after last 3 junctions

 {

 junction3Post=junction2Post;

 junction2Post=junction1Post;

 junction1Post=loc;

 junction=false;

 }

 }

 if (firstSearch==false&&loc==maxPoint)

 {

 complete=true;

 }

 //right

 //boundary neighbour check

 boundaryNeighbours(loc);// checks how many neighbour pixels are also edge pixels above,below left and right

(max4)

 if (boundaryNeighbours>2)

 {

 junction3=junction1; //3rd previous junction

 junction3Prev=junction1Prev;//pixel before 3rd previous junction

 junction2=junction1; //2nd previous junction

 junction2Prev=junction1Prev;//pixel before 2nd previous junction

 junction1=loc; //pixel is a juncton

 junction1Prev=locP1; //edge pixel before first junction pixels

 // r= (int) random(0,255);

 // g= (int) random(0,255);

 // b= (int) random(0,255);

 junction = true;

 }

53

 //right

 boundaryNeighbours(loc+right);//tests for dead end (if<2)

 boundaryBin(loc+right); //check if right pixel is part of edge

 if (boundaryBin==true&&boundaryNeighbours>1&&loc+right!=locP1&&loc+right!=junction1Post) // if so

colour it

 {

 locP4=locP3;

 locP3=locP2;

 locP2=locP1;

 locP1=loc;

 loc=loc+right;

 // handTrace.pixels[loc]=color(r,g,b);

 edge[k] = loc;

 k++;

 change=true;

 prnt(loc,i);

 if (junction==true) //test if previos position was junction and remembers position after last 3 junctions

 {

 junction3Post=junction2Post;

 junction2Post=junction1Post;

 junction1Post=loc;

 junction=false;

 }

 }

 if (firstSearch==false&&loc==maxPoint)

 {

 complete=true;

 }

 //down

 // boundary neighbour check

 boundaryNeighbours(loc);// checks how many neighbour pixels are also edge pixels above,below left and right

(max4)

 if (boundaryNeighbours>2)

 {

 junction3=junction1; //3rd previous junction

 junction3Prev=junction1Prev;//pixel before 3rd previous junction

 junction2=junction1; //2nd previous junction

 junction2Prev=junction1Prev;//pixel before 2nd previous junction

 junction1=loc; //pixel is a juncton

 junction1Prev=locP1; //edge pixel before first junction pixels

54

 // r= (int) random(0,255);

 // g= (int) random(0,255);

 // b= (int) random(0,255);

 junction = true;

 }

 //down

 boundaryNeighbours(loc+down);//tests for dead end (if<2)

 boundaryBin(loc+down); //check if down pixel is part of edge

 if (boundaryBin==true&&boundaryNeighbours>1&&loc+down!=locP1&&loc+down!=junction1Post) // if so

colour it

 {

 locP4=locP3;

 locP3=locP2;

 locP2=locP1;

 locP1=loc;

 loc=loc+down;

 //handTrace.pixels[loc]=color(r,g,b);

 edge[k] = loc;

 k++;

 change=true;

 prnt(loc,1);

 if (junction==true) //test if previos position was junction and remembers position after last 3 junctions

 {

 junction3Post=junction2Post;

 junction2Post=junction1Post;

 junction1Post=loc;

 junction=false;

 }

 }

 if (loc==maxPoint)//search is complete

 {

 complete=true;

 }

 if (loc==locP4||loc==junction1||loc==junction2) //search is stuck so start again

 {

 complete=true;

 }

 }

55

 //displays averaged trace array

 int f=25; //filter size

 int freq=15; //frequency of samples from fitlered array (edgeSmooth)

 beginShape();

 for (int m=(f-1)/2;m<k-(f+1)/2;m=m+freq)

 {

 aveX=0;

 aveY=0;

 for (int n=-1*(f-1)/2;n<(f+1)/2;n++)

 {

 aveX=edge[m+n]%w+aveX;

 aveY=edge[m+n]/w+aveY;

 }

 aveX=aveX/f;

 aveY=aveY/f;

 edgeSmooth[m]=aveX+aveY*w;

 //prevSmooth=edgeSmooth[m]

 stroke (255);

 fill (255);

 xPointP2=xPointP1; //2 previous x and y positions to find angles

 yPointP2=yPointP1;

 xPointP1=xPoint;

 yPointP1=yPoint;

 xPoint=edgeSmooth[m]%w;

 yPoint=edgeSmooth[m]/w;

 float ab = dist (xPoint,yPoint,xPointP1,yPointP1); //finds angle between three previous points

 float bc = dist (xPointP1,yPointP1,xPointP2,yPointP2);

 float ac = dist (xPoint,yPoint,xPointP2,yPointP2);

 angleB = acos((ab*ab+bc*bc-ac*ac)/(2*ab*bc));

56

 fill(10);

 curveVertex (xPoint*800/w,yPoint*600/h); //draws line between every x points in array

 centroidX=centroidX+xPoint; //finds average x value of vertices for centroid

 centroidY=centroidY+yPoint; // finds ave y""""

 counter++;

 //finds fingertips

 if(angleB<2.2&&yPointP1<maxPoint/w-20)

 {

 int acAveX=(xPoint+xPointP2)/2; // average of x coords of point next to identified angle point

 int acAveY= (yPoint+yPointP2)/2;// average of y coords of point next to identified angle point

 int P1DiffX = 5*(xPointP1-acAveX)/2; //find the difference between the middle point and the points on either

side

 int P1DiffY = 5*(yPointP1-acAveY)/2;

 int testX=xPointP1+P1DiffX; //find pixel to test for fingertip or valley

 int testY=yPointP1+P1DiffY;

 float bl = blue (handFat.pixels[testX+testY*w]);// test the pixel a differences length past the P1 ie further in

to the hand for valleys and further out from the finger for fingertips

 if (m<pass+40&&flagTip==1&&fin>0) // remembers history of fingertip points that are close together

 {

 xPointP12=xPointP11;

 xPointP11=xPointP1;

 yPointP12=yPointP11;

 yPointP11=yPointP1;

 testXP2=testXP1;

 testXP1=testX;

 testYP2=testYP1;

 testYP1=testY;

57

 avePass++;

 }

 if (m>pass+40) //prevents more than one point being identified every x coordinates along edge

 {

 if(avePass>1) //find average of fingertip pixels that are close together

 {

 xTipAve= (tipX+xPointP11+xPointP12)/avePass;

 yTipAve= (tipY+yPointP11+yPointP12)/avePass;

 testXAve= (testX1+testXP1+testXP2)/avePass;

 testYAve= (testY1+testYP1+testYP2)/avePass;

 fingertip[fin-1]=xTipAve+yTipAve*w;

 fingerDir[fin-1]=testXAve+testYAve*w;

 avePass=1;

 xPointP12=0;

 xPointP11=0;

 yPointP12=0;

 yPointP11=0;

 testXP2=0;

 testXP1=0;

 testYP2=0;

 testYP1=0;

 }

 if (bl==0&&fin<5) //finds fingertips

 {

 tipX=xPointP1;

 tipY= yPointP1;

 fingertip[fin] = xPointP1+yPointP1*w;

 testX1=testX;

 testY1=testY;

 fingerDir[fin]= testX+testY*w;

 fin++;

 flagTip=1;

 }

58

 if(bl==255&&val<4&&flagTip==1) //finds valleys

 {

 valley[val] = xPointP1+yPointP1*w;

 val++;

 flagTip=0;

 }

 pass=m;

 }

 }

 }

 curveVertex(edgeSmooth[(f-1)/2]%w*800/640,edgeSmooth[(f-1)/2]/w*600/480); //draws line between first and

last point

 endShape(CLOSE);

 centroidX=centroidX/counter*800/640;

 centroidY=centroidY/counter*600/480;

 fill(255,0,0);

 ellipse(centroidX,centroidY,10,10);

 for(int i=0; i<fin+1;i++) //displays fingertips and direction

 {

 noStroke();

 fill(255,0,0);

 ellipse (fingertip[i]%w*800/w,fingertip[i]/w*600/h,10,10);

 fill(0);

 ellipse (fingertip[i]%w*800/w,fingertip[i]/w*600/h,6,6);

 if(fingertip[i]>0)

 {

 stroke(170,10,200);

 line(fingertip[i]%w*800/w,fingertip[i]/w*600/h,fingerDir[i]%w*800/w,fingerDir[i]/w*600/h);

 float distanceF = (dist(centroidX,centroidY,fingertip[i]%w*800/w,fingertip[i]/w*600/h)/230)*0.8; //normalised

between 0.1 and 0.9 for NN

 fingertipNN[i]=distanceF;

 stroke(0,255,255);

 line(centroidX,centroidY,fingertip[i]%w*800/w,fingertip[i]/w*600/h);

 }

 fill(0,255,255);

 textFont(ft,18);

 text (i+1,(fingerDir[i]%w+10)*800/w,(fingerDir[i]/w)*600/h);

59

 fill (100,100,180);

 ellipse (fingerDir[i]%w*800/w,fingerDir[i]/w*600/h,2,2);

 }

 for(int i=0; i<val+1;i++) //displays valleys

 {

 if(valley[i]>0)

 {

 fill(230,180,40);

 noStroke();

 ellipse (valley[i]%w*800/w,valley[i]/w*600/h,5,5);

 fill(0);

 ellipse (valley[i]%w*800/w,valley[i]/w*600/h,2,2);

 fill(0,255,0);

 text (i+1,(valley[i]%w+10)*800/w,(valley[i]/w)*600/h);

 stroke(0,255,0);

 line(centroidX,centroidY,valley[i]%w*800/w,valley[i]/w*600/h);

 float distanceV = (dist(centroidX,centroidY,valley[i]%w*800/w,valley[i]/w*600/h)/230)*0.8; //normalised

between 0.1 and 0.9 for NN

 valleyNN[i]=distanceV;

 }

 }

 if(analyse==true) //runs nerual network once

 {

neuralNetwork(fingertipNN[0],fingertipNN[1],fingertipNN[2],fingertipNN[3],fingertipNN[4],valleyNN[0],valley

NN[1],valleyNN[2],valleyNN[3]);

 analyse =false;

 }

 //clears arrays storing tips and valleys

 for(int i=0; i<fin+1;i++)

 {

 fingertip[i]=0;

 fingertipNN[i]=0;

 }

 for(int i=0; i<val+1;i++)

 {

 valley[i]=0;

 valleyNN[i]=0;

 }

60

}

/////////////////////handFat/////////////////////

void handFat(int loc)

{

 boundary(loc);

 if(boundary==true)

 {

 handFat.pixels[loc]=color(0);

 }

 int expansion =7 ;

 if(boundary==false&&loc%w>(expansion-1)/2&&loc/w>(expansion-1)/2) //fattens hand

 {

 for (int x=-1*(expansion-1)/2;x<(expansion+1)/2;x++)

 {

 for (int y=-1*(expansion-1)/2;y<(expansion+1)/2;y++)

 {

 handFat.pixels[loc+x+y*w]=color(255,255,255);

 maxPoint=loc; //this should be loc+x+y*w not sure why it works like this

 }

 }

 }

}

////////////////////////////Smooth/////////////////

void smoothPixels(int x3, int y3,int loc,float bl, float re)

{

 if (x3>(xLens-1)/2&&y3>(yLens-1)/2&&x3<w-(xLens-1)/2-1&&y3<h-(yLens-1)/2-

1&&bl>250&&re>1)//ensures averaging lense stays within boundary of image

 {

 //clears value for active neighbours

 int pixelQuant=0; // number of active pixels to use as divisor

 //test for active pixels in a 5*5 squaree

 int totX = 0;

61

 int totY =0;

 int smoothedLoc=0;

 int xAvg=0;

 int yAvg=0;

 for (int x=0;x<xLens;x++)

 {

 for (int y=0;y<yLens;y++)

 {

 int locTemp = loc+x+y*w-(xLens-1)/2-((yLens-1)/2)*w; //temp position of pixel in square to be tested

 float slTemp=blue (depthData.pixels[locTemp]);

 float reTemp=red (depthData.pixels[locTemp]);

 if (slTemp>250&&reTemp>1&&(abs ((loc%w)-(locTemp%w))+ abs((loc/w)-(locTemp/w)))<(xLens-

1)/2)//sets lens shape

 {

 totX=totX+x;

 totY=totY+y;

 pixelQuant++;

 // if (loc==w/2+h/2*w)

 // {

 // handSmooth.pixels[locTemp]=color(0,255,0);//shows lens shape

 // }

 }

 }

 }

 xAvg=totX/pixelQuant;

 yAvg=totY/pixelQuant;

 smoothedLoc = loc+xAvg+yAvg*w-(xLens-1)/2-((yLens-1)/2)*w;

 if(pixelQuant<=proxFilter)

 {

 handSmooth.pixels[smoothedLoc]=color(0); // clears pixels with fewer than 36 neighbours

 }

 else

 {

 handSmooth.pixels[smoothedLoc]=color(0,255,0);//draws smoothed hand

 // handSmooth.pixels[smoothedLoc-w]=color(0,255,0);

62

 //handSmooth.pixels[smoothedLoc+w]=color(0,255,0);

 //handSmooth.pixels[smoothedLoc-1]=color(0,255,0);

 //handSmooth.pixels[smoothedLoc+1]=color(0,255,0);

 // handSmooth.pixels[smoothedLoc-w-1]=color(0,255,0);

 // handSmooth.pixels[smoothedLoc+w+1]=color(0,255,0);

 // handSmooth.pixels[smoothedLoc+w-1]=color(0,255,0);

 // handSmooth.pixels[smoothedLoc-w+1]=color(0,255,0);

 }

 }

}

////////////////////////xProjection///////////////////////

void xProjection (int x,int y,float bl,float re)

{

 if (y==h-1&&x==w-1) // clears array caontiang x values of projection

 {

 for (int i=0; i<xPos.length;i++)

 {

 xPos[i]=0;

 }

 }

 int sumXPosArray=0;//sum of values in array

 if(bl>250&&re>1)

 {

 xOfXProj++;

 }

 if(x==w-1)

 {

 for (int i=0; i<xPos.length-1;i++) // stores new x value in array and shift previous x values down one place

 {

 xPos[i] = xPos[i+1];

 }

 xPos[xPos.length-1] = xOfXProj;

 for (int i=0; i<xPos.length;i++) // sum array

 {

 sumXPosArray+=xPos[i];

63

 }

 xProjXAve=sumXPosArray/xPos.length; //mean of x values in projection over xPos.length

 if (maxXOfXProj<xProjXAve) // finds maximum x value of x projection

 {

 maxXOfXProj=xProjXAve;

 maxYOfXProj=yOfXProj-(xPos.length-1)/2;

 }

 if (relMinXOfXProj>xProjXAve&&y>tempMaxYOfXProj&&y<h-(xPos.length-1)/2)//finds relative minimum

x value of x projection to isolate hand from arm

 {

 relMinXOfXProj=xProjXAve;

 relMinYOfXProj=yOfXProj-(xPos.length-1)/2;

 }

 if(y>(xPos.length-1)/2) //keeps array in bounds

 {

 xProjection.pixels[xProjXAve+yOfXProj*w-(xPos.length-1)/2*w] = color(0,255,0); //displays average of x

positions of pixels contained in array

 }

 xOfXProj=0;//reset x value

 yOfXProj=y; //next y position

 }

}

void xProjectionMax()

{

 fill(255,0,0);

 ellipse(maxXOfXProj*400/w,maxYOfXProj*300/h+300,10,10);

 tempMaxXOfXProj=maxXOfXProj; //stores previus x value of maximum for use in midPoint of hand finder

 maxXOfXProj=0; //clears y coord of maximum x

 tempMaxYOfXProj=maxYOfXProj; //stores previus x value of maximum for use in midPoint of hand finder

 maxYOfXProj=0; //clears y coord of maximum x

}

void xProjectionRelMin()

64

{

 fill (0,0,255);

 ellipse(relMinXOfXProj*400/w,relMinYOfXProj*300/h+300,10,10);

 tempRelMinYOfXProj=relMinYOfXProj;

 relMinXOfXProj=w; //clears y coord of maximum x

 relMinYOfXProj=h; //clears y coord of maximum x

}

//////////////////////yProjection//////////////////////

void yProjection (int x,int y,float bl,float re)

 {

 if (y==tempRelMinYOfXProj-1&&x==w-1) // clears array caontiang y values of projection

 {

 for (int i=0; i<yPos.length;i++)

 {

 yPos[i]=0;

 }

 }

 int sumYPosArray=0;//sum of values in array

 if(bl>250&&re>1&&y<tempRelMinYOfXProj)

 {

 yOfYProj++;

 }

 if(tempRelMinYOfXProj>(xPos.length-1)/2&&tempRelMinYOfXProj<h-(xPos.length-

1)/2&&y==tempRelMinYOfXProj-1)

 {

 for (int i=0; i<yPos.length-1;i++) // stores new y value in array and shift previous y values down one place

 {

 yPos[i] = yPos[i+1];

 }

 yPos[yPos.length-1] = yOfYProj;

 println(yOfYProj);

 for (int i=0; i<yPos.length;i++) // sum array

 {

65

 sumYPosArray= sumYPosArray+ yPos[i];

 }

 yProjYAve=sumYPosArray/yPos.length; //mean of y values in projection over yPos.length

 if (maxYOfYProj<yProjYAve)

 {

 maxYOfYProj=yProjYAve;

 maxXOfYProj=xOfYProj-(yPos.length-1)/2;

 }

 if(x>(yPos.length-1)/2) //keeps array in bounds

 {

 yProjection.pixels[xOfYProj+yProjYAve*w-(yPos.length-1)/2] = color(0,255,0); //displays average of y

positions of pixels contained in array

 }

 yOfYProj=0;//reset x value

 xOfYProj=x; //next y position

 }

 }

 void yProjectionMax()

 {

 fill(255,0,0);

 ellipse(maxXOfYProj*400/w,maxYOfYProj*300/h,10,10);

 tempMaxYOfYProj=maxYOfYProj; //stores previus y value of maximum for use in midPoint of hand finder

 maxYOfYProj=0; //clears y coord of maximum Y

 tempMaxXOfYProj=maxXOfYProj; //stores previus x value of maximum for use in midPoint of hand finder

 maxXOfYProj=0; //clears X coord of maximum Y

 }

66

67

11. Works Noted

Davison, Dr. Andrew. "Kinect Chapters 1 and 2. Kinect Imaging." Five Dots. N.p., n.d.

Web. 1 Feb. 2014. <http://fivedots.coe.psu.ac.th/~ad/jg/nui13/KinectImaging.pdf>.

"3D Sensing Technology Solutions - PrimeSense." PrimeSense. N.p., n.d. Web. 22 Mar.

2014. <http://www.primesense.com/>.

Ballard, Dana Harry, and Christopher M. Brown. Computer vision. Englewood Cliffs, N.J.:

Prentice-Hall, 1982. Print.

Barry, Paul. Head first Python. Farnham: O'Reilly, 2010. Print.

"CLNUI 4 Java (Kinect) - Processing Forum." Processing Forums. N.p., n.d. Web. 22 Mar.

2014. <http://forum.processing.org/one/topic/clnui-4-java-kinect.html>.

Earnshaw, Rae A.. Fundamental algorithms for computer graphics. Berlin: Springer-Verlag,

1985. Print.

Eckel, Bruce. Thinking in Java. 2nd ed. Upper Saddle River, NJ: Prentice Hall, 2000. Print.

Group, Jiayang Liu, Zhen Wang, Jehan Wickramasuriya and Venu Vasudevan . "uWave:

Accelerometer-based Personalized Gesture Recognition and Its Applications ." Rice.EDU.

N.p., n.d. Web. 23 Sept. 2013.

<http://www.ruf.rice.edu/~mobile/publications/liu09percom.pdf>.

Judson, Tjohm . "OpenNI to Max/MSP via OSC." tohm judson. N.p., n.d. Web. 22 Mar.

2014. <http://tohmjudson.com/?p=30.html>.

"Kinect for Windows features." Product Features. N.p., n.d. Web. 22 Mar. 2014.

<http://www.microsoft.com/en-us/kinectforwindows/discover/features.aspx>.

Lutz, Mark. Learning Python. 4th ed. Sebastopol, Calif.: O'Reilly Media, 2009. Print.

Richert, Willi, and Luis Pedro Coelho. Building Machine Learning Systems with Python.

Birmingham: Packt Publishing, 2013. Print.

"Sign Language Interpreter app." - Google+ Help. N.p., n.d. Web. 22 Mar. 2014.

<https://support.google.com/plus/answer/2990988?hl=en>.

University, Singularity. "Smart Gloves Turn Sign Language Gestures Into Vocalized

Speech." Forbes. Forbes Magazine, 20 Sept. 2012. Web. 22 Mar. 2014.

<http://www.forbes.com/sites/singularity/2012/09/20/smart-gloves-turn-sign-language-

gestures-into-vocalized-speech/>.

68

Zinza, Jason E., Xiaohong Fang, and James Sbarra. Master ASL!: level one. Burtonsville,

Md.: Sign Media, Inc., 2006. Print.

Zukowski, John. Java 6 platform revealed. Berkeley, CA: Apress ;, 2006. Print.

Campbell-Swinton, A. A. (1908-06-18). "Distant Electric Vision

(_rst paragraph)". Nature 78 (2016): 151

Ekaterini Stergiopoulou, Nikos Papamarkos: Hand gesture recognition

using a neural network shape _tting technique. Eng. Appl.

of AI 22(8): 1141-1158 (2009)

Overview of Binomial Filters, Konstantinos G. Derpani,

Department of Computer Science and Engineering York

University March 5, 200

Stathakis, D. International Journal of Remote Sensing Vol. 30, No.

8, 20 April 2009, 2133_2147 How many hidden layers and nodes?

[5] Neural Networks for Pattern Recognition Christopher M. Bishop

Oxford University Press (1995)

Arthur Earl Bryson, Yu-Chi Ho (1969). Applied optimal control:

optimization, estimation, and control. Blaisdell Publishing Company

or Xerox College Publishing. pp. 481.

The Back Propogation Algorithm. Robert Gordon University

online course materials http://www4.rgu.ac.uk/_les/chapter3%20-

%20bp.pdf.

Muang, Tin. Real-Time Hand Tracking and Gestures Recognition

System Using Neural Networks. World Academy of Science and

Technology 50 2009.

Elmezain, Ayoub, Appendrtodt and Michaelis. A Hidden Markov

Model-Based Isolated and Meaningful Hand Gesture Recognition.

World Academy of Science and Technology 41 2008.

Segan, J, Controlling computers with gloveless gestures in Virtual

Reality Systems. 1993

Hunter, E. Posture estimation in reduced model gesture imput systems,

Proceedings of International Workshop on Automated Face

69

and Gestures Recognition, June 1995.

Yoon, Soh, Bae, Yang. 2001. Hand Gesture Recognition using combined

features of location, angle and velocity. Pattern Recognition

34 (7) 1491 - 1501.

[13] R. Jain, R. Kasturi, B.G. Schunck. Machine Vision. McGraw-Hill,

1995

Search Algorithm and Edge Detector Combination for Outdoor

Trajectory Planning,Kamil .idek,Transfer inovácií 18/2010

Emmory, Karen. "Language, Gesture, And Space" (1995): 82.

"Histogram Comparison¶." Histogram Comparison — OpenCV 2.4.8.0 documentation. N.p.,

n.d. Web. 1 Apr. 2014. <http://docs.opencv.org/doc/tutorials/imgproc

"Basic Structures¶." Basic Structures — OpenCV 2.4.8.0 documentation. N.p., n.d. Web. 1

Apr. 2014. <http://docs.opencv.org/modules/core/doc/

"About Pythonâ„¢ | Python.org." Python.org. N.p., n.d. Web. 2 Apr. 2014.

<https://www.python.org/about/>.

"Basic StructuresÂ¶." Basic Structures â€” OpenCV 2.4.8.0 documentation. N.p., n.d. Web. 1

Apr. 2014. <http://docs.opencv.org/modules/core/doc/basic_structures.html>.

"Basic StructuresÂ¶." Basic Structures â€” OpenCV 2.4.8.0 documentation. N.p., n.d. Web. 2

Apr. 2014. <http://docs.opencv.org/modules/core/doc/basic_structures.html>.

Butterworth, Rod, and Mickey Flodin. "history of sign language." berkley publishing group.

berkley publishing group, n.d. Web. 2 Mar. 2014.

<https://www2.uic.edu/stud_orgs/cultures/daa/ASLHistory.html>.

"Histogram ComparisonÂ¶." Histogram Comparison â€” OpenCV 2.4.8.0 documentation. N.p.,

n.d. Web. 1 Apr. 2014.

<http://docs.opencv.org/doc/tutorials/imgproc/histograms/histogram_comparison/histogr

am_comparison.html>.

http://www.bibme.org/
http://www.bibme.org/
http://www.bibme.org/
http://www.bibme.org/

70

"Histogram ComparisonÂ¶." Histogram Comparison â€” OpenCV 2.4.8.0 documentation. N.p.,

n.d. Web. 2 Apr. 2014.

<http://docs.opencv.org/doc/tutorials/imgproc/histograms/histogram_comparison/histogr

am_comparison.html>.

Michaell, Ross. "How many deaf people are there in the United States." How many deaf people

are there in the United States. N.p., n.d. Web. 2 Apr. 2014.

<http://research.gallaudet.edu/Demographics/deaf-US.php>.

"OpenCV." Wikipedia. Wikimedia Foundation, 31 Mar. 2014. Web. 2 Apr. 2014.

<http://en.wikipedia.org/wiki/OpenCV>.

"The Five Senses - Lesson 3: Hearing." Paso Partners. N.p., n.d. Web. 2 Apr. 2014.

<http://www.sedl.org/scimath/pasopartners/senses/lesson3.html>.

"Willow Garage." Willow Garage. N.p., n.d. Web. 2 Apr. 2014.

<http://www.willowgarage.com/>.

71

	Team Members
	Table of Contents
	Executive Summary………………………………………………………………………..3
	1. Introduction……….…………..…………………………………………………...4

	Executive Summary
	We would like to personally thank Supercomputing Challenge Alumni Sara Hartse and Bjorn Swenson for not only inspiring us to compete, but also being available at the most inconvenient of times to help us out on whatever it may be.
	We also would like to acknowledge Aryssa Baca for her much needed help on our project. If it wasn’t for her knowledge of ASL, our project would not be where it is today.

