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Executive Summary 
 

 
 This project aims to create a realistic model of the spread of Dengue Fever in 

Cuba. Through applying both a traditional system dynamics approach and a novel 

agent-based model approach, we were able to understand the disease from two 

unique perspectives. Docking these two approaches allowed us to further 

investigate the spread of dengue fever as well as the benefits and properties of each 

respective method. For our system dynamics model we used a vector-based 

modification of the time-honored SIR differential equations implemented in the 

NetLogo System Dynamics Modeler. For our agent-based model, we implemented 

the NetLogo GIS Extension to create a multilayered model of Cuba that includes 

elevation, rainfall, and population density. Through modeling the collection of 

rainwater, we were able to estimate the mosquito population and, in turn, the 

spread of the disease in Cuba. With the Behavior Space tool in NetLogo, we were 

able to explore the sensitivity of parameters in both models as well as dock them 

against one another. By comparing both our system dynamics model and our agent-

based model against real world data, we proved the importance of small-scale 

source reduction (water removal) in deterring mosquitoes and hindering the spread 

of Dengue Fever in Cuba. 
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Introduction and Epidemiology 

 Dengue Fever, dubbed “breakbone fever” by United States Founding Father 

Benjamin Rush, is one of the most prevalent and destructive tropical diseases in 

today’s world.  It is the most common viral disease transmitted by arthropods 

(arbovirus) and is endemic in over 100 countries, with an estimated 2.5 billion 

people currently at risk of infection. In the wake of the Second World War, countries 

in South America and Southeast Asia were the first to experience epidemics of 

Dengue Fever and it is now a severe problem in these tropical countries due to 

urbanization and population growth. Research done by the World Health 

Organization (WHO) estimates that about 50 million cases of Dengue Fever occur in 

the world every year and that this number is increasing exponentially. For example, 

in 2001, there were 400,000 reported cases of Dengue Fever in all of Southeast Asia, 

whereas, in Rio de Janeiro alone, there were 500,000 cases in 2002. Furthermore, in 

response to climate change, Dengue Fever is now spreading further north, with 

cases being reported in Florida and Texas this past decade. 

 

 Dengue Fever is a mosquito-borne viral disease that can be caused by four 

distinct serotypes (known as DENV-1, DENV-2, DENV-3, and DENV-4). The existence 

of these four distinct strains has made the development of a vaccine for the virus 

unachievable. Infection with one of the serotypes usually results in lifelong 

immunity to that serotype (homologous immunity) but only temporary immunity to 

the other strains (heterologous immunity), allowing for complications to develop 

upon secondary infection. The symptoms of Dengue Fever (DF) include sudden 
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fever, severe headache, muscle/joint pain, and the development of a characteristic 

skin rash (islands of white in a sea of red). These symptoms usually appear four to 

seven days after infection (incubation period) and can last anywhere from three to 

ten days. While 80% of Dengue Fever cases are mildly symptomatic or completely 

asymptomatic, the disease can also develop into two other life-threatening forms: 

Dengue Hemorrhagic Fever (DHF) and Dengue Shock Syndrome (DSS). Dengue 

Hemorrhagic Fever is characterized by the same external symptoms as classic DF, 

however, the leakage of plasma from blood vessels, resulting in internal bleeding 

and loss of circulation, is what makes DHF far more lethal. Studies have proven that 

those who have previously been infected with DF are far more likely to develop DHF. 

 

 The vectors of the Dengue Fever virus are mosquitoes of the genus Aedes and, 

most commonly, of the species aegypti. The Aedes aegypti mosquito, commonly 

called the “yellow fever mosquito”, is highly anthropophilic, inhabiting densely 

populated urban areas where it has easy access to human blood-meals, which are 

required for the mosquito to reproduce. If a female mosquito bites a human infected 

with Dengue Fever, the virus becomes present in its salivary glands within eight to 

ten days and that mosquito becomes infected for the rest of its life. After biting a 

human and mating, female mosquitoes require standing water in order to undergo 

oviposition. The removal of breeding sites for female mosquitoes, known as “source 

reduction”, is one of the major control methods being implemented in countries that 

suffer from Dengue Fever. As opposed to the use of toxic insecticides, source 

reduction provides an efficient and effective way to control the spread of Dengue 
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Fever that requires self-initiative of citizens in places where Aedes aegypti run 

rampant. 

 

 Our models focus on the spread of Dengue Fever in the island nation of Cuba, 

which currently ranks fifth for concentration of DF and DHF cases in Latin America. 

We have chosen Cuba as our location because it is geographically isolated, exhibits 

the perfect year-round climate for the breeding of Aedes aegypti mosquitoes, and 

has a history of devastating Dengue Fever epidemics. Starting with DEN-1 in 1977 

and later DEN-2 in 1981, both Dengue Fever and Dengue Hemmorhagic Fever have 

had a severe impact on the population in Cuba. More recently, over 11,000 people 

became infected with Dengue Fever in 2002, resulting in a fatality rate of 8.3%. By 

comparing our models against real-world data, we hope to identify and quantify the 

efficacy of small-scale source reduction in hindering the spread of Dengue Fever. 

Our analysis shows that simply by emptying a rain-barrel or draining an empty tire, 

Cubans have the power to help prevent Dengue Fever in their community and their 

country. 
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System Dynamics 

Derivation 

Since the work of Kermack and McKendrick in 1927, deterministic 

compartmental models have been the traditional approach to computational 

epidemiology. These types of models use a set of ordinary differential equations to 

describe the evolution of a disease through various compartments of a population. 

Most basically, three equations can be used to describe the relative number of 

people susceptible to a disease (S), infected by a disease (I) and recovered from a 

disease (R) over time, as follows: 

dS/dt = -βSI 
dI/dt = βSI – γI 

dR/dt = γI 
where β is the contact rate between the susceptible compartment and the infected 

compartment and γ is the recovery rate from the disease. 

 

 However, the above equations are only suitable for a model in which the total 

population remains constant. In order to imitate the spread of a disease over longer 

time-scales, where the rates of infection and recovery are as important as the rates 

of natural birth and death, we must modify our equations: 

dS/dt = hS - βSI - μS 
dI/dt = βSI - (γ + μ + δ)I 

dR/dt = γI – μR 
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with h representing the birth rate of susceptible, μ representing the natural death 

rate, and δ representing the death rate due to the infection. 

 

 Furthermore, both models presented above are only applicable to infections 

spread by human-to-human contact. In order to model the transmission of Dengue 

Fever between the Aedes aegypti mosquito and infected humans, we must modify 

our set of differential equations to include two vectorial compartments: 

dS/dt = hS – βSIV - μS 
dI/dt = βSIV - (γ + μ + δ)I 

dR/dt = γI – μR 

dSV/dt = qSV – αSVI – eSV 
dIV/dt = αSVI – eIV 

where q now represents the birth rate of susceptible vectors (SV), α represents the 

contact rate between susceptible vectors and infected humans, and e represents the 

natural death rate of the vector population. 

 

 Notice that, in this final set of five equations, there are two separate infection 

rates, one for vectors and one for humans. This is due to the fact that the infected 

vector compartment (IV) determines the derivative of infected humans (I) while the 

infected human compartment (I) determines the derivative of infected vectors (IV). 

These infection rates allow us to calculate the most important parameter in the 

transmission of an infection, the reproductive number or R0. The value of R0 

determines the number of secondary infections caused by an infected person during 
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the duration of their infection. This, in turn, determines whether or not an epidemic 

will occur for a given disease in a given population. If R0 is greater than unity, the 

disease will be detrimental to the population, while if R0 is less than unity, the 

disease will simply die out. In the case of Dengue Fever the basic reproduction 

number can be calculated as follows: 

R0 = (α + β)(S + I + R)/γ 

For our model of Dengue Fever, the values of the respective infection rates 

are derived from the biting rates of Aedes aegypti mosquitoes and the probability of 

human-vector transmission as employed by Derouich, Boutayeb, and Twizell. Lastly, 

observe that the set of equations we have derived for our model of Dengue Fever 

only considers one strain of the virus. For the sake of computational ease and 

effective comparison with our Agent Based Model, we have chosen to limit the scope 

of our models to the spread of the DEN-1 serotype. 

 

Implementation 

In order to computationally implement our SIR + V epidemiological 

equations we used the NetLogo System Dynamics Modeler. In the System Dynamics 

Modeler, the equations are visualized as a diagram of stocks and flows in which 

stocks represent the respective compartments of the population and flows 

represent the differential equations that govern those compartments. Variables such 

as birth and death rates are depicted as diamonds that are connected to the flows by 

links. These variables can be controlled by sliders in the NetLogo interface, where 
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the values of respective compartments can be plotted over time to monitor the 

spread of the infection. 

 Using parameter values from our Agent-Based Model, we were able to 

simulate the spread of Dengue Fever in Cuba over varying time periods. The human 

birth and death rates were calculated based on the inverse of the human life span 

(~70 years) multiplied by the crude birth (11.2) and death rates (7.9) from the 2012 

Cuban census. Similarly, the mosquito birth and death rates are the inverse of the 

average mosquito lifespan (~25 days). The recovery rate is simply the inverse of the 

average duration of the infection (~15 days). 

 

 
 
 

Figure 1:  Stocks and flows of NetLogo System Dynamics Modeler. 
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Parameter Values for System Dynamics Model 

 

  

 

 

 

 

 

For these values of the parameters, we set the “dt” of the System Dynamics Modeler 

to unity, which correlates to one time-step (tick) per day. When we run the model 

for 180 days, we get the following graph of the human and mosquito populations 
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Figure 2:  Infected humans, recovered humans, susceptible mosquitoes and infected 
mosquitoes (y axis, population) plotted as a function of time (x axis, days). 
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From this curve we can see that an epidemic does occur for the 

aforementioned parameter values (R0 = 4.2). The peak of this epidemic happens 24 

days into the model and affects 34,700 humans (5.5% of population), followed by a 

corresponding rise in the recovered population. Using the NetLogo Behavior Space 

tool we can see how the severity and timing of the epidemic are dependent upon the 

percentage of mosquitoes that are initially infected. 

 
 

Figure 3: Maximum number of infected humans (y axis) as a function of the 
initial percentage of infected mosquitoes  (x axis). 

 

 
 

Figure 4: Day at which human infection peaks (y axis)  as a function of the 
initial percentage of infected mosquitoes  (x axis). 
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For values greater than .1, there is clearly an almost linear relationship 

between the magnitude of an epidemic and the percentage of mosquitoes that are 

initially infected. Furthermore, as the percentage of initially infected mosquitoes 

rises, the peak of the epidemic occurs sooner in the model, implying that disease 

spread faster. This behavior is an example of the macro-level insight that System 

Dynamics models provide. 
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Agent Based Model 

 In order to better understand the micro-level behavior of our model, we also 

created a multilayered Agent Based Model of the spread of Dengue Fever in Cuba. 

The bottom layer of this simulation is the GIS (Geographic Information System) 

layer, which imports real-world data into NetLogo through the NetLogo GIS 

Extension. By obtaining and mapping GIS files for elevation, surface water, and 

population density in Cuba we were able to monitor how the accumulation of 

rainfall affected the spread of Dengue Fever in major urban areas. 

 

Water Layer (Elevation/Rainfall) 

 The first GIS dataset we considered was that of elevation. By knowing the 

elevation at every point throughout Cuba, we could model where standing water 

would collect and allow mosquitoes to breed. When we combined our GIS elevation 

data with monthly rainfall data, we were able to successfully imitate the large-scale 

accumulation of rainwater. 

 

 

 
 

Figure 5: Daily rainfall accumulation (m3) over the period of a year. 
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 When modeling the rainfall, we simulated the random emergence of storms 

at different points across the island. These rainstorms release the entirety of their 

water agents onto one point and the agents move according to the elevation of the 

patches below them. We also assume that 40% of the water is initially lost to 

infiltration (absorption by soil) and that subsequent amounts are lost to 

evapotranspiration, which also varies monthly. Finally, we also imported GIS data 

for existing surface water in Cuba to consider all possible sites for mosquito 

oviposition. 

 

Agent Layer (Humans/Mosquitoes) 

 Not only is Dengue Fever transmission dependent on mosquito-human 

interaction, but mosquito oviposition also requires a human blood meal. This 

implies that the human and mosquito populations cannot be autonomously modeled, 

but are computationally codependent. 

 

 Based on GIS data for human population density in Cuba, we are able to 

approximate one hundred humans for each agent. We then use the crude birth and 

death rates from the 2012 Cuban census to model the gradual growth of the human 

population. Furthermore, we assume a human lifespan of 25,000 days or about 70 

years (as in the System Dynamics Model). 

 

 The mosquito population is more difficult to model, as it is dependent on the 

presence of humans and water. Logically, we have chosen to only model female 
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mosquitoes, as they are the gender that spreads the disease and reproduces, and we 

assume a 50/50 sex ratio for mosquitoes. We approximate the lifespan of the adult 

mosquito to be 25 days and assume that the period of development from egg 

through pupa takes approximately 12 days. 

 

A series of rules can be compiled to govern the life cycle and oviposition of the 

mosquitoes. When a mosquito is born, it is seeking a blood meal, and therefore sets 

it’s heading towards the nearest human. After that mosquito has been fed, it sets its 

heading towards the nearest water in order to deposit eggs and spawn 37 more 

mosquitoes. Based on experimental evidence, we limit the number of times a 

mosquito can reproduce to six. 

 
 

Figure 6: Mosquito lifecycle with timescales (Elthahir Group at MIT). 
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Phase Space Analysis 

 Using the Behavior Space tool in NetLogo we were able to test the sensitivity 

of the model to various parameters. To begin, we analyzed how variance in the 

biting rate, or probability that a hungry mosquito will bite a human on the same 

patch, affected the severity of the epidemic. 

 

Because the biting rate is not directly related to the transmission of the infection 

within the Agent Based Model, there is no obvious increase in the severity of the 

epidemic. However, the biting rate does allow for the mosquito population to 

increase more effectively and, in turn, infect more humans, resulting in an overall 

positive slope in the graph above. 

 

 
 

Figure 7: Maximum number of infected humans (y axis) as a function of 
percentage human biting probability (x axis). 
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 Next, we investigated how the infection rate parameter played a role in 

amplifying the epidemic. The infection rate acts as the probability that an agent 

(mosquito or human) will become infected if it is on the same patch as an infected 

agent. This parameter should have a direct effect on the severity of the spread of the 

disease. 

 

 

Surprisingly, as can be inferred from the graph above, the infection rate has very 

little influence on the severity of the infection. 

 

Thirdly, we analyze the parameter of the mosquito velocity or flight range. 

According to the World Health Organization (WHO), the flight range of an Aedes 

aegypti mosquito is usually only 400 meters throughout its lifetime (25 days). 

Experiments done in Thailand over a ten-day period found that Aedes aegypti 

traveled, on average, 85 meters away from their hatchsite. By converting these two 

flight ranges to velocities and averaging them together, we estimate that the 

 
 

Figure 8: Maximum number of infected humans (y axis) as a function of 
infection rate (probability, x axis). 

y = 0.0086x + 65 

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100

Infection Rate vs. Max Infected 

max-infected

Linear (max-infected)



 19 

mosquito velocity is approximately 12.25 meters per day. In our NetLogo world, the 

width of a single patch is about 8.66 km (each patch is 75 square kilometers), 

allowing us to convert our mosquito velocity to .0014155 patches per day. When we 

allow the model to run with this naturally calculated mosquito velocity, we find that 

the mosquito population always dies out within the first two months of the 

simulation. However, when we raise the mosquito velocity to a reasonable rate, we 

find that the mosquito population explodes exponentially. We used the Behavior 

Space tool in NetLogo to find the mosquito velocity value that provides a steady 

mosquito population. 

  

Through analysis of the graph above, the equilibrium value for the mosquito velocity 

sits at around .04 patches per day. This value corresponds to .3464 kilometers per 

day or a flight range of approximately 8.66 kilometers. Remember that 8.66 km is 

also the length of a single patch in our NetLogo world, implying that this mosquito 

 
 

Figure 9:  Mosquito populations after 60 days (y axis) as a function of mosquito 
velocity in patches per day (x axis). 
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velocity allows a mosquito to move approximately one patch in its lifespan. With the 

natural velocity of .0014155, mosquitoes do not have enough time to explore other 

patches in search of human blood meals or standing water. 

 

 Lastly, we experimented with the most obviously influential parameter in 

our Agent Based Model: the initial percentage of infected mosquitoes, or “initial 

infected rate”. The model naturally breeds exactly 1512 mosquito agents (which 

each represent 10 actual mosquitoes) at the start of each model based on GIS 

surface water data for Cuba. The percentage of these mosquitoes that are infected at 

the start of the model is determined by the initial infected rate. 

 

As you can tell from the graph, increasing the percentage of mosquitoes that are 

initially infected increases the maximum number of humans infected in the 

epidemic. This increase is greatest at low initial mosquito infection with a slope of 5 

 
 

Figure 10:  Maximum number of infected humans (y axis) as a function of the 
initial percentage of infected mosquitoes  (x axis). 
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infected humans/% infected mosquitoes until about 20% initially infected 

mosquitoes.  Above 20% initial mosquito infection rate the response of human 

infections to it drops first and then saturates, which limits the maximum number of 

infected humans at 188. This saturation implies that only approximately 65% 

percent of the initial population of mosquitoes has to be infected in order to produce 

the most severe epidemic. 
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Discussion and Solutions 

Comparison of Approaches 

 By modeling the spread of Dengue Fever using both System Dynamics and 

Agent Based approaches, we were able to explore the sensitivity of more 

parameters as well as compare the two models. We found that the System Dynamics 

Model gave us a more analytical approach to modeling the disease that provided a 

better understanding of the macro-level behavior of an epidemic. On the other hand, 

our Agent Based Model allowed us to take a more numerical approach to 

comprehending Dengue Fever and was best for considering how the micro-level 

behavior of individual agents affects the overall epidemic. Furthermore, the Agent 

Based Model allowed us to test the sensitivity of far more parameters than the 

System Dynamics Model. One parameter sweep that both models shared was that of 

the initial percentage of infected mosquitoes. 

Raising initial mosquito infection rates at low values (below 20%) increases the 

 
 

Figure 11: Comparison of maximum number of infected humans as a function of 
initial percentage of infected mosquitoes in Agent Based and System Dynamics 
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maximum infected humans in a linear and similar manner in both models. However, 

the micro-level behavior of the Agent Based Model becomes apparent in the 

saturation of this parameter sweep. While the epidemic size in the System Dynamics 

model continues to grow almost linearly with the initial percentage of infected 

mosquitoes, the Agent Based Model levels off, most likely due to the global 

resolution of the model. 

 

 When we compare both models against real-world epidemics in Cuba, we 

find that, while Dengue outbreaks commonly occur within a year, there are also 

longer trends of the disease that our model does not replicate. These large-scale 

trends are probably more dependent on properties in the mosquito population 

dynamics that vary based on yearly rainfall and temperature as well as random 

arrival of infection in the human population through international travel. 

 

 Using our Agent Based Model we were able to simulate various control 

 
 

Figure 12: Real-world values for the number of Dengue Fever cases in Cuba 
between 1998 and 2005 
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strategies for the spread of Dengue Fever including the limitation of human mobility, 

the development of a vaccine, and the implementation of source reduction. 

 

Human Mobility 

The first control strategy for the spread of Dengue Fever that we considered is the 

limitation of human mobility. Limiting the influx of people into various provinces 

reduces the probability that Dengue Fever will spread to that province. In our Agent 

Based Model we controlled two parameters regarding the limitation of human 

 
 

Figure 13: Maximum number of infected humans as a function of range of mobility 
 

 
 

Figure 14: Maximum number of infected humand and day of peak infection as a 
function of the percentage of the population that is mobile 
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mobility: the radius of mobility and the percentage of the population that is mobile.  

As you can tell from the graphs, the range of human mobility has little effect on the 

severity of the epidemic. However, the percentage of the population that is 

mobilized has a direct effect on both the magnitude and the speed of the epidemic. 

Therefore, limiting human mobility is not necessarily an effective strategy for 

controlling Dengue Fever (see Appendix). 

 

Vaccination 

Currently there is no vaccine available for any of the four serotypes of Dengue Fever. 

Using our Agent Based Model we were able to predict the effectiveness of a vaccine 

in reducing the spread of a single strain of Dengue Fever. 

 

Obviously, the presence of vaccinated population has a beneficial effect on limiting 

 
 

Figure 13: Maximum number of infected humans as a function of initial percentage of 
humans vaccinated 
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the spread of the disease. While there is still large variance in epidemic size due to 

other parameters, vaccination is a very useful control strategy. 

 

Source Reduction 

The final control strategy we considered using our Agent Based model is that of 

source reduction. Source reduction is the elimination of standing water to reduce 

the number of breeding sites for Aedes aegypti mosquitoes. By allowing human 

agents within the model to remove water agents from their respective patches, we 

imitated source reduction at the resolution of our NetLogo world. We created a 

“source reduction parameter” that acted as the probability a human agent would 

remove the water from its patch each day. 

 

Variance in the source reduction probability parameter has a direct effect on the 

magnitude of the epidemic and the rate at which the epidemic decays. With the 

source reduction parameter set to zero, three epidemics of about equal intensity 

occur, with a maximum number of infected of 68. However, with a 50% probability 

that each human will remove the water from its patch, the severity of the recurring 

infections is lessened (especially the third step) and the maximum number of 

infected is brought down to 56. When the entirety of the human population is 

participating in source reduction it is evident that the epidemic is not as severe and 

that it dies out more quickly. Nonetheless, we are still limited by the 75 square 

kilometer patch resolution of our NetLogo world. If we were to consider the fine-

grained collection of water in, for example, empty tires and potholes, source 
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reduction could have a far greater impact in preventing the spread of Dengue Fever. 

 

 

 

 
 

Figure 14: Total number of infected and recovered humans as a function over 
time over a period of 60 days with source reduction values of 0%, 50% and 

100 % respectively 
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Conclusion 

 Dengue Fever is a very serious tropical illness that is currently threatening a 

third of the world’s population and spreading to new parts of the globe each year. As 

this disease becomes more and more internationally destructive, preventative 

measures must be addressed to control the spread of infection. Through evaluating 

data obtained from both a System Dynamics approach and an Agent Based approach 

with realistic rainfall, infected mosquito life cycle and interactions with humans we 

make the following conclusions: 

 

1) The most important parameter that influences the spread of Dengue Fever is the 

percentage of the mosquito population that is infected 

2) Controlling human mobility (quarantine strategy) is not effective in preventing 

the spread of Dengue Fever 

3) The development of a vaccine is a very important next step in eradicating Dengue 

Fever, despite difficulty of multiple serotypes 

4) Source reduction is an easy and effective way to control the spread of Dengue 

Fever through the micro-level diminution of the mosquito population 
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Appendix: 

Comparative screenshots of Agent Based Model with high human mobility and low 

human mobility, as seen through links connecting human agents.

 


