
Land-based and Drone Communication with Algorithms

New Mexico

Supercomputing Challenge

Final Report

April 2, 2014

Team 145

School of Dreams Academy and Deming High School

Team Members

Danielle Garcia

Eneyda Ramos

Seth Howe

Teacher

Creighton Edington

Project Mentor

Talyssa Ogas

Abstract

Technological advancements are occurring at an exponential pace. Technology that was

the far-fetched ideas in science fiction novels are now part of our everyday lives. With cheaper

and cheaper robots being developed because the enhancement of manufacturing abilities, robots

have started to be ubiquitous in our modern day society. From robots that help with household

chores to robots that help with search and rescue operations and military robots. This is the way

into the future for better and cheaper manufacturing. In addition to cheaper manufacturing,

decades. Cheap robots plus more computing power has started moving the world into the era that

will dominated by the presence of autonomous robots.

This is a proof-of-concept project, which entails the use of an AR Drone, iRobot Create,

and a computer. With technology improving, there will be more aerial vehicle and land-based

robot communication. Wildlife firefighters, botany surveyors, search and rescue, biologists and

military operation will need more assistance in finding their target in the act of duty. There will

be a maze in the project to represent the obstacles that are to be faced in the real world, such as

trees and buildings. The project will go through a series of trials in order to prove this concept.

Table of Contents

Introduction

Research

Results

Conclusion

List of Figures

Figure 2.1 - Russian Olive in New Mexico

Figure 2.2 Coral Reef Ecosystem

Flowchart 4.1 Programming Logic for Concept Netlogo Maze

Figure 4.1 Decision Process for Choosing Colors

Flowchart 4.1 Programming Logic for iRobot Create Navigating

Figure 5.1 iRobot Create

Figure 5.2 A.R Drone

Figure 5.3 Final Decision of Colors on Maze

Figures 6.1 6.6 Process of How the Code Processes

List of Tables

Table 1.1-

1Drone and Land-based Robot Communication with Algorithms | SCHOOL OF DREAMS ACEMY |

1 Introduction

Each year technology is constantly improving. The military has many programs that

develop our technology further and further. One of the many projects that has and is currently

being worked on is unmanned autonomous vehicles. The US Navy uses Aerial Vehicles in there

research. Other branches of the military use autonomous land-based vehicles to help with their

research. This project is to combine both assets to create a proof-of-concept that has aerial

vehicles and land-based robots to communicate together to work as a system.

1.1 Purpose

The purpose of this experiment is understanding the physical application of autonomous

unmanned vehicles . With this experiment involving the physical application, the

overall resolution is to develop a proof-of-concept. In this proof-of-concept project, it was ideal

to get an understanding of how to program and intertwine multiple programs together to work as

one system.

1.2 Design Criteria

The main design for this project is to have an iRobot Create, AR Drone, and a computer

to work together to go through a maze. The iRobot Create will have Proximity Sensors attached

at both aides and in the front of the vehicle. The AR Drone is the first version of the commercial

product line. The computer, used in this project, is a personal laptop. Using these three elements,

the overall product will have a system that works together.

2Drone and Land-based Robot Communication with Algorithms | SCHOOL OF DREAMS ACEMY |

1.3 Materials

This project is not fully a computer simulation, but involves physical applications. The following

materials in Table 1.1 are the materials used in this project.

Hardware Software

iRobot Create OpenCv

AR Drone KISS-C

A laptop Netlogo

Cardboard (boxes)

Orange Butcher Paper (1.53 x 1.53m)

Packaging Tape

20.32 x 25.4 cm Construction Paper (4-green,

purple, pink, yellow)

3 Proximity Sensors

3 (2.54 x 3.81 cm) wood blocks

1 x 10 Strapping (2)

1 x 19 Strapping (4)

Create Brackets (2)

Chassis Bracket (1)

Create Connect Cable

Chummby Bot Controler (2)

Table 1.1 Materials

3Drone and Land-based Robot Communication with Algorithms | SCHOOL OF DREAMS ACEMY |

2 Research

Our research was more directed towards military operations, search and rescue, and

research from high regard universities, such as Carnegie Mellon University and Georgia Institute

of Technology. Most of the research was on naval research on unmanned vehicles. Unmanned

aerial vehicles, drones, are being used by the Navy more and more each day. The Navy is

planning to You might deploy a remotely manned underwater generator that sits on the

bottom in a secure area, which is a secure location where your forward-deployed vehicles might

Defense 25).

In A Roadmap for US Robotics from Internet to Robots, the information gathered was

how the application of autonomous robot communication is being applied to different fields. This

report lead to search more into the application of our project. The great pacific garbage patch and

biological monitoring were a few that were looked into.

The system could be applied into getting counts of

plastic through the aerial vehicle and uses the gaps in the

plastic for the ocean-based robot to drive around to help clean

(Image 2.1). When biological motoring was considered, there

were many different options. The system could be used to

motor plant life and weed clearing (Image 2.2), maintaining

ocean life with coral reef rebuilding (Image 2.3), and keeping

count of birds or other animal species and their habitats.

Figure 2.2
Russian Olive (invasive species) in
New Mexico

4Drone and Land-based Robot Communication with Algorithms | SCHOOL OF DREAMS ACEMY |

When it comes to traditional applications

such as search and rescue, then the aerial

vehicle can use thermal detection to find lost

humans in avalanches or in earthquake disasters.

This system can be applied to many fields.

Computer science is developing and being

integrated into multiple fields, and this proof-of-

concept is to showcase how technology is going

to be used.

Figure 2.3
Coral Reef ecosystem

5Drone and Land-based Robot Communication with Algorithms | SCHOOL OF DREAMS ACEMY |

3 Procedure

1. Build the Create.

a. Mount metal brackets and strapping.

b. Mount the Proximity sensors to the wood blocks, and mount the wood blocks to

the metal strapping

2. Test colors on Netlogo

a. Take pictures of Construction paper on different surfaces (black and grey) and

import them into Netlogo.

b. Once imported, test which colors stand out more on screen.

c. Use the colors that stand out the most as most as the colors that will be used to

detect the maze.

3. Create the maze solving program.

a. Create a pseudo code

b. Develop variables that will be tested within the program

4. Modify the previous program to be used with images

5. Make mock mazes with construction paper, and take image use a regular camera

a. Import image to test on screen image

b. Use these images to test the maze solving program

c. Test how well this part of the experiment works until maze takes the shortest time

to solve the maze.

6. Build the 1:1 maze using the Cardboard boxes with orange butcher paper, magenta and

yellow construction paper.

7. Create a program on iRobot Create to navigate through the walls, using the Proximity

Sensors.

6Drone and Land-based Robot Communication with Algorithms | SCHOOL OF DREAMS ACEMY |

a. Testing the Proximity Sensors so that they are at the most accurate distance.

b. Using the results from the Netlogo code, develop a program that indicates the

direction the robot needs travel.

8. Create a program on OpenCV to have the AR Drone take flight and capture a still image.

a. Send image to the laptop on which OpenCV is running on, and save in the same

location as the Netlogo Code

9. The Image will be converted to a PNG file and imported into Netlogo to solve the maze.

10. The solved maze will be sent to the CBC on the iRobot Create to go through the maze on

the ground.

11. Test this system, multiple times

7Drone and Land-based Robot Communication with Algorithms | SCHOOL OF DREAMS ACEMY |

Flowchart 4.1

Logical flow of how code was developed and solved

4 Code

When programming for this project there was two different languages used. Netlogo and

KISS-C programming languages were used. Netlogo gave the project the platform to do agent-

based modeling, and print out our results. KISS-

iRobot Create.

4.1 Netlogo

4.1.1 Concept Maze

The programming software used to solve the maze is Netlogo. The Netlogo code was in

two stages. The first stage is the development of our maze algorithm. This code was used to help

determine what type of algorithm, and to what extent was needed. The team looked into two

different algorithms; one that was a trial and error and remembered dead ends or an algorithm

that is a strict left-rule. With research, the team decided on the trial-and-error algorithm. With

this algorithms, the logic for the program was developed (See Flowchart 4.1).

8Drone and Land-based Robot Communication with Algorithms | SCHOOL OF DREAMS ACEMY |

4.1.2 Maze Solving with Picture

When implementing the image that the A.R Drone took into Netlogo, Danielle had to

figure out how to import the image into Netlogo. While trying the different ways to import an

image, Danielle decided on using the pcolors function. This was function was used so the image

was a part of the patches. When the image was imported, the shadows in the image effected what

was trying to be accomplished with the code.

The image was to be converted to being three solid recognizable pcolors within the code.

Danielle had to take the time to see the range of the pcolors (Figure 4.1), and write in the code to

include the shadows and bright spots (See Appendix). Once the image was fully converted, then

the application of the concept maze was applied to the current program.

This provided

some difficulty in

incorporating the two

programs. The problem

was that the concept

program, was not only

what was needed. Danielle

decided to create a

program that acted like a simulation to how the create would run on without prior solving. The

turtle would check at a radius of 10 patches ahead to see if a wall would be in the way. The turtle

would then move forward till would have to turn, and thus repeat the process. Much like

Flowchart 4.1, the logic of the program is similar. The program still give the shortest known

path, as well as a set of direction for the iRobot Create to follow. The program prints the

Figure 4.1
Here is an example of how the decisions process was made in
choosing the colors.

9Drone and Land-based Robot Communication with Algorithms | SCHOOL OF DREAMS ACEMY |

directions to turn left or right. This is then imputed into the iRobot Create Program (See

Appendix).

4.2 KISS-C

The KISS-C program was created by Seth Howe. Seth developed the program to work

with the Netlogo program. So the turtle from the above program, simulates how the iRobot Ceate

would interact with the environment; if not for the maze solving program. The outputted

directions that were printed from the Netlogo program, go into the iRobot Create program

manually for now. This program and design also uses proximity sensors, as mentioned in section

5 Design.

In the code these proximity sensors were used to detect how far away the iRobot Create is

from the real life maze walls (also elaborated in section 5). These sensors are to help the Create

move around the environment. The code for the Create is simple with functions in detecting the

walls, gaps, and telling when the Create to turn (See Flowchart 4.2).

When first experimenting with the Create, the code found it difficult to differentiate

between two gaps in the maze. It was concluded that the Create code could not do three-way

intersection, so Danielle compensated in the Netlogo program. This problem was solved, by

having the Netlogo code print out the directions for Seth to imput into the Create. This solution is

working currently.

10Drone and Land-based Robot Communication with Algorithms | SCHOOL OF DREAMS ACEMY |

Flowchart 4.2

This flowchart shows the logic within the KISS-C code. The red
lines represent the variable of detecting the gaps within the maze
and the logic it follows. The blue line are to follow the functionality
of how the Create moves around the wall. The black lines represent
similar functions.

11Drone and Land-based Robot Communication with Algorithms | SCHOOL OF DREAMS ACEMY |

5 Design

This project is not just a computational model, but has physical application. There are

two main designs; the computational design described in Section 4 and the physical design. This

section will focus on the physical design of the project. This includes the design process on the

iRobot Create and the development of the three-dimensional maze.

5.1 iRobot Create and A.R. Drone version 1

The iRobot Create was provided through KIPR (KISS Institute of Practical Robotics).

The iRobot Create as shown is in Figure 5.1 is displayed with three proximity sensors attached

with a wooden block to maintain

stability. The reasoning for only

using three sensors instead of four

was because, there was no useful

function for a sensor in the rear. If

there were to be a proximity sensor

in the rear, then the values would

read a higher value as if there was

no wall and cause confusion to the

Create.

The A.R. Drone version 1, as

seen in Figure 5.2 did not go through any physical changes. The A.R. Drone v1 is the same

Figure 5.1

This is an image is how the Create is set up and how the
proximity sensors are mounted.

12Drone and Land-based Robot Communication with Algorithms | SCHOOL OF DREAMS ACEMY |

commercial product that can be found

in stores or online. This A. R. Drone

was provided by KIPR, but had no

hardware or software modifications

done.

5.2 Maze development

The maze that is used

currently uses orange butcher paper

with magenta and yellow

construction paper to indicate the

starting and end points. The reason

for the colors was to create a two-dimensional image in Netlogo. The overview of the colors acts

an indicator for where the walls are in the real world. In choosing the colors that would work

have the best color quality in Netlogo.

Eneyda Ramos would collect

sheets of colored construction and take

pictures on different backgrounds, like the

asphalt on a parking lot and concrete

(grey) background. While Danielle and

Seth would take pictures of colored

construction paper on local school floor

ground, like Figure 5.3. The best colors

that worked was purple (magenta), orange,
Figure 5.3

This is the A.R Drone image that was taken. Orange,
purple, and yellow were the final colors choosen.

Figure 5.2

This is the A.R Drone model that was used for the project.

13Drone and Land-based Robot Communication with Algorithms | SCHOOL OF DREAMS ACEMY |

yellow, blue, and green. These colors worked great separately. When the initial testing begin, the

purple construction paper worked the best once imported into Netlogo. This was the color that

was going to be used with orange and green starting and end points. This proposed a problem

once imported into Netlogo. The green and purple construction paper had similar shadows;

therefor, the green was mistaken for the purple.

Orange was the next color that was able to be spotted easily. When testing with the

orange construction paper, yellow and purple construction paper worked best. This is the final

colors that were decided in using (See Figure 5.4).

5.3 Proximity Sensors

From a previous project worked on last year by former student Keva Howe and current

students Denton Shaver and Danielle Garcia called Sensor Data Refinement, had research that

review process (See Appendix).

When building the Create and mounting the sensor about 7cm away from the initial target

placement. The distance gets rid of the false peak in the raw data. Each wall had to be a total

distance of 53.34cm (21 inches) apart from each other for the data recorded.

14Drone and Land-based Robot Communication with Algorithms | SCHOOL OF DREAMS ACEMY |

6 Processes

This section will follow the process of how all the codes interacted with one another to

the physical application. The process is specifically directed towards how the code runs in the

agent-based model and the physical model. All sections will be explained with a series of images

and a brief explanation.

6.1 Netlogo Process

Figure 6.1

This is co the concept maze before any solving has been complete. The walls that are built

within the program turn into the image above. A turtle in the lower left corner is the start of

the maze.

15Drone and Land-based Robot Communication with Algorithms | SCHOOL OF DREAMS ACEMY |

Figure 6.2

This is the solved concept maze without the dead ended paths. Every time the program ends,

it saves the most current solved maze. This shortens the time it takes to solve the maze each

time.

16Drone and Land-based Robot Communication with Algorithms | SCHOOL OF DREAMS ACEMY |

Figure 6.3

Above is the final image in the process of concept maze. This image shows the dead ends that

did not work.

17Drone and Land-based Robot Communication with Algorithms | SCHOOL OF DREAMS ACEMY |

Figure 6.4

Here is the aerial view of the real life maze. The image is distorted, as anticipated. This is

how the image looks before it is converted to pcolors.

18Drone and Land-based Robot Communication with Algorithms | SCHOOL OF DREAMS ACEMY |

Figure 6.5

The above image is the same image from Figure 6.5 only converted into the pcolors.

19Drone and Land-based Robot Communication with Algorithms | SCHOOL OF DREAMS ACEMY |

Figure 6.6

Here the start of the program solving the real-life maze. There are many patches that the turtle

will turn many times while moving forward.

20Drone and Land-based Robot Communication with Algorithms | SCHOOL OF DREAMS ACEMY |

7 Results

The results that concluded this experiment was successful in proving this as a

proof-of-concept. The image that was taken and imported into the Netlogo program acted as a

simulation to what the iRobot Create would solve. The maze (Image 1) was used to work on the

algorithm before Figure 2 was imported. The image is distorted, which was to be expected. Due

to this distortion, the Netlogo program acts as simulation as said before. When the program

finishes, it prints out the set of coordinates and which direction the iRobot Create will need to

turn. From the directions that the Netlogo program provides, the iRobot Create followed the

maze. Due to the Proximity Sensors, the iRobot Create was only able to detect left or right.

When met at an intersection, the program would turn the iRobot Create into circles. This was

fixed in the Netlogo program. The Netlog program gives direction to the iRobot Create to help

reduce the confusion.

8 Data Analysis

The data for this project is a comparison between how the iRobot Create would interact

with the environment without the Netlogo program (Test A) and with the Netlogo program (Test

B). The results that came from Test A were that the Create took a long time to solve the maze.

The Create hit dead-ends and would have to turn around. This method took a lot of time, and it

was determined that the time should be cut.

When running the Create with the maze previously solved, the time was shortened by a

few minutes. From this, the team predicted that with larger mazes that the time gap will be much

larger.

21Drone and Land-based Robot Communication with Algorithms | SCHOOL OF DREAMS ACEMY |

9 Conclusions

The system for this project works effectively. The Netlogo program does solve

our maze, and works well with the iRobot Create. There are still a few bugs in the program, but

will soon be fixed. The AR Drone image had to be simulated. As the team is learning to use

Python, Javascript, and C++ to help with the connection between all three parts of this project.

The research was well proven in our experiment.

As far as our research, this helped prove our effort into other areas of science. This

concept can be used in numerous situations. The maze is an analogy for an obstacle. The Netlogo

program is used to solve this at its most basic level with only a single-solution maze. The main

design criteria was to make a more efficient system for unmanned autonomous aerial and land-

based robot communication. This design is halfway there. Once the AR Drone gets fully working

to communicate with the laptop, then the project will be at its ideal state. For now, we have a

proof-of-concept idea that works successfully.

10 Future Plans

This project has room for improvement. The future direction of this project to use

OpenCV for all the functionality. It will be used to connect the AR Drone to the computer (the

location of where the maze will be solved). The information from OpenCV will be included into

the iRobot Create going through the maze. This updated program will have multi-solutions

looking for the best exit, instead of a single-solution maze.

Appendix

i

Acknowledgements

The team would like to thank a number of people. First, and foremost we would like to thank our

teacher, Mr. Creighton Edington, for his support and help on this project. Talyssa Ogas, thank you

for your support and input on this project. Everyone that has shared their support, input,

at New Mexico Institute of Mining and Technology, we appreciate all your help and suggestions.

All of the help we received went to make this project the best it could be. Lastly, the team would

like their parents; who have been the support backbone in this project.

Code

Netlogo- concept maze

__includes ["Simple Maze Setup.nls"]

patches-own [visited? entered-from solution?]
turtles-own [path steps]

globals [ending-patch who-num mylist ok-to-delete?]

;; The observer sets up the world by clearing all variables and agents, and
;; setting up the maze.

to setup
clear-all
reset-ticks
set ok-to-delete? 0
let current-random (random 2147483648) * one-of [-1 1] ;; generate random

number to be used after maze is setup
setup-maze ;;
random-seed current-random
ask patches
[

ii

set visited? false
set entered-from nobody

]
set ending-patch (patch max-pxcor max-pycor)

create-turtles 1
[
setxy min-pxcor min-pycor
set color green
pen-down
set visited? true
set steps 0

set who-num who ;; needed so maze-solving turtle can be directed to open .txt file
when maze is solved

if file-exists? "current-path.txt" ;; delete old current-path file
[
file-close
file-delete "current-path.txt"

]

if file-exists? "current-num-of-steps.txt" ;; delete old current-path file
[
file-close
file-delete "current-num-of-steps.txt"

]

ifelse file-exists? "min-num-of-steps.txt" ;;
[
;; do nothing - "else" is used to set high value of min-num-steps on first run

]
[
file-open "min-num-of-steps.txt" ;;
file-write 1000000000
file-close

]
]

end

iii

to solve
record-path
if count turtles = 0
[
stop

]
ask turtles
[
if patch-here = ending-patch
[
record-current-num--of-steps
record-info
die

]

let origin patch-here
let possible-destinations (neighbors4 with [not visited? and is-accessible? origin])
ifelse any? possible-destinations
[
face (one-of possible-destinations)
forward 1
set visited? true
set entered-from origin
]
[
set color black
face entered-from
forward 1
set color green
ask patch-here
[
set solution? true
]

]
]
tick
ask turtles

iv

[
set steps steps + 1

]
solve

end

to record-path
file-open "current-path.txt" ;; Opening file for writing
ask turtles
[file-write xcor file-write ycor]

file-close
end

to record-current-num--of-steps
file-open "current-num-of-steps.txt" ;; Opening file for writing
ask turtle who-num
[file-write steps]

file-close
end

to record-info
file-open "current-num-of-steps.txt" ;; Opening file for writing
let current-num-of-steps file-read
file-close

file-open "min-num-of-steps.txt" ;; Opening file for writing
let min-num-of-steps file-read
file-close

if current-num-of-steps < min-num-of-steps
[
file-delete "min-num-of-steps.txt"
file-open "min-num-of-steps.txt" ;; Opening file for writing
file-write current-num-of-steps
file-close

if file-exists? "shortest-known-path.txt" ;; delete old current-path file
[

v

file-delete "shortest-known-path.txt"
]

;;; start current to shortest

file-open "current-path.txt" ;; Opening file for writing
while [not file-at-end?]
[

let temp-value file-read
file-open "shortest-known-path.txt" ;; Opening file for writing
file-write temp-value
file-close
file-open "current-path.txt"

]
file-close

]
end
to show-shortest-known-path
clear-turtles
file-open "min-num-of-steps.txt" ;; Opening file for writing
let min-num-of-turtles file-read
file-close

file-open "shortest-known-path.txt" ;; Opening file for reading

create-turtles min-num-of-turtles
[
set color red
setxy file-read file-read
if other turtles-here = true
[
die

]
]
file-close

vi

ask turtles
[

ask patch-here
[

if solution? != true
[
ask turtles-here
[
die

]
]

]
]

end
;; need to work on this more
to show-shortest-path
show-shortest-known-path
ask turtles

[
while [any? other turtles-here]

[
ask other turtles-here
[

die
]

die
]

]
end

vii

Netlogo-Picture maze

turtles-own [max-range min-range]

globals [scan-distance]

to setup
clear-all
setup-terrain
set scan-distance 0
reset-ticks

end

to setup-terrain
import-pcolors "A-Maze.png"
ask patches [
if pcolor = shade-of? pcolor orange
[
set pcolor orange

]

if pcolor >= 16 and pcolor <= 29
[
set pcolor orange

]

if pcolor = shade-of? pcolor magenta
[
set pcolor magenta

]
if pcolor >= 127 and pcolor <= 137
[
set pcolor magenta

]
if pcolor = shade-of? pcolor gray
[
set pcolor gray

]
if pcolor >= 2 and pcolor <= 9
[
set pcolor gray

viii

]

if pcolor = shade-of? pcolor blue
[
set pcolor gray

]
if pcolor >= 94 and pcolor <= 115
[
set pcolor gray

]
if pcolor = shade-of? pcolor yellow
[
set pcolor yellow

]
if pcolor >= 43 and pcolor <= 46
[
set pcolor yellow

]
if pcolor = shade-of? pcolor brown
[
set pcolor gray

]
if pcolor >= 35 and pcolor <= 39
[
set pcolor gray

]
]

ask patches
[
if pcolor = magenta
[
sprout 1
if count turtles-on neighbors < 2
[

set pcolor gray
]

]
]

ask turtles

ix

[
die

]

create-turtles 1
[
set xcor 156
set ycor -92
set size 30
set color green
set heading 270
set max-range 16
set min-range 20

]
end

to move
side-adjust
ask turtles
[
let splotch patches in-cone scan-distance 90
ifelse any? splotch with [pcolor = orange]
[
set color red
set heading one-of [0 90 180 270]

]

[
set color green
forward 1

]
]

end

to side-adjust ;; move to center of alley
scan

end

to scan

x

let center-target 0
let delta-splotch 0
let right-x-splotch 0
let right-y-splotch 0
let left-x-splotch 0
let left-y-splotch 0

let splotch-detected 0
let splotch-360 0

ask turtles
[
if heading = 90 or heading = 270
[
right 90
let North-South-splotch patches in-cone scan-distance 90

while [(count North-South-splotch with [pcolor != gray]) < 2]
[
set scan-distance scan-distance + 1
set North-South-splotch patches in-cone scan-distance 90

]

set delta-splotch scan-distance
set scan-distance 1

left 180 ;; rotate to look at other side
set North-South-splotch patches in-cone scan-distance 90

while [(count North-South-splotch with [pcolor != gray]) < 2]
[
set scan-distance scan-distance + 1
set North-South-splotch patches in-cone scan-distance 90

]
set delta-splotch delta-splotch - scan-distance
set delta-splotch delta-splotch / 2
set scan-distance 1

right 90 ;; face back to origanal direction

xi

set splotch-360 patches in-cone scan-distance 360
if delta-splotch >= 0
[

while [((count splotch-360 with [pcolor != gray]) < 2) and (scan-distance
< delta-splotch)]

[
set ycor ycor + 1
set scan-distance scan-distance + 1
set splotch-360 patches in-cone scan-distance 360

]
]

]
if heading = 0 or heading = 180
[
right 90
let East-West-splotch patches in-cone scan-distance 90

while [(count East-West-splotch with [pcolor != gray]) < 2]
[
set scan-distance scan-distance + 1
set East-West-splotch patches in-cone scan-distance 120

]

set delta-splotch scan-distance
set scan-distance 1

left 180 ;; rotate to look at other side
set East-West-splotch patches in-cone scan-distance 90

while [(count East-West-splotch with [pcolor != gray]) < 2]
[
set scan-distance scan-distance + 1
set East-West-splotch patches in-cone scan-distance 90

]

set delta-splotch delta-splotch - scan-distance
set delta-splotch delta-splotch / 2
set scan-distance 1

right 90 ;; face back to origanal direction
set xcor xcor + delta-splotch

xii

]
]

end

iRobot Create- Create going through the maze

int min_wall_at_left = 525; // value that is further from the wall
int max_wall_at_left = 680; // value that is closest to the wall

int min_wall_in_front = 101; // value that is further from the wall
int max_wall_in_front = 500; // value that is closest to the wall

int min_wall_at_right = 460; // value that is further from the wall
int max_wall_at_right = 790; // value that is closest to the wall

int wall_in_front = 0;
int wall_count = 2;

void right_turn();
void left_turn();
void drive_current_angle();

int driving_angle = 720;

int main()
{

printf("Hello, Maze!\n");

set_each_analog_state(1, 0, 0, 0, 1, 0, 0, 1); // et sensors plugged
into ports 0, 4, and 7

while(create_connect() < 0) // connects CBC to Create
{

create_connect();
msleep(100);

}
msleep(100);
printf("CBC connected to Create!\n"); //

Gives time for Create and CBC to connect

set_create_total_angle(720);
msleep(2000);

xiii

while(1)
{

drive_current_angle();

if (analog10(4) < max_wall_in_front) //
the sensor in the front is engaged

{
if (analog10(0) > max_wall_at_left)

// the sensor to the left of the Create is driving till the max value is read than
movies to the right to even itself out

{
create_drive_direct(100, 200);
msleep(100);

}
if (analog10(7) > max_wall_at_right)

// the sensor to the right of the Create is driving till the max value is read than
movies to the left to even itself out

{
create_drive_direct(200, 100);
msleep(100);

}
create_drive_straight(150);
msleep(100);

}
if (analog10(4) > max_wall_in_front) //

the sensor to in the front of the Create is driving till the max value is read than stops
{

create_stop();
wall_in_front = 1;

}

if(wall_in_front == 1)
{

if(wall_count >=0)
{

right_turn();
}
else
{

left_turn();

xiv

}
wall_count = wall_count - 1;
wall_in_front = 0;

}

}
create_stop();
return 0;

}

void right_turn()
{

int target_angle = get_create_total_angle(.1) - 90;
driving_angle = target_angle;
while(get_create_total_angle(.1) > target_angle)
{

create_spin_CW(100);
}
create_stop();

while(get_create_total_angle(.1) != target_angle)
{

if(get_create_total_angle(.1) > target_angle)
{

create_spin_CW(55);
msleep(175);
create_stop();

}
if(get_create_total_angle(.1) < target_angle)
{

create_spin_CCW(55);
msleep(175);
create_stop();

}
}

}

void left_turn()
{

xv

int target_angle = get_create_total_angle(.1) + 90;
driving_angle = target_angle;
while(get_create_total_angle(.1) < target_angle)
{

create_spin_CCW(100);
}
create_stop();

while(get_create_total_angle(.1) != target_angle)
{

if(get_create_total_angle(.1) > target_angle)
{

create_spin_CW(55);
msleep(175);
create_stop();

}
if(get_create_total_angle(.1) < target_angle)
{

create_spin_CCW(55);
msleep(175);
create_stop();

}
}

}
void drive_current_angle()
{

if(get_create_total_angle(.1) != driving_angle)
{

if(get_create_total_angle(.1) > driving_angle)
{

create_drive_direct(100, 200);
msleep(50);

}
if(get_create_total_angle(.1) < driving_angle)
{

create_drive_direct(200, 100);
msleep(50);

}
}

}

xvi

Sensor Data Refinement:

The Accuracy of the ET Sensor

Danielle Garcia

School of Dreams Academy
daniellegarcia4541@gmail.com

Sensor Data Refinement:
The Accuracy of the ET Sensor

1 ET Sensor

Every student-team that participates in Botball receives an ET sensor with their Kit of Parts.
With each ET sensor comes with a warning: After the sensor values reach a certain point, the
farther values will resemble the closer values. The image shown here represents the light
values reflected from the surface to the sensor.[1]

In a recent project, the accuracy
of the ET sensor was tested. The
sensor was tested under three
light conditions and with two
different colored sides (black and
white). The reasons for the three
lighting conditions was to see if
light reflectivity affects the

Image 1 [1]

accuracy. The different colored sides was to test the focal point of the ET Sensor.

2 Testing the ET Sensor

Testing the ET Sensor was a long process. There was a total of six tests conducted. Before the
sensor was tested, research was done to make sure on the maximum distance that could be
sustained (80cm) [2]. After the information was collected, the supplies was gathered: A block of
wood with a black and white side, particle board, ET Sensor, and a CBC. (The KIPR LINK was
purposely not used due to the project was started before our institution was provided with the
KIPR LINK.) The particle board was marked at each centimeter for a total distance of 80

xix

centimeters . The ET sensor was attached to a smaller block of wood to keep it stable. The block
of wood had one side covered with white paper and another with black paper.

2.2 Lighting the Set

The three types of light that were used are as follows: Relative Lighting (classroom-type of
lighting), Bright Lighting (strong florescent lights), and Dim Lighting (poor lighting). With each
type of lighting, there was two tests conduced; one for the black and the white side. Below is one

xx

of the tables from the Relative Lighting-White Side:

Key

-values that are similar

-peak values

Distance away from wood board (cm) Value of Sensor

1 400
2 420
3 500
4 500
5 700
6 940
7 950

8 900

9 800

10 710

11 640

12 570
13 520

14 480

15 450

16 425

17 390

18 370

19 350

20 330

21 320

22 305

23 290

24 275

25 270

26 255

27 250

28 235

29 230

30 220

31 200

32 200

33 200

xxi

34 185

35 180

36 175

37 180

38 165

39 160

40 160

41 155

42 150

43 150

44 140

45 145

46 140

47 140

48 135

49 130

50 120

51 115

52 120

53 118

54 115

55 120

56 117

57 113

58 110

59 107

60 109

61 105

62 107

63 102

64 97

65 99

66 93

76 75

77 75

78 76

79 80

80 80

75 80

xxii

This table is the representation of the first test that was completed. There were five other test
similar to the one above.

3 Results

The results from all six tests are in the following graph.

4 Conclusions

Image 2

67 96

68 96

69 90

70 85

71 81

72 81

73 83

74 88

xxiii

Originally, the plan was to develop an equation to solve the inaccuracy of ET sensor, but it was
soon realized that a mechanical solution was a much more plausible solution for now. During the
testing, the brightly lit area and the dim lit area were close in data values; while the relative lit
areas tended to fluctuate more. All the results provided a much needed outcome, they all peak at
about seven centimeters. A simple solution for accurate readings would be to put a small Lego
piece or foam that is 6 to 8 centimeters to create the most accurate reading for the sensor during
game play.

Figure Table

1 (2013). Optical Rangefinder. Botball '13 Workshop , 1(4.6), 167. Retrieved December 17,

2012, from the KIPR database.

References

2 Botball 2011. (n.d.). Sensor and Motor Manual. Received Jan. 13, 2013

Bibliography

Garcia, Danielle. Sensor Data Refinement: The Accuracy of the ET Sensor. Tech. Norman:

KISS Institute of Practical Robotics, 2013. Print.

Winnefeld, James A., Jr., and Frank Kendall. "Unmanned Systems Integrated

Roadmap."Higher Logic Download. U.S. Department of Defense, n.d. Web. 13 Nov.

2013.

"A Roadmap for US Robotics: From Internet to Robotics." US Robotics. Ed. Georgia Institute of

Technology, University of Southern California, John Hopkins University, Carnegie Mellon

University, and Etc. Computing Research Association, 01 May 2009. Web. 13 Nov. 2013.

Adam, Neil J., and Etc. "Autonomous Vehicles in Support of Naval Operations." Higher Logic

Download. National Academy of Science, 2005. Web. 4 Dec. 2013.

"Autonomous UAV Mission System (AUMS)." Autonomous UAV Mission System (AUMS).

Ed. System Center Pacific. United States Navy, n.d. Web. 16 Oct. 2013.

