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Executive Summary

In this project, an Agent based model was programmed in Java to simulate and compare
the propagation of disease algorithms that predict the speed of an outbreak. This model creates
thousands of Agents that independently move from location to location using a one-year travel
schedule based upon Agent roles. Agents get sick when a disease algorithm changes its state-of-
health during a simulation. The three HIN1 algorithms created for this project are the Rule Base
Algorithm (RBA), Math Based Algorithm (MBA) and Random Number Generator (RNG).
During a simulation run, Agents’ state-of-health (susceptible, infected not contagious, infected
contagious and immune) are graphically displayed by the Java Graphical User Interface (GUI)
and saved for analysis and comparison. A Latin Hypercube sensitivity analysis was performed
on each algorithm tuning parameters to determine which produced results similar to the HIN1

truth data.



Problem Statement and Introduction

It is planned to compare disease propagation algorithms that can predict the speed of an
outbreak with a computer simulation and sensitivity analysis. The data collected can then be
applied to future epidemics to prepare and prevent a potential outbreak in a real life situation.
Obtaining prediction results from several algorithms provides comparative analysis with truth
data which is more lifelike. An Agent based model is combined with a Stage location running
over a 365 day simulation using a population profile. A Stage is defined as a location where
Agents reside during a 24 hour period. This project will be programmed using Java to model an
Agent based simulation infrastructure and three HIN1 virus propagation algorithms. The
algorithms of interest are the Rule Based Algorithm (RBA), Math Based Algorithm (MBA) and
the Random Number Generator algorithm (RNG) which will propagate the HIN1 virus through

an Agent population.

The results will be compared with the fludb.org truth data of the HLN1 in 2009. This is a
continuation of last year’s Supercomputing Challenge project, which was implemented in C++
and OpenGL that modeled Agents moving randomly in four areas. This year the problem
solution has greatly matured utilizing numerous Agent roles and Stage locations, where each
Agent’s travel habits are based off of a life-like schedule. Furthermore, the three algorithms

mentioned are compared and a sensitivity analysis is performed to better understand them.

Methods Used to Solve Problem

An Agent-Stage based model is created to move Agents within a 365 day simulation. An

Agent-Stage model is the combination of an Agents travel schedule to Stages locations using the



Agent hierarchical schedule. This Agent-Stage model flow diagram is provided in Figure 1 titled

which is titled “Overall Agent-Stage Activities.” Here there are five main activity areas:

(0]

Agent Roles
Provides an idea of what roles are

Schedule
A calendar schedule for Agents of a given role

Stages
Locations where Agents can go to

Plug-in HIN1 propagation algorithms
Identifying that these are added to the Agent simulation

GUI displaying Agents’ state-of-health
user can view the simulation run Agent’s state-of-health

To begin, each Agent may be assigned a role which is seen here to be a farmer, student or

salesman. That role follows a schedule that determines which stage location they will reside at

for a given amount of time such as home, an airplane or a farm. For each stage a virus

propagation algorithm acts upon the agent’s state-of-health that resides in each stage. Last the

Agents state-of-health is displayed in real-time during a simulation run on the program’s GUI in

a bar-chart format.
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Figure 1: Agent-Stage Based Simulation Overview




Coding Framework

Disease Propagation Class
The disprop class is the main Graphical User Interface (GUI) of the project. The GUI,

shown in Figure 2, provides several options, such as selecting which algorithm to propagate, or
plotting data from the current run. The plot at the left of the GUI shows bar graphs of the Stages
(horizontal state-of-health bars) and the Agent roles or professions at the bottom (vertical state-
of-health bars). The Stages locations are listed from top to bottom on the left axis, and the Agent
role or profession ID are listed on the bottom axis from left to right. The length of each bar
represents the state-of-health for Agents that are in a particular Stage or of a particular

profession. The color of each bar represents their state-of-health, as shown below.

. Green bar-Agents that are susceptible

. Blue bar-Agents that are infected, but not yet contagious
. Red bar-Agents that are infected and contagious

o Black bar-Agents immune to the virus.

As a simulation is run, the bars will change their length according to the number of Agents in
that state. Additionally, at the top of the GUI is a status bar that dynamically displays the current

simulation time values.

° +1,1,0+ Three tuning parameters entered through command line
. Day=62 62" day of the simulation

. Hr=14 14™ hour of the 62" day of the simulation

o Year Hours Total=1503 Start of next simulation hour
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Figure 2: disprop main GUI

Several plots are provided by the main GUI which enables the user view the data trend of a

simulation run. Options to view data are provided in the following list. Figure 3 displays the Plot

menu item selections and Figures 4, 5 and 6 displays the three plots created from the plot menu

item. The HIN1 RBA algorithm is used in Figures 5, and 6.



TRUTH DATA - fludb Download Create Histogram
TRUTH DATA - fludb Plot Histogram
5IM DATA - Save and Plot Data

S5IM and TRUTH Data Compare - Save and Plot

SIM and TRUTH Data Difference - Save and Plot
i

Figure 3: disprop Program Plot Drop Down Menu Figure 3: disprop Figure
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Figure 4: Program TRUTH DATA - fludb Plot Histogram
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Factory Class
The Factory class creates the Agent and Stage objects and is the data holder of the

simulation software. When the program is started, the disprop main class creates the Factory.
Once the Factory is instantiated, it then creates all the Agents and Stages as children. Once all
the Agents and Stages have been created, the Factory then serves as a database. The Factory does
not push or pull data; instead its data is pushed or pulled from all other classes. In order to make
the program fast and simple all Agents and Stages run on separate threads. Figure 7 displays the

relationship of the push and pull of data in the Agent-Stage Model.

Agent-Stage Model

Push / Pull of Data
Disease -.
Algorithms /
S Shlgorthms_/
& |

Dispr Factory .:

. Data Data Stages ,.
GUI- maln’/ | / Pata Holde‘r / / /

g

Y
O
é{e

Agents ""

,/

Figure 7: Agent-Stage Model with Push and Pull of Data
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Agent Class

Agents represent people in the simulation. Each Agent is an instance of the Agent class
that runs on its own separate thread. All Agents can move from Stage to Stage at the top of the
simulation hour. The Agent’s movement patterns are dictated by its schedule as provided in
Figure 8. Each role or profession of an Agent has a unique schedule displayed as a
D2 _yrSchd_<role>.txt as seen in Figure 8. As an example, a student goes to school every
weekday, while traveling salesman has a more robust schedule. These schedules provide a more
lifelike simulation compared to randomly moving Agents. At the top of the simulation hour each
Agent object looks at its schedule and assigns its current Stages according by updating the

Factory database that is holding the Agents’ locations

Agent Hierarchal Schedule

D3_daySchd_Weekend.txt J

D3_daySchd_SchoolDay.txt J

D3_daySchd_Holiday.txt J
D2_yrSchd_Student.txt

D1_AgentIC.txt D2_yrSchd_Teacher.txt ]

D2_yrSchd_PreSchooler.txt

Day 1 D3_daySchd_Weekend.txt J
Day 2
D3_daySchd_DayCare.txt J
Day 365
D3_daySchd_Holiday.txt J
Hour 1
Hour 2

Hour 24
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Figure 8: Agent Hierarchal Schedule

The following list is taken from the current D1_AgentIC.txt file in Figure 9 which contains
Agent roles names (first column) and the number of Agents in each role (second column) that
was used in this project. From this list, one can see that there are ten bus driver roles; i.e. there
are ten Agents that are bus drivers. It is noted that this flat file list is read into the program when

the simulation starts.

AGENT ROLE NAME NUMBER OF AGENTS TN ROLE

D2 yr3chd RirForce.txt, 15
D2 wrSchd Banker.txt, 20
D2 yrSchd BusDriver.txt, 10
D2 yr3chd Doctor.txt, =1

DZ yr8chd Farmer.txt, g0
D2 yr3chd HotelManager.txt, 20
D2 wrSchd Manufacturer.txt, go
D2 yr3chd Pilot.txt, 5

D2 wr8chd PreSchooler.txt, g0
D2 wrSchd Salesman.txt, g0
D2 wrSchd StoreClerk.txt, g0
D2 yr3chd Student ARZ.txt, 100
D2 yr3chd Student LC.txt, 100
D2 yr3chd Student SP.txt, 100
D2 wrSchd Teacher.txt, go
D2 yr3chd Waitress.txt, BO

Figure 9: D1_AgentIC.txt

Stage Class

Stages are locations that the Agents travel to per their pre-determined schedule. Each
Stage functions as a location or place where Agents conceptually reside in. As an example, a
Stage could be a house, an airplane or a school. At startup, each Stage running in its own thread

instantiates a child disease propagation algorithm. During a simulation, each Stage’s child
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algorithm propagates a virus to Agents visiting a Stage by modifying the Agents’ state-of-health
data that resides in the Factory database. Stages are instantiated by the Factory when the
Factory is created and Stages run simultaneously on separate threads. Upon creation, each Stage
instantiates the selected algorithm as a child. Any number of Stages and Agents as can be
created in the Factory, but the number created is limited by the amount of memory the machine

running the program contains.

Currently eighteen Stages have loosely been modeled after Albuquerque, NM where the
following Stages are being used: Airplane, Albertsons (grocery store), Bus, Farm, Clinic, Farm,
Intel, Home, Hotel, RetaurantA, School AA, School LC, School_SP, Store, Theatre, Office,
Bank, and School_Pre. These Stages act as places for the Agents to visit. Each hour of
simulation time, each Agent may move to any Stage predetermined by its schedule. The
propagation of the disease occurs in these Stages.

Stages additionally contain unique densities found in the D4_StageLatLon.txt flat file as
seen in Figure 10. The range of a stage density (column 4) is from one to one-hundred
depending on what type of location it is. For example, a higher concentrated place such as an
airplane would have a density value such as twenty-six. This is unlike a farm which is quite
open, which would have a low density value such as five. The Stage data file used in this project
is provided below. Stage name is provided in the first column, the location on the GUI is noted
by LAT and LON. Density is the third column, fourth column is an optional density adjustor and

the UNIQUE_ID is the last column.



HNAME LAT LON DENSITY DENSITYZ2 UNIQUE ID

Stage_ﬁirplane, 100.0, 270.0, 26.0, 0.85, 1
Stage Albertsons, 125.0, 270.0, 5.0, 0.85, 2
Stage Bus, 150.0, 270.0, 5.0, 0.85, 3
Stage Car, 173.0, 270.0, 7.0, 0.85, 4
Stage Clinic, 200.0, 270.0, 5.0, 0.85, 3
Stage Farm, 225.0, 270.0, 5.0, 0.85, G
Stage Intel, 250.0, 270.0, 5.0, 0.85, 7
Stage_Home, 2793.0, 270.0, 4.0, 0.85, 8
Stage Hotel, 200.0, 270.0, 5.0, 0.85, 9
Stage Restauranth, 325.0, 270.0, 12.0, 0.85, 10
Stage School ZA, 350.0, 270.0, 1.0, 0.85, 11
Stage Scheool LC, 273.0, 270.0, 1.0, 0.85, 12
Stage School 8P, 400.0, 270.0, 1.0, 0.85, 132
Stage Store, 425.0, 270.0, 1.0, 0.85, 14
Stage Theatre, 4530.0, 270.0, 2.0, 0.85, 15
Stage_oOffice, 475.0, 270.0, 13.0, 0.85, 16
Stage Bank, 500.0, 270.0, 5.0, 0.85, 17
Stage Scheool Pre, 525.0, 270.0, 325.0, 0.85, 18

Figure 10: D4 StagelatlLon.txt

Time Synchronization
Since the simulation program has hundreds or thousands of objects each on a separate

thread, they all must be synchronized to the same 24 hour, 365 day schedule to be organized and
avoid data corruption. This is done through the use of a wall clock in simulation time. When the
Factory is first instantiated by disprop (disease propagation), it takes the current computer time
and makes this time the start time of the simulation. The Stages, Agents, and disprop objects all
use this initial start time for their synchronized clocks. This simulation start time variable is
shared throughout the program through the Factory data holder. During run time each section of
the code has access to the system clock (epoch time) and keeps track of time as necessary. Stages
synchronize with the wall clock by using the current computer time at a particular time and then
subtract the simulation start time from that. From the amount of milliseconds that have passed it

determines the current simulation time. Using the day counter and the milliseconds in one day,



the current day start time and the current day end time are calculated. The process is provided as

follows.

If the current simulation time is less than the day start time (running behind), then that
part of the program will run immediately so that it can catch up. If the current simulation time is
greater than the day start time (running too fast), then that selection of code will sleep for one
hour of simulation time and tries again. Next the selection of code will then go through the

following hour of the day. It will calculate the start and end time of each hour.

If the simulation time is less than the hour start time (running behind), then that part of
the program will run immediately so that it can catch up. If the current simulation time is greater
than the hour start time (running too fast), then that selection of code will sleep for one hour of
simulation time and tries again. When the time is the correct day and hour the Agent, Stage, or
disprop that is running will then process its data; when done it will proceed to the next hour.
Eventually the day will end and the clock will then calculate a new day start and end, and new

hour starts and end, and the process repeats itself for the next iteration.

The simulation program has a granularity of one hour. Thus the program simulation
updates on an hourly basis with an acceptable error of one hour offset. The main reason for the
clock synchronization is to avoid data corruption of the Factory database’s Agent location status.
This is resolved through a simple system. At the top of every hour in simulation time, disprop
pulls the data it needs for displaying the GUI, the Agents push their Stage location to the Factory
at the top of the hour and the Stages stop the simulation of its algorithm. Then after fifteen
minutes of simulation time the Stages pull from the Factory Agent location data and create a new

linked list of Agents who are inside them for its child algorithm to use. Since the disease

16



algorithms are a child of the Stage, the disease algorithms also know which Agents are visiting

them. This cycle then repeats itself over and over again, till 365 days of simulation time has been

run.
Agent-Stage Model
Activity Clock Synchronization
Disease
Activities: Algorith S
*1: occurs Top of every Hour _
*2 then *3: occurs 15 minutes after Top of Hour . g-:" ‘g
h &
ol IS

N GUI - main <

- @___ . \'7""""-—-»_,_7/
v

Disprop
*
JFlot Datg. ‘ Data Holder

Figure 11: Activity Clock Synchronization

Disease Algorithms

The disease algorithm’s job is to model the propagation of a disease. It does this by
propagating a virus to all Agents’ state-of-health that are visiting that algorithm’s Stage. Each
Agent has four possible state-of-healths, which are: susceptible, infected but not contagious,

infected and contagious, and immune. Each Stage has an identical copy of the selected disease

17



algorithm, thus the disease propagates to the visiting Agents within each Stage. This is possible
due to the fact that the selected algorithm is a child of the Stage class. The disease algorithm is
updated every hour according to the clock synchronization. Agents can enter, leave, or stay
within the Stages. Thus the Agents in the Stage can have their state-of-health modified by the
algorithm. In this project three different types of HIN1 algorithms were created: Rule Based
Algorithm (RBA), Math Based Algorithm (MBA), and Random Number Generator Algorithm

(RNG). The following sections briefly describe each algorithm.

The R-Naught is defined as how many people on average one contagious person infects.

The R-Naught of the HIN1 is determined to between 1.4 and 1.6 [www.biomedcentral.com].

Rule Based Algorithm (RBA)

The Rule Based Algorithm (RBA) uses rules in unison with simple math calculations to
simulate the propagation of a disease. The rules are applied in the form of logic statements. In
this algorithm the first Agent in the link list array of the first Stage is infected with the HIN1
virus, this is the virus seed. After this happens, the algorithm uses “if” statements to determine
when Agents should move on to the next state-of-health (susceptible, infected but not
contagious, infected and contagious, and immune) based on their current state-of-health and how
many days they have been infected. When an Agent first gets infected, they are not contagious.
After a set number of days, the Agent will become contagious and then eventually immune. Also
this algorithm models mutations. It does this by generating a random number from one to 365
then determining if this number is less than the current day number. If it is, then an immune
Agent becomes a susceptible Agent again and its R-Naught is increased to one. This models
mutations which become more prevalent throughout the year and which are weaker than the

original strain.

18



This algorithm contains the logic where a fomite can infect an Agent. A fomite is
defined as an inanimate object that is contaminated with infectious organisms and serves in their
transmission [merrian-wester.com]. This algorithm determines the Agents’ state-of-health at the
beginning of the hour by modeling disease propagation. When running for each hour, the
algorithm first determines if the Stage has any contagious Agents inside it. Once it finds a
contagious Agent, it adds one to the fomite counter. Also adds the sum of four hours and the
fomite modifier together to determine how long the fomite is infectious for. Then the algorithm
searches to find a susceptible Agent. Once this happens a random number is generated in the
range from one to one-hundred. This random number is then used in a calculation. This
calculation multiplies the random number generated by the reciprocal of the density (how many
people on average are in the Stage in respect to the Stage size obtained from the Stages data file)

plus one in the denominator.

Once the result of this calculation has been determined, the value calculated is compared
to a threshold level. If the value is above the threshold, then the R-Naught (initially set to two) of
the infectious Agent is reduced and the susceptible Agent is infected. Next the R-Naught is
further reduced again (to attain a goal between 1.4 and 1.6) if another random number between
one and 365 (number of days in a simulation year) is less than the current day with a combined
probability of a twenty percent probability. After the algorithm infects susceptible Agents from
contagious Agents, it tries to infect susceptible Agents with fomites. It does this by finding all of
the Agents that are still susceptible. Then it checks to see if the fomite can infect Agents by
checking if the fomite counter is above zero (checking for the presence of fomites). Next
checking if a random number from one to a hundred is above a threshold value and if the fomite

has not expired (if the current hour is less or equal to the last hour that the fomite can be

19
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contagious). Once it passes this if statement the program checks to see if it is in the colder
months (first 60 and last 60 days of the year) since fomites are prevalent in colder moister
weather. If it is winter, then the fomite can infect a susceptible Agent. Then the fomite counter is

reduced.

Math Based Algorithm (MBA)

MBA stands for Math Based Algorithm, meaning it uses calculations to determine a
chance of infection and limit the amount of people one can infect. In order to do so, it calculates
both an adjusted base reproduction number and a percent chance of getting sick. The adjusted R-
Naught is calculated by taking the base R-Naught of the disease, cited below, and adjusting it to
the amount of immune people in a Stage. The percent chance infection is calculated according to
population density in a Stage and the amount of people who are contagious. The two variables
that are adjusted in this comparison are the base reproduction number and the density of the
Stage.

The first part of the Math Based Algorithm retrieves the Agent state-of-health data from
the Factory. The second part of the algorithm deals with the calculation of both the adjusted R-
Naught and the percent chance of infection. The original R-Naught of the HIN1 is around 4.89
unadjusted. This came from the equation R-Naught=L * A, where L is the average life
expectancy of a population, and A is the average age at which the disease is contracted. In order
to adjust the R-Naught, we multiplied it by -1 plus the proportion of immune people in the Stage
vs. total people in the Stage. This is an adapted version of how an R-Naught is adjusted to a
population according to a threshold determined by the number of people born with immunity.
The adapted version used the same principles, but applies them solely to the population of the

Stage and the number of immune Agents in the Stage at that hour in simulation time.
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Random Number Generated Algorithm (RNG)

The random number generator was intended to be the simplest algorithm possible. Using
the equation in Figure 12, it calculates P, where P is percent chance of infection, and K is an

adjustable tuning variable.

P = \/Sick Contagious Counter x Density * 100

Figure 12: RNG Equation

The algorithm then creates a random number (between an adjustable range). If the random
number is less than P, the Agent becomes infected; otherwise the Agent will remain healthy. The
Agent will be infected and not contagious for three days. Then the Agent will be contagious for

nine days before becoming immune.

Verifying and Validating Computational Results of
Study

The output data was validated through the GUI state-of-health bar charts running in real time.
This was compared with the Agents calendar schedule by verifying if the schedule was being
implemented correctly. Next data outputs were sent to the console window during runtime
providing logging information to determine if the propagation algorithm was infecting other
Agents according to the intended design. This project provided Agent state-of-health trends

from the RBA, MBA and RNG algorithm that will be analyzed in this section.
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Sensitivity Analysis Using Latin Hypercube Sampling

A sensitivity analysis was performed on tuning parameters (variables) to determine their
sensitivity and thus their importance to each of the three algorithms. The intent was to
determine the tuning parameters which produced a propagation pattern trend that most closely

matched the H1N1 truth data trend.

To start, if a Latin Square was used, all tuning parameter mutations would need to be run
and compared with the truth data. An Orthogonal Latin Hypercube approach was used to
perform sensitivity analysis to make this effort more efficient. An Orthogonal Latin Hypercube is
a sampling of a Latin Square. A Latin Square simulation goes through all interval values for in a
given range, this is indicated in Figure 12. The value for Variable 1 steadily increases by one just
like for the value for Variable 2 steadily increases by two. Also both of the variables being
compared have the same number of variations so that the data set makes a “n by n” dimension
(where n=3) square. This is also shown in Figure 12 where there are three values of both
Variable 1 and 2 being compared. The Latin Square though is varied with a third variable the as
shown in Figure 12 where in the grid there are the letters A, B, and C. No two rows or columns
have the same permutations of the values A, B, and C. This gives one a sampled analysis of
variable importance within the simulation and also what different combinations of variables

mean.

An Orthogonal Latin Hypercube sampling of a Latin Square occurs when on sample of
each type occurs. No exact permutations exist in any row or column. For example in Figure 13,
no duplicate samples taken are in any row or column. This allows a more efficient way to test a
Latin Square which the goal is to be randomly distributed. If one compares Figures 13 and 14,

one can see that they are quite different; however both are Orthogonal Latin Hypercube. This



demonstrates how Orthogonal Latin Hypercube is constructed. In our project we randomly
distribute our Orthogonal Latin Cube. This eliminates testing all of the permutations, and tests a

set of few which will still give a big picture concerning the sensitivity of variables and the effects

of certain permutations.

Latin Square:

A B C

B C A
3 o C A B
= o
g = 2 4 6

Variable 2
A,B, and C are variations of a third variable

Figure 12: Latin Square

Latin Hypercube Orthogonal Sampling:
3 A
2 C
8- [ B
S 2 4 6
Variable 2
A,B, and C are variations of a third variable

Figure 13: Latin Hypercube Orthogonal Sampling

Latin Hypercube Orthogonal Sampling:

3 C
2 A
g = 1 B
S 2 4 6
Variable 2

A,B, and C are variations of a third variable
Figure 14: Latin Hypercube Orthogonal Sampling, Example 2
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Truth Data for Comparison
In this project the algorithms are compared to the H1N1 truth data. The Fludb.org is a

website that contains data that is received from hospitals, clinics, doctor’s offices, etc.
concerning how many confirmed cases there are of a particular virus. We gathered truth data
about the outbreak of the HIN1 virus in 2009. The Fludb.org provided us with how many
confirmed cases of HLN1 there were throughout the entire United States during 2009. The
Fludb.org is funded by the National Institute of Allergy and Infectious Diseases and
collaboration between Northrop Grumman Health IT, J. Craig Venter Institute, Vecna
Technologies, SAGE Analytica and Los Alamos National Laboratory. This project used the
same truth data as the Supercomputing Challenge project titled “Model of Disease Propagation

to Predict the Speed of an Outbreak”, April 2013.

RBA Sensitivity Analysis and Results

The Rule Based Algorithm’s (RBA) variables were analyzed using a Latin Hypercube. The three input
variables that were changed are the start day of contagiousness for contagious Agents (how it longs it
takes until an Agent becomes contagious or how long an Agent is infected but not contagious), the R-
Naught modifier (determines if a contagious Agent can infect one or two Agents, the higher this value,
the more probable that two Agents can be infected), and the end hour of contagiousness for a fomite
(how long a fomite can be contagious for). It was found that the R-Naught was the most sensitive of the
three variables and varied the results of the simulation profoundly. The reason why the R-Naught
modifier is most sensitive variable is because if the R-Naught modifier is high then the peaks will
appear later in the simulation. Also the R-Naught modifier is the most influential variable because it
changes the trend the most. This is shown by Graphs 1 and 7. The effect that the first day contagious

has on the output graph is that when its value is high pushes the second hump forward in time best
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shown by Graphs 1 and 3. When the fomite duration of contagiousness modifier is high it makes slopes
of the graphs right before the first peaks more horizontal. This is best shown by the contrast of Graphs

land?7.

The RBA algorithm was most similar to the HLN1 truth data when the R-Naught
modifier had a value of one, the fomite modifier had a value of zero, and when the time infected
but not contagious modifier had a value of zero. This is seen in Graph 1, when the simulated data
line (composed of contagious Agents) has a double hump, like the fludb.org truth data. Even
though the second hump for the simulated data is much bigger than that of the truth data’s, it is
the only graph that has this critical curve. Another reason why the values 1, 0, 0 (R-Naught
modifiers, Infected but not contagious time modifier and fomite modifier) gave the best result is
because right after the first hump, there was some residual activity, which is like the truth data
graph. Even though the first humps from both graphs do not line up, this graph is still realistic
because the shape of the curve tells the trend of how many people will become infected relative

to the rest of the graph. This is why this run has the best graph within the sampled hypercube.

Latin Hypercube Orthogonal Sampling

) .
=) E, 4 C Hour.s Fomlte:s.are
= Active Modifier
O O
g2 3 B A=0
5 3
D o 2 D B=1
c
=g 1 E c=2

C
E o 0 A D=3
= O

112345 E=4
R-Naught modifier

Figure 15: Orthogonal Hypercube used for RBA
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NOTE: First Variable Value is the R-Naught modifier, the second is Time Infected
but not Contagious Modifier, and the third variable is Hours Fomites are Active

Modifier

Simulation Data versus Truth Data, Values: 1,0,0
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Graph 1: RBA Simulation Data versus Truth Data, Values: 1, 0, 0
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MBA Sensitivity Analysis and Results

When compared with real data, the MBA algorithm is shown to effectively model the first hump of
infection, seen in the plots compared with the H1N1 truth data. This shows that the MBA algorithm
does work, and the math based algorithms are a viable way to go when modeling propagation. Using
the multiple runs as a sensitivity study it can be seen that the higher the multiplier on both the chance of
getting sick and the initial R-Naught, the lower the hump gets. The variable that affects this change in
hump the most is the initial R-Naught multiplier. When this multiplier is fairly low, such as the (50, 90,
15) run, the hump begins to become fairly inaccurate, and the same can be said for the (120, 150, 13)
run. There were also simulation runs that mostly gave little to no results, such as (200, 40, 4). Seeing
this, it is concluded that, if the amount of days contagious is not long enough to assure that the infected
will infect someone with its chance of sick multiplier, there will not be a wave of infection. These
conclusions have driven the tuning values down to the range keeping in mind that many runs in this

range of values will often give results with no hump due to the length of time to insure infection being

too short.
Latin Hypercube Random Sampling

150 C Duration of being Infected
3 but not Contagious Modifier
=
o
P 130 B A=4
>
= 111 D B=10
2 90 | E c=13

40 A D=14

50 | 100 120 145 200 E=15
Constant/R-Naught Modifier

Figure 16: Latin Hypercube Random Sampling used for MBA
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RNG Sensitivity Analysis and Results

When conducting the sensitivity analysis, it was found that changing the Adjust value and the
Range variable affected the rate or the slope of the incline of the graph. When the Adjust variable was
raised, and the Range was lowered, the hump(s) became larger and shorter. It also created less of a
small, sustained propagation, and instead a large hump. The Duration variable is unique because it

makes more humps in the simulation. It also lengthens the humps when increased.

Latin Hypercube Orthogonal Sampling
Incubation Days

s 40 £ Modifier
2
3 30 D A=2
E —
§ 20 C B=4
'-g' 10 B C=6

0 A D=8

100 200 300 400 500 E=10
Range Modifier

Figure 17: Latin Hypercube Orthogonal Sampling used for RNG
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Simulated Data, Values: 10, 100, 40
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Overall Conclusion
The propagation of the HIN1 virus in 2009 can be modeled using an Agent-Stage Based

Model. The use of individual Agents to model a population can be accomplished with the use of
Stages where the Agents live life like schedules. The stages also have life like densities to model
real life locations. Also there are various possible algorithm approaches for modeling disease
propagation. The approaches used were a Rule Based Algorithm, a Math Based Algorithm, and a
Random Number Generator Algorithm. These three algorithms all modeled disease propagation,
although the Rule Based Algorithm produced the results that most closely matched the HIN1
truth data. This is shown in Graph 1 because of the double hump. The truth data has this double
hump although the second hump is much smaller than the first humpThe other two algorithms
did not produce this critical double hump. Another conclusion that can be drawn from this study
is that R-Naught is a critical factor in disease propagation as evidenced by the sensitivity analysis

of the Rule Based Algorithm and the Math Based Algorithm. It is shown that if the R-Naught
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(the amount of people one person can infect) is high, then more people can become infected.
Also density is a fairly important factor in disease propagation because if an area is denser, then
the disease is more likely to propagate. This is evidenced by the use of the density variable in all
three of the algorithms, and that when the density value is higher (when a Stage area is dense)
then the probability of becoming infected is higher. Another conclusion is that although fomites
are important in the spread of disease, they are not nearly as important as direct human to human
transmission of the disease. Fomites’ importance is amplified when there are not many
contagious agents. This makes fomites contagious because it can allow the disease to have a head
start, or to infect more people during the early stages of the disease. This is evidenced by the
Rule Based Algorithm’s incorporation of how long a fomite is infectious for modifier. As the
fomite was infectious for longer periods of time, then there were more people infected before the
first big hump. This is evidenced by the gradual slope before the first big hump as the time for
contagious fomites grew. When using a sensitivity study, one can identify significant variables
which affect disease propagation, as shown above. Being able to know which variables are the
most important can be applied to real world scenarios, and can initiate the incorporation of

preventatives to avoid an epidemic early.

This program is also flexible and can accommodate many scenarios through the editing
of a simple flat file, as pointed out earlier in this report. The number and types of Stages along
with its properties (density) can be easily modified through a flat file, which is read into the
database. The total number of Agents as well as their schedules can be modified in this fashion
also. This program can easily accommodate any type of algorithm written to model disease
propagation, and the already existing algorithms can have their variables adjusted to model other

types of diseases.
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Most Significant Achievement

The ability to successfully write an Agent based simul