

Maximize lipid output and biomass production of algae in

open pond batch systems for biofuel synthesis

New Mexico

Supercomputing Challenge

Final Report

April 2nd, 2014

Team 60

Las Cruces YWiC

Team members:

Ian Rankin

Ahmed Muhyi

Sophia Sanchez- Maes

 2

Table of Contents

1.0 Abstract

2.0 Background
 2.1 Motivation
 2.2 Describing growth dynamics, recent findings

3.0 Mathematical Model for algae growth and lipid production
 3.1 ODEs
 3.2 Biological relationships
 3.3 Verification

4.0 Computational model
 4.1 AlgaeGrowthModel
 4.2 Pond
 4.3 Derivative
 4.4 EulerMethods
 4.5 Graphics
 4.6 Framework for Parallelization
 4.6.1 Simulation
 4.6.2 SimulationScheduler
 4.6.3 SimulationDataHandler
 4.6.4 Runnable Scheduler
 4.7 Recorder

5.0 Methods
 5.1 Experimental structure

6.0 Results
 6.1 Conclusions

7.0 Achievements

8.0 Future Work

9.0 Appendix
 9.1 Acknowledgements
 9.2 References
 9.3 Code

 3

1.0 - Abstract

 Green microalgae is widely regarded as a promising biofuel, given it's high lipid yield per

area in comparison to other oleaginous crops. The commercial realization of algae biofuel

synthesis on a large scale depends primarily on the lipid content and biomass production of the

system. In this study, we further explore the optimization of such a system through the use of

mathematical models to simulate batch culturing of algae, such as those being explored for

continued commercial venture in NM. A computational model was developed to model growth

dynamics and neutral lipid synthesis of the green microalgae Pseudochlorococcum sp., grown in

batch cultures. Correspondence was established between the computational model and

experiment, thus establishing the credibility of subsequent data. Data is collected in the interest

of exploring the industrial optimization of algae production with respect to light and nutrients.

Lipid synthesis is maximized with 4 hour batch replacement time, with respect to light and

nutrients. The computational model will serve to assist industry in establishing commercial

feasibility for algae biofuel. The model will further assist the scientific understanding of algae

growth dynamics.

2.0 -Background

2.1 Motivation

 Aside from it's obvious potential for working towards the pressing national security

concern of energy independence, algae are also lauded as the most promising biofuel feedstock

to date. With its high lipid yield and simple growth requirements, it's estimated that the average

acre of algae can produce 5,000 gallons of biodisel per year, as compared to corns meager 420

gallons of ethanol yearly on the same acre. Additionally, algae's use as a biofuel does not

interfere with the food supply. Furthermore, algae can thrive on land unsuitable for other

agriculture. Although frequently parched, the one thing we're never short on here in NM is

sunshine, which puts our state in one of the most lucrative possible positions for the production

of biofuel.

 The promise of this potential fuel source is obvious, however, it's not currently

commercially viable. In order to become widespread, algae based fuel must compete with fossil

fuel. In order to meet this competition, the production of algal biofuel must be optimized at all

 4

phases in the process. We have decided to focus on optimization at it's start, by maximizing algal

lipid yield, thereby increasing biofuel output.

2.2 Describing growth dynamics, recent findings

 In order to further our goal, and make novel contribution to current research, we first had

to understand what we were to be building upon. Numerous researchers have worked on the

maximization of lipid yield using methods ranging from nutrient deprivation, to artificial

selection. We were particularly interested in the relationships of light and nutrients to lipid yield.

This is particularly applicable, as these are considerations faced by industry in the

commercialization of biofuels. Researchers have found that lipid production increases when

algae are under nutrient stress, such as nitrogen limitation. Additionally, lipid synthesis has been

shown to increase with increasing incident irradiance. These correlations are something that we

wish to quantify within our computational model, so we can maximize lipid output with respect

to those parameters.

3.0 -Mathematical Model for algae growth and lipid production
 The mathematical model explored in our project is one based upon the model presented

by Dr. Aaron Packer in his article "Growth and neutral lipid synthesis in green microalgae". The

functional model serves to calculate the biomass production and neutral lipid synthesis of green

microalgae, both integral to the production of algae biofuel. Variable conditions are modeled

through the manipulation of input variables. The model allows for the manipulation of two

factors in particular, the initial concentration of nitrogen, N(0), and the incident irradiance, I0.

Local seasonal conditions can be accounted for using area values for these parameters.

 Our implementation of this model hinges upon, 1. The system of differential equations, 2.

Our understanding of the biological intricacies of the model, 3. The exploration and

implementation of numerical methods to evaluate the system of differential equations presented

in the model, 4. using this understanding in fitting results with experimental data for accuracy.

 The model consists four state variables.

 A(t)- the biomass concentration excluding neutral lipids (g dw m-3)

 L(t)- the neutral lipid concentration (g NL m-3)

 5

 H(t)- chl a content of A (g chl-1 dw)

 N(t)- the extracellular nitrogen concentration (g N m-3).

3.1 ODEs
 The behavior of these state variables with respect to our variable conditions is modeled

mathematically through a system of four Ordinary Differential Equations (ODEs).

At left: ODEs from Packer [10]

These four equations are in turn dependant on an

entire array of parameters, many of which can be

treated as constants because they can be calculated

directly from photosynthesis equations. The

primary variables we are interested in are the

interactions between the initial nitrogen concentration and the lipid output, as well as incident

irradiance (light) and lipid output.

 Solving the ODEs was a huge problem within the mathematical model. After numerous

ugly, and ultimately futile, attempts to solve the system for a nice general solution, we turned to

numerical methods of evaluation. These included several Euler methods, which, as we learned in

calculus class, hinge upon repeated summation to estimate that area under the curve that we're

looking to integrate. This process, and its corresponding code, is further detailed in section 4.4.

At left: Parameters for ODEs [10]

Below: Explanation of Variables [10]

3.2 Biological relationships
As evidenced by the above figures, specifically, the explanation of variables, there are numerous

biological intricacies involved in the model. These equations have been derived from a number

of biological models, such as the Poisson single hit model of photosynthesis, the Lamber-Beer

 6

law, and other models establish the basis for all considerations which are accounted for in the

model. It's important to understand that the mathematical model is a conglomeration of various

models. This is of assistance as we collect data from the computational model, because all results

must be explained with respect to this biological basis.

3.3 Verification
 The mathematical model was verified for its accuracy by Packer [10]. It demonstrated

close alignment with experimental data, except at high values for initial nitrogen concentration.

This can be explained by the existence of an additional limiting factor on algae growth. This

verification based on experimental data speaks to the accuracy of the resulting computational

model.

4.0 -Computational Model

 Java was chosen for the project due to it's higher math functions and object orientation.

Our model consists of a number of different classes, 1456 lines of code in total.

4.1AlgaeGrowthModel

 AlgaeGrowthModel is the main class that holds the algae growth model. It contains all of

the methods inside of the differential equations used. It also holds all of the state variables

needed to run a simulation. The primary method in AlgaeGrowthModel is the update() call. This

update call moves the state variables to the next time slot of the differential equation. Psudocode

for this is.

 public void update() {

 EulersMethods.eulerMethod(StateVariableX)

 // moves StateVariableX to the next time slot

 }

 private class StateVariableX implements Derivative {

 private double stateVariableX;

 }

 7

4.2 Pond

Pond is an abstract class that can not be instantiated without being extended by another class. We

use the pond class to actually run the growth models.

Psudocode for this is.

 for (int i = 0; i < (numDaysToRun / stepSize); i++) {

 model.update();

 }

4.3 Derivative

This is an Interface to allow the Euler methods to change the state variables. Code for this is,

 public interface Derivative {

 public double findDerivative(double increaseStepSize);

 public double getStateVariable();

 public void setStateVariable(double value);

 public void move(double stepSize);

 }

4.3 EulerMethods

 This is a class that is just a container for functions. It holds no data and should only be

instantiated once. A very important set of functions inside of here are the Euler's methods. We

use the Euler methods to solve the ODE’s in the mathematical model. Euler’s method works by

finding the slope or derivative of the equation at the current time slot and then uses the current

slope to predict the value at current time slot + step size. If the equation dy(x)/dx = 2x, then y =

x^2, then we solve for y using the Euler methods with an initial value of 0 for both x and y, and a

step size of 1. The first time it runs, x = 0, therefore the slope equals 0. We then multiply by the

step size, which is 1, and 1*0 equals 0. The next step is x = 1 and y = 0. This time it runs the

slope is 2 because dy(x)/dx = 2(1). We then predict that the value of y at x = 2 is y + (slope *

step size) is 2. The next time it runs the slope is 4. To move to x = 3, then we add 4*step size(1)

+ past y(2) = current y(6). When x = 3, the general solution of y = x^2, will equal 9. This is

greater than the 6 we found using the Euler's methods. If we use a smaller step size with a step

 8

size of 0.1 we now get a numerical solution of 8.45. As you get a smaller and smaller step size

that number becomes infinitely close to the actual solution.

 Other numerical methods we coded are the Huen's method and Euler’s midpoint method.

These are improvements on the original Euler’s method that allow you to get the same accuracy

of a solution with a larger step size. Huen's method works by finding the slope and

approximating the next time slot just like Euler's method does. After it figures out that value it

then comes up with what it thinks the slope is there, and then averages between the two slopes

and then goes back to the last time slot and uses the averaged slope.

 Euler’s Midpoint method works similar to Huen's in that it approximates what it thinks

the values should be in a different location and then uses the slope from those approximate

values to recalculate the slope. The difference is that it approximates the midpoint of the step

size and then uses the approximate slope found at the midpoint and then uses it over the whole

step size. Here is the code for the Euler’s method:

 public void eulersMethod(double stepSize, Derivative... dEquations) {

 double[] slopes = new double[dEquations.length];

 // finds the slopes

 for (int i = 0; i < dEquations.length; i++) {

Euler’s method with step
size of 0.1

General Solution
 Euler’s method

with step size 1

 9

 slopes[i] = dEquations[i].findDerivative(0);

 }

 // sets the state variables

 for (int i = 0; i < dEquations.length; i++) {

 dEquations[i].setStateVariable(dEquations[i].getStateVariable()

 + (slopes[i] * stepSize));

 dEquations[i].move(stepSize);

 }

 }

4.5 Graphics

The graphics classes allow the program to generate a graph of the simulation results. By

adjusting the code, the window can be adjusted. The program assigns different colors to each line

on the graph, corresponding to one of the functions being graphed with respect to time.

4.6 Parallelization

The results found in this project required thousands of individual Simulations be run.

This starts taking very large amounts of time. By running them in parallel we can harvest the full

potential of modern computers by using all cores instead of only a single core; making run times

significantly shorter.

For our parallelization, batch processing was used. Batch processing allows us to run

multiple independent Simulations at the same time in batches. By using the Threads built into

Java we had a very efficient way to use Parallelization as it taps into the core threads that are

built into the operating system. These threads are what the bottom level to tell the processors

exactly what to run. For our parallelization we wrote a few different classes detailed below.

4.6.1 Simulation

This class is what contains the thread and gives us a basic API to be able to use the thread easily

in other places. It holds the Pond object, the Thread, and the name of the simulation inside. The

 10

Pond object as mentioned before is Runnable which makes it possible for the thread to run the

code needed to simulate the growth model. The basic API is,

public Simulation(Pond pond, String name)
public void start()
public void waitForCompletion() throws InterruptedException
public boolean isFinished()
public Pond getPond()
public AlgaeGrowthModel getModel()
public String getName()

4.6.2 SimulationScheduler

SimulationScheduler is where the public API is to handle large amounts of simulations.

SimulationScheduler has an method called add this adds the simulation into a Queue that sets up

which simulations actually need to be ran. This Queue is set up as a FIFO for the simulations

First In First Out. This Queue is actually stored in the SimulationDataHandler detailed below.

The data is then actually processed in a separate class called RunnableScheduler. These three

Scheduler classes are in a different Package called scheduler. SimulationScheduler’s API is,

public SimulationScheduler(Recorder recorder) // constructor lets you set which
//recorder you want to use
public void add(Simulation sim) // this is how you add the simulations into //the
program
public void add(String simData) // This lets you add just the data you need to //start
the program as a String
public Recorder getRecorder()
public void waitForFinish() throws InterruptedException // This lets you stop //running
while it is processing all of the simulations you added

4.6.3 SimulationDataHandler

This class contains all of the data that needs to be passed between the

SimulationScheduler and the RunnableScheduler. This class’s data is protected. This allows

SimulationScheduler and RunnableScheduler to both be able to access the data but not allow any

other classes to be able to muck with the internals of the scheduler. Data stored in here is,

protected Queue<Object> toDo;

protected Recorder recorder;

 11

The Queue holds a type called Object. This type is the generic pointer Java uses to point

to a class or object. This type is used to allow us to hold both Strings, and Simulations inside the

Queue. What is done with this Object will be detailed below.

4.6.4 RunnableScheduler

This is the part of the scheduler that actually handles starting and stopping the individual

Simulations. It only runs 8 Simulations at a time to reduce the amount of memory used in by the

growth models. We choose 8 simulations as the computer that the models would be ran on is a

quad core with 2 virtual cores in each core. So the computer acts as an 8 “virtual” core computer.

It then continually checks each of these 8 simulations stored in an array to see if it has finished

running yet. If it has finished running then it sends that simulation to the Recorder which will be

detailed below and then pulls the next Simulation to run out of the Queue. When it pulls the next

Simulation out it actually pulls out a type called Object. This then can have checks ran to see

what type of object it is. We then check to see if it is an Simulation or a String. If it is an

Simulation it just sends it straight to the running array of Simulations. If it is a String it first must

create the Simulation and give the Pond inside it the string data so that it can setup the

simulation. Why it is done like that is because by using the string to tell the Pond the initial

setup. The memory of the Simulation does not have to be allocated until it is ready to be run.

greatly reducing the amount of memory required by the entire program. Once Runnable

Scheduler see’s that both the Queue and its array of running simulation is empty. It stops itself

until another Simulation is added to the SimulationScheduler.

5.7 Recorder

The actual class called Recorder in the code is just an interface that has the code,

public interface Recorder {

public void record(Simulation sim);

public String toString();

}

This should then have a class above it that implements it. By using the recorder we can

record the small amount of data we actually need from running the simulation then remove the

pointer to it. Java will then at some point come back and deallocate the memory to it, this is done

 12

without us telling it to do so. This is actually a little bit of a problem with using java as we do not

actually know when the Java Garbage collector will really come back and deallocate the memory

from the heap.

5.0 -Methods

5.1 Experimental structure

 Data is collected on the lipid production, biomass production and total algae growth as

well as the total algae dry weight. The values of these are determined by the outputs of the

computational model and graphed. Values for all initial parameters, but the one being tested are

treated as constants using default values obtained from the article [10]. The model is set up to

simulate batch culturing, with a time of 4 hours used between batches. The step size for the Euler

methods was set to .05 for all trials. In the first experiment, initial nitrogen concentration is

varied from 1-1000, incremented by one. This required thousands of simulation runs from which

a maximum was determined.

In the second experiment, incident irradiance is varied from 1-140 mol photons m-2d-1,

incrementing by one, from the results of this set of simulations, another maximum was found.

These maximums were put together so as to achieve a joint optimization under our parameters.

At left: Simulation default parameters as obtained from

Packer [10].

 13

6.0 -Results

Initial A(t) Initial NL(t) Initial H(t) Initial N(t) Incident irradiance Hours growing Avg NL grams per cubic meter per day Notes
1 34410 5 0.5 5 51.8 4.48 1.601082788837135E8 Degraded with large initial A(t)
2 4593 5 0.5 5 51.8 3.04 4925848.322539088 Optimized initial A(T)
3 4593 5 0.5 2409 51.8 0.07 1.0986E+07 Degraded with large initial N(t)
4 4593 5 0.5 5 51.8 3.04 4925848.322539088 Optimized initial N(T)
5 4593 5 0.499999 5 51.8 3.04 4925848.322539088 Optimized initial H(T)
6 4593 6569 0.5 5 51.8 3.36 5.757E+09 Optimized initial NL(T)
7 4593 6569 0.5 5 106 3.36 1.753E+10 Optimized Incident irradiance
8 4593 6574 0.45 5 105 12.24 2.103E+11 Optimized together

6.1 Conclusions

With 107 mol photons m-2d-1 as the lipid maximizing irradiance level, we investigate. This level

of irradiance is relatively high. This high level of sunlight makes sense, because that energy

serves to excite the electrons within the algae, and store energy in the form of ATP through

photosynthesis. However, lipid yields decreased at higher irradiance. This is likely due to the

effects of photo-inhibition, which reduces the photosynthetic capacity of the algae in response to

light induced damage to photosystem II, which is light sensitive.

Total Algae Dry Weight grams per cubic meter
NL Biomass grams per cubic meter
Algae Biomass minus NL grams per cubic meter
Total Algae Growth per cubic meter per day

Days

Grams
per
cubic
meter

Joint optimization with respect to time:
N(0) = 5, I0 = 107

 14

Table of Irradiance Values for Las Cruces, NM [2] : Irradiance (mol photons m-2d-1)

Month Jan Feb Mar Apr May Jun Jul Aug Sept

Irradiance 51.57 64.31 85.15 101.14 110.35 109.58 99.61 89.02 81.34

Month Oct Nov Dec

Irradiance 68.91 55.25 46.66

 Looking at the above table of local irradiance values shows us that April, May and June

will produce the highest lipid yield here in an open system. Those bright sunny months have

irradiance values closest to optimum and have higher lipid yield than the others.

 Another option for producers, given this finding, is to augment natural light during the

winter months to increase lipid yield. This could be accomplished through supplementing the

light intensity using artificial light, or by increasing the winter photoperiod artificially.

 The optimum nitrogen value of 5 g N m-3 , a seemingly low value, can also be explained

biologically. As explained in section 2.2, nitrogen limitation has been shown to increase lipid

production. This could be due to the metabolic pathway that causes algae to normally accumulate

lipids during the cell cycle prior to cell division, and the stressed conditions block cell cycle

progression, thereby increasing the overall lipid content of the culture.

7.0 -Achievements

 We have successfully created a computational model of algal growth dynamics and lipid

synthesis. We've established its correspondence with experimental data, and thus have verified

its accuracy and real-world applicability. We have collected data optimizing lipid yield under our

assumptions. These relationships are logical under biological rationale, further pointing to the

success of the computational model.

 Using our model, area-specific data can be collected to assist the optimization of algae

commercially. This is achieved through the modification of the input variables, including

incident irradiance, light angle, and nutrient levels. The resulting data will assist in the industrial

engineering of open pond batch culture algae farms. Much remains to be discovered in regards to

algal population dynamics, and this model will aid in the scientific understanding of lipid

synthesis with respect to light and nutrients; an understanding that will continue to assist the

biofuel industry.

 15

8.0 -Future Work

 All optimization that can be achieved with our current model is production optimal, that

is, our model will maximize biofuel output by maximizing lipid production in a given scenario.

However, industry requires another level of optimization: economic optimization. The economic

model, to be an extension of our current model, will take a look at the bigger picture of algae

production in the form of the bottom line. This part will utilize data on the production scenarios,

such as the cost required to sustain conditions specified by the input variables of the previous

model. It will utilize this data to estimate cost per gallon of the algae oil in that production

scenario. This will allow us to create an economic optimum, so that we might further verify the

commercial viability of out production optimums, as the larger goal is to assist in the commercial

viability of algae fuels.

9.0 -Appendix

9.1 Acknowledgements

 We would like to thank our parents, as well as our teacher Rebecca Galves and coach

Noor Muhyi for their contributions to our cause. We would also like to thank NMSU professors

Dr. Shuguang Deng from the Chemical Engineering Department, and Dr. Martha Mitchell,

NMSU College of Engineering Associate Dean of Research. Additional thanks to Dr. Nagamany

Nirmalakhandan of the Civil Engineering department, and Dr. Peter Lammers, technical director

of the Algal Bioenergy Program, for assisting us.

9.2 References

[1] - Bouterfas, R., Belkoura, M., & Dauta, A. (2006). The effects of irradiance and photoperiod
on the growth rate of three freshwater green algae isolated from a eutrophic lake. Retrieved
from
http://www.limnetica.com/Limnetica/Limne25/L25b647_Effect_irradiance_photoperiod_growth
_rate.pdf

[2] - Boxwell, M. (n.d.). Solar Irradiance. Retrieved from
http://solarelectricityhandbook.com/solar-irradiance.html

[3] - Demirbas, A., & Demirbas, M. F. (2011). Importance of algae oil as a source of biodiesel.
Energy Conversion and Management, 52(1), 163-170. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0196890410002761

 16

[4] - Gao, Y. , Gregor, C., Liang, Y., Tang, D., Tweed, C. (2012). Algae biodiesel - a feasibility
report. Retrieved from http://journal.chemistrycentral.com/content/6/S1/S1

[5] - Griffiths, M. J., & Harrison, S. T. L. (2008, July 31). Lipid productivity as a key
characteristic for choosing algal species for biodiesel production. Retrieved from
http://link.springer.com/article/10.1007/s10811-008-9392-7

[6] Hannon, M., Gimpel, J., Mayfield, S. Biofuels 1(5), 763-784. (2010) Biofuels from algae:
 Challenges and potential. Retrieved from
 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152439/

[7] - Jones, C., & Mayfield, S. (2012). Algae biofuels: Versatility for the future of bioenergy.
Current Opinion in Biotechnology, 23(3), 346-351. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0958166911007099

[8] - Liu, X., Clarens, A. F., & Colosi, L. M. (2012). Algae biodiesel has potential despite
inconclusive results to date. Bioresource Technology, 104, 803-806. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0960852411015653
[9] - Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production
and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217-232.
Retrieved from http://www.sciencedirect.com/science/article/pii/S1364032109001646
[10] - Packer, A., Li, Y., Andersen, T., Hu, Q., Kuang, Y., & Sommerfeld, M. (2011). Growth
and neutral lipid synthesis in green microalgae: A mathematical model. Bioresource Technology,
102(1), 111-117. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0960852410010102

[11] - Scott, S. A., Davey, M. P., Dennis, J. S., Horst, I., Howe, C. J., Lea-Smith, D. J., & Smith,
A. G. (2010). Biodiesel from algae: Challenges and prospects.Current Opinion in Biotechnology,
21(3), 227-286. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0958166910000443

[12] - Sheehan, J., Camobreco, V., Duffield, J., Graboski, M., & Shapouri, H. (1998). Life cycle
inventory of biodiesel and petroleum diesel for use in an urban bus. Retrieved from
http://www.nrel.gov/docs/legosti/fy98/24089.pdf

[13] - Sheehan, J., Dunahay, T., Benemann, J., & Roessler, P. U.S. Department of Energy,
(1998). A look back at the u.s. department of energy's aquatic species program: Biodiesel from
algae. Retrieved from National Renewable Energy Labratory website:
http://www.nrel.gov/biomass/pdfs/24190.pdf

 17

9.3 Code

/* This Class is a class to allow us to be able to graph the algae growths
*/

package Graphics;

import java.awt.Color;
import java.util.ArrayList;
import javax.swing.*;

public class Grapher {

public static final int WINDOW_X = 1400;
public static final int WINDOW_Y = 850;
public static final int MAX_Y = 120000;
public static final int MIN_Y = -50;
public static final int NUM_GRAPH_POINTS = 100;
public static final int NUM_Y_POINTS = 10000
;
public static final int Y_OFFSET = 25;
public static final Color[] colors = {Color.black, Color.red, Color.blue, Color.green,
Color.orange, Color.PINK, Color.yellow};
public Grapher() {
graphs = new ArrayList<double[]>();
frame = new JFrame();
frame.setSize(WINDOW_X, WINDOW_Y);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);
addYLabels();
}
public void addYLabels() {
double yWindowRatio = (double) WINDOW_Y / (MAX_Y - MIN_Y);
for (int i = 0; i < MAX_Y; i+= NUM_Y_POINTS) {
String str = String.valueOf(i);
Label label = new Label(str, 0, (int)((MAX_Y - i) * yWindowRatio) ,Color.BLACK);
frame.add(label);
frame.setVisible(true);
}
}
public void addXLabels(int length) {
for (int i = 1; i < length; i++) {
String str = String.valueOf(i);
Label label = new Label(str, (i * (WINDOW_X / length)), WINDOW_Y - Y_OFFSET, Color.BLACK);
frame.add(label);
frame.setVisible(true);
}
}
public void addGraph(ArrayList<Double> graph)
{
double[] newGraph = new double[graph.size()];
for (int i = 0; i < graph.size(); i++) // converts ArrayList to a regular array
{
newGraph[i] = graph.get(i);
}
graphs.add(newGraph); // adds regular array to list of graphs
}
public void addGraph(double[] graph)
{
graphs.add(graph);
drawGraph(graph, WINDOW_X,WINDOW_Y, MAX_Y, MIN_Y);
}
// clears screen then goes through each graph and tells it to update
private void updateGraphs()
{

 18

//clearScreen();
for (int i = 0; i < graphs.size(); i++)
{
drawGraph(graphs.get(i), 1,1, 10, -10);
}
}
private void drawGraph(double[] graph, int xWindowSize, int yWindowSize, double yMax, double yMin)
{
double yWindowRatio = (double) yWindowSize / (yMax - yMin);
double xWindowRatio = (double) xWindowSize / (graph.length);
//double xWindowRatio = (double) xWindowSize / (graph.length / 100);
double lastY = (yMax - graph[0]) * yWindowRatio;
double lastX = 0.0 / xWindowRatio;
//for (int i = 1/*(graph.length / 100)*/; i < graph.length; i++)//= (graph.length / 100))
for (int i = (graph.length / NUM_GRAPH_POINTS); i < graph.length; i += (graph.length / NUM_GRAPH_POINTS))
{
double plotY = (yMax - graph[i]) * yWindowRatio;
double plotX = (double) i * xWindowRatio;
frame.add(new Line((int) lastX,(int) lastY,(int) plotX,(int) plotY, colors[colorIndex]));
frame.setVisible(true);
lastX = plotX;
lastY= plotY;
}
colorIndex++;
if (colorIndex >= colors.length) colorIndex = 0;
}
private ArrayList<double[]> graphs;
private JFrame frame;
private int colorIndex = 1;
}
package Graphics;

import java.awt.Color;
import java.awt.Graphics;

import javax.swing.JComponent;

public class Label extends JComponent{

public Label(String string, int xLocation, int yLocation, Color color) {
this.string = string;
this.xLocation = xLocation;
this.yLocation = yLocation;
this.color = color;
}
public void paintComponent(Graphics g) {
g.setColor(color);
g.drawString(string, xLocation, yLocation);
}
private String string;
private int xLocation;
private int yLocation;
private Color color;
}

package Graphics;

import java.awt.Color;
import java.awt.Graphics;

import javax.swing.JComponent;

public class Line extends JComponent {

public Line(int xZero, int yZero, int xOne, int yOne, Color color)
{

 19

this.xZero = xZero;
this.yZero = yZero;
this.xOne = xOne;
this.yOne = yOne;
this.color = color;
}
public void paintComponent(Graphics g)
{
g.setColor(color);
g.drawLine(xZero, yZero, xOne, yOne);
}
private int xZero;
private int yZero;
private int xOne;
private int yOne;
private Color color;
}

package GrowthModel;

/* All of these methods are based off of mathematical model we found in this paper
* http://www.ncbi.nlm.nih.gov/pubmed/20619638
*
* This class contains all of the functions and state variables needed to run the
* Simulations
*/

public class AlgaeGrowthModel {
/* This is the constructor that sets up the growth model
* You need to give it the concentrations or contents of algae, Neutral Lipid, Chlorophyll, Nitrogen. at the start
* of the simulation.
* Written Ian Rankin (10/29/13) */
public AlgaeGrowthModel(double biomassConc, double NLConc, double ChlContent, double NConc) {
currentBiomassConc = biomassConc;
startBiomassConc = biomassConc;
currentNLConc = NLConc;
startNLConc = NLConc;
currentChlContent = ChlContent;
startChlContent = ChlContent;
currentNConc = NConc;
startNConc = NConc;
biomassFunc = new dBiomassConc();
NLFunc = new dNLConc();
chlFunc = new dChlContent();
NFunc = new dNConc();
startQt = .0935;
hasStarted = false;
if (solver == null) {
solver = new EulersMethods();
}
}

//-- Get Methods ---
// since all of these are concentrations to get the mass they need to be multiplied by the volume. (I think)....
// this returns the dry weight (I think) of all of the algae in the pond
public double getAlgaeBiomass() {
return (currentBiomassConc + currentNLConc);
}
// This returns the concentration of the algae minus the neutral lipids
public double getBiomass() {
return currentBiomassConc;
}
// This returns the mass of the neutral lipids
public double getNLConc() {
return currentNLConc;
}

 20

public double getChlContent() {
return currentChlContent;
}
public double getNitrogenConc() {
return currentNConc;
}
public double getIncidentIrradiance() {
return this.incidentIrradiance;
}
public double getStartBiomass() {
return startBiomassConc;
}
public double getStartNL() {
return startNLConc;
}
public double getStartChl() {
return startChlContent;
}
public double getStartN() {
return startNConc;
}
public double getStartQt() {
return startQt;
}
//__ Set Methods
__
public void setStepSize(double stepSize) {
this.stepSize = stepSize;
}
public boolean setStartBiomass(double biomass) { // DO NOT USE UNLESS SETTING AT START
if (!hasStarted) {
startBiomassConc = biomass;
currentBiomassConc = biomass;
}
return !hasStarted;
}
public boolean setStartNL(double NL) { // DO NOT USE UNLESS SETTING AT START
if (!hasStarted) {
startNLConc = NL;
currentNLConc = NL;
}
return !hasStarted;
}
public boolean setStartChl(double Chl) { // DO NOT USE UNLESS SETTING AT START
if (!hasStarted) {
startChlContent = Chl;
currentChlContent = Chl;
}
return !hasStarted;
}
public boolean setStartN(double N) { // DO NOT USE UNLESS SETTING AT START
if (!hasStarted) {
startNConc = N;
currentNConc = N;
}
return !hasStarted;
}
public boolean setStartQt(double Qt) { // DO NOT USE UNLESS SETTING AT START
if (!hasStarted) {
startQt = Qt;
}
return !hasStarted;
}
public void setIrradiance(double irradiance) {
this.incidentIrradiance = irradiance;
}

 21

public void setLightPath(double lightPath) {
this.lightPath = lightPath;
}
//-- updating methods ---
/* update()
* This is a basic function to update the model to the next time slot
* It calculates all of the main equations and them updates the current concentrations of the model */
public void update()
{
solver.eulersMidpointMethod(stepSize, biomassFunc, NLFunc, chlFunc, NFunc);
hasStarted = true;
}
//-- private classes for Euler solvers --
private class dBiomassConc implements Derivative {
public double findDerivative(double increaseStepSize) {
return getDCellGrowth();
}
public double getStateVariable() {
return currentBiomassConc;
}
public void setStateVariable(double value) {
currentBiomassConc = value;
}
public void move(double stepSize) {
}
}
private class dNLConc implements Derivative {

public double findDerivative(double increaseStepSize) {
return getDNLSynthesis();
}

public double getStateVariable() {
return currentNLConc;
}
public void setStateVariable(double value) {
currentNLConc = value;
}
public void move(double stepSize) {
}
}
private class dChlContent implements Derivative {

public double findDerivative(double increaseStepSize) {
return getDChlContent();
}

public double getStateVariable() {
return currentChlContent;
}
public void setStateVariable(double value) {
currentChlContent = value;
}
public void move(double stepSize) {
}
}
private class dNConc implements Derivative {

public double findDerivative(double increaseStepSize) {
return getDNitrogenConc();
}

public double getStateVariable() {
return currentNConc;
}
public void setStateVariable(double value) {

 22

currentNConc = value;
}
public void move(double stepSize) {
}
}
//--- Derivative get Functions --
public double getDCellGrowth() {
return dCellGrowth(getMuALHN(), currentBiomassConc);
}
private double getDNLSynthesis() {
return dNLSynthesis(getPALHN(), CQuota, getMuALHN(), currentBiomassConc);
}
private double getDChlContent() {
double muALHN = getMuALHN();
return dChlContent(CQuota, muALHN, getPALHN(), maxChlN, getVAN(),
currentChlContent, muALHN);
}
private double getDNitrogenConc() {
return dNitrogenConc(getVAN(), currentBiomassConc);
}
// _______________________________________ other math functions

public double getQt() {
return Qt(startBiomassConc, startQt, startNConc, currentNConc, currentBiomassConc);
} // this is the one with Qt
private double getMuALHN() {
return muALHN(CQuota, minNQuota, maxNLimitedGrowth, getQt(), getPALHN());
}
private double getPALHN() {
return pALHN(getPmALN(), getIAH(), currentChlContent, opticalCross, quantumEfficiency);
}
private double getPmALN() {
return pmALN(currentBiomassConc, getQt(), maxPhotosynthesisRate, minNQuota, currentNLConc);
}
private double getIAH() {
return IAH(incidentIrradiance, opticalCross, currentChlContent, currentBiomassConc, lightPath);
}
private double getVAN() {
return vAN(maxNQuota, getQt(), minNQuota, maxUptakeN, currentNConc, halfSaturation);
}
//__ Formula's

// These are all public because they do not muck with the internals
// and then we can get the functions from outside of the object.
/* dCellGrowth
* Written Ian Rankin (10/25/13)
* return cell growth */
public double dCellGrowth(double muALHN, double currentBiomassConc)
{
return (muALHN * currentBiomassConc);
}

/* dNLSynthesis
* Written Ian Rankin (10/25/13)
* returns derivative of Neutral Lipid synthesis */
public double dNLSynthesis(double pALHN, double c, double muALHN, double currentBiomassConc)
{
return (pALHN - (c * muALHN)) * currentBiomassConc; // changed 4/1
}
/* dChlSynthesis
* Written Ian Rankin (10/29/13)
* returns derivative of Chlorophyll content */
public double dChlContent(double carbonQuota, double muALHN, double pALHN, double maxChl,
double vAN, double currentChlContent, double muALHNMaybe)
{
return (carbonQuota * (muALHN / pALHN) * maxChl * vAN) - (currentChlContent * muALHNMaybe);

 23

}
public double dNitrogenConc(double vAN, double ASomething)
{
return -vAN * ASomething;
}

/* Qt
* Started Ian Rankin (10/25/13)
* returns Q(t) equation */
public double Qt(double biomassConcAtTimeZero, double QSubscriptZero, double nitrogenAtTimeZero,
double currentNitrogenConc, double currentBiomassConc)
{
return ((biomassConcAtTimeZero * QSubscriptZero) + nitrogenAtTimeZero - currentNitrogenConc)
/ currentBiomassConc;
}
public double muALHN (double c, double q, double um, double Qt, double pALHN)
{
return Math.min(um * (1 - (q / Qt)), pALHN/c); // fixed 3/29 Sophia S.M. was Math.min(um * (1 - q / Qt), pALHN/c);
}
public double pALHN (double pmALN, double IAH, double Ht, double a, double phi)
{ // Ht is dynamic variable H(t)
return Ht * pmALN * (1 - Math.exp((-a * phi * IAH)/pmALN));
}
/* pmALN
* written Ian Rankin (mostly) (11/12/13)
* returns pm(A,L,N) function */
public double pmALN (double At, double Qt, double pSubscriptZero, double q, double Lt)
{
double AQTSquared = (At * Qt) * (At * Qt); // may be wrong..
//double AQTSquared = Math.pow ((At*Qt), 2);

double denominator = AQTSquared + (q * q) * ((At + Lt) * (At + Lt)); // I think this is right (Ian)
//double denominator = (AQTSquared + ((q * q) * (At) +Lt)); // not sure if that is right (Ian 4/1/13)
//fixed denominator, was originally(AQTSquared + ((q * q) * At) +Lt) Sophia S.M. ;
//return (AQTSquared * pSubscriptZero) / (denominator * denominator);
return (AQTSquared * pSubscriptZero) / denominator;
}
public double IAH (double ISubscriptZero, double a, double Ht, double At, double z)
{
return (ISubscriptZero / (a * Ht * At * z)) * (1 - Math.exp(-a * Ht * At * z));
}
public double vAN(double qM, double Qt, double q, double vm, double Nt, double vh)
{
return ((qM - Qt) / (qM - q)) * ((vm * Nt)/ (Nt + vh)); // fixed 3/29 Sophia S.M.
}

//--- Instance Variables ---
private double currentBiomassConc;
private double currentNLConc;
private double currentChlContent;
private double currentNConc;
private double startBiomassConc;
private double startNLConc;
private double startChlContent;
private double startNConc;

private dBiomassConc biomassFunc;
private dNLConc NLFunc;
private dChlContent chlFunc;
private dNConc NFunc;
private static EulersMethods solver;
private boolean hasStarted;
private double incidentIrradiance = GrowthModelConstants.DEFUALT_INCIDENT_IRRADIANCE;
private double lightPath = GrowthModelConstants.DEFUALT_LIGHT_PATH;
private double opticalCross = GrowthModelConstants.DEFUALT_OPTICAL_CROSS;
private double quantumEfficiency = GrowthModelConstants.DEFUALT_QUANTUM_EFFICIENCY;

 24

private double minNQuota = GrowthModelConstants.DEFUALT_MIN_N_QUOTA;
private double maxNQuota = GrowthModelConstants.DEFUALT_MAX_N_QUOTA;
private double CQuota = GrowthModelConstants.DEFUALT_C_QUOTA;
private double maxUptakeN = GrowthModelConstants.DEFUALT_MAX_UPTAKE_RATE_N;
private double halfSaturation = GrowthModelConstants.DEFUALT_HALF_SATURATION;
private double maxChlN = GrowthModelConstants.DEFUALT_MAX_CHL_N; //??
private double maxNLimitedGrowth = GrowthModelConstants.DEFUALT_MAX_N_LIMITED_GROWTH;
private double maxPhotosynthesisRate = GrowthModelConstants.DEFUALT_MAX_PHOTOSYNTHESIS_RATE;
private double startQt;
private double stepSize = 1; // This is something to let us do more detailed simulations
}

package GrowthModel;

/* This is just and example pond abstract using a really basic model
* ALL PONDS must implement Runnable
*
*/

public class BasicAlgaePond extends Pond {
public BasicAlgaePond()
{
super(new AlgaeGrowthModel(1,1,1,1));
}
public BasicAlgaePond(AlgaeGrowthModel model) {
super(model);
}
/* run() is a unique method that MUST be in a pond abstract
* in fact if it isn't there the compiler will complain because anything
* that implements Runnable must have this method
*
* Run() is the staring place for when you start a Simulation it looks
* for the Run() method and starts there use it when you want to start
* the pond simulation
*/
public void run() {
model.setStepSize(.1);
for (int i = 0; i < timesToRun; i++) {
model.update();
}
}
private int timesToRun = 1200; // this is just a constant that could be changed if you wanted
}

package GrowthModel;

/* this is for the Euler methods
* using this allow you to use different differential equations for
* the Euler solvers */
public interface Derivative {
public double findDerivative(double increaseStepSize);
public double getStateVariable();
public void setStateVariable(double value);
public void move(double stepSize);
}

package GrowthModel;

public class EulersMethods {
/* Eulers method
* this calculates the slope at current time. then it predicts what the next time
* slot by multiplying the slope by the stepSize. */
public void eulersMethod(double stepSize, Derivative... dEquations) {
double[] slopes = new double[dEquations.length];

 25

// finds the slopes
for (int i = 0; i < dEquations.length; i++) {
slopes[i] = dEquations[i].findDerivative(0);
}
// sets the state variables
for (int i = 0; i < dEquations.length; i++) {
dEquations[i].setStateVariable(dEquations[i].getStateVariable()
+ (slopes[i] * stepSize));
dEquations[i].move(stepSize);
}
}
/* Heuns Method
* this is an improvement of Eulers Method.
* It predicts the slope of the next time slot using Eulers method.
* it then avg's the slope of the current timeSlot with the predicted slope of the next Time slot
* and then uses the avg slope to calculate the next time slots "y" */
public void huensMethod(double stepSize, Derivative... dEquations) {
double[] currentValues = new double[dEquations.length];
double[] slopes = new double[dEquations.length];
// stores the current state variables and finds the slopes at the current time slot
for (int i = 0; i < dEquations.length; i++) {
currentValues[i] = dEquations[i].getStateVariable();
slopes[i] = dEquations[i].findDerivative(0);
}
// updates the state variables to the predicted values
for (int i = 0; i < dEquations.length; i++) {
dEquations[i].setStateVariable(dEquations[i].getStateVariable()
+ (slopes[i] * stepSize));
}
// finds the predicted slope of the next time slot and avg's the two
for (int i = 0; i < dEquations.length; i++) {
slopes[i] = (dEquations[i].findDerivative(stepSize) + slopes[i]) / 2;
}
// updates the state variables using the avg slope and replace predicted values
for (int i = 0; i < dEquations.length; i++) {
dEquations[i].setStateVariable(currentValues[i] + (slopes[i] * stepSize));
}
}
/* Eulers Midpoint Method
* this calculates the next time slot by finding a predicted mid point slope
* this is just like the Eulers method except it predicts the midpoint slope of the step size
* and uses it instead of the current slope */
public void eulersMidpointMethod(double stepSize, Derivative... dEquations) {
double[] currentValues = new double[dEquations.length];
double[] midSlopes = new double[dEquations.length];
// stores the current state variables
for (int i = 0; i < dEquations.length; i++) {
currentValues[i] = dEquations[i].getStateVariable();
}
// finds the predicted state variable values at the midpoint using Eulers method
eulersMethod((stepSize * .5), dEquations);
// finds the midpoint slopes
for (int i = 0; i < dEquations.length; i++) {
midSlopes[i] = dEquations[i].findDerivative(0);
}
// updates the state variables using the midpoint slope and replace predicted values
for (int i = 0; i < dEquations.length; i++) {
dEquations[i].setStateVariable(currentValues[i] + (midSlopes[i] * stepSize));
dEquations[i].move(stepSize * .5);
}
}
}

package GrowthModel;

public interface GrowthModelConstants {

 26

// these default values are found out of the paper as values they used
public final static double DEFUALT_INCIDENT_IRRADIANCE = 51.8;
public final static double DEFUALT_LIGHT_PATH = 0.03;
public final static double DEFUALT_OPTICAL_CROSS = 4.82;
public final static double DEFUALT_QUANTUM_EFFICIENCY = 984;
public final static double DEFUALT_MIN_N_QUOTA = 0.0278;
public final static double DEFUALT_MAX_N_QUOTA = 0.0935;
public final static double DEFUALT_C_QUOTA = 0.61;
public final static double DEFUALT_MAX_UPTAKE_RATE_N = 59.6;
public final static double DEFUALT_HALF_SATURATION = 10300;
public final static double DEFUALT_MAX_CHL_N = 0.283;
public final static double DEFUALT_MAX_N_LIMITED_GROWTH = 3.26;
public final static double DEFUALT_MAX_PHOTOSYNTHESIS_RATE = 90.1;
}

package GrowthModel;
import java.util.*;

public class IncidentIrradianceFinder {

public IncidentIrradianceFinder()
{
iradanceValues = new HashMap<String, Double>();
iradanceValues.put("january", 3.36); // units are kWh/m^2/day
iradanceValues.put("febuary", 4.19);
iradanceValues.put("march", 5.55);
iradanceValues.put("april", 6.59);
iradanceValues.put("may", 7.19);
iradanceValues.put("june", 7.14);
iradanceValues.put("july", 6.49);
iradanceValues.put("august", 5.80);
iradanceValues.put("september", 5.30);
iradanceValues.put("october", 4.49);
iradanceValues.put("november", 3.60);
iradanceValues.put("december", 3.04);
}
public double getValue (String month)
{
month.toLowerCase();
return convertUnits (iradanceValues.get(month));
}
private double convertUnits (double irradiance)
{
return 0;// iradiance ();
}
/*
private double convertToJoulesToMole (double iradiance)
{
}
*/
private Map<String, Double> iradanceValues;
}

package GrowthModel;

abstract public class Pond implements Runnable {

public Pond(AlgaeGrowthModel model)
{
this.model = model;
}
@Override
abstract public void run();
public AlgaeGrowthModel model;

 27

}

package GrowthModel;

public class PondForSimulationUse extends Pond {

// this has to be added to model the amount of time to harvest the first time we ran this optimazation
// we found that it was about 5 minutes would be the best amount of time. which would not work as it
// takes much longer to harvest the algae then 5 minutes
// this is set at 4 hours
// .1666666666667
public static final double TIME_TO_HARVEST = .16666666666667;
/* String data should be given as 2.2 4.6 1.1 8.2 10 .1 which is biomass NL Chl N daysToRun stepSize
* respectively
*
*/
public PondForSimulationUse(String data) {
super(new AlgaeGrowthModel(1,1,1,1));
String[] dataSplit = data.split(" ");
model.setStartBiomass(Double.parseDouble(dataSplit[0]));
model.setStartNL(Double.parseDouble(dataSplit[1]));
model.setStartChl(Double.parseDouble(dataSplit[2]));
model.setStartN(Double.parseDouble(dataSplit[3]));
model.setStartQt(Double.parseDouble(dataSplit[4]));
daysToRun = Double.parseDouble(dataSplit[5]);
stepSize = Double.parseDouble(dataSplit[6]);
if (dataSplit.length > 6) {
model.setIrradiance(Double.parseDouble(dataSplit[7]));
}
maxNLGrowthPerDay = -1;
maxTime = -1;
}
public double getNL() {
return model.getNLConc();
}
public double getMaxNLGrowthPerDay() {
return maxNLGrowthPerDay;
}
public double getMaxNLTime() {
return maxTime / (daysToRun/ stepSize);
}

public void run() {
model.setStepSize(stepSize);
for (int i = 0; i < (daysToRun / stepSize); i++) {
model.update();
if (growthPerDay(model.getNLConc(), i) > maxNLGrowthPerDay) {
maxNLGrowthPerDay = growthPerDay(model.getNLConc(), i);
maxTime = i;
}
}
}
private double growthPerDay(double NL, int time) {
double NLGrowth = NL - model.getStartNL();
double days = time / (daysToRun/ stepSize);
days += TIME_TO_HARVEST; // this accounts for that the time to harvest is not 0
if (days == 0) return -1;
return NLGrowth / days;
}

private double daysToRun;
private double stepSize;
private double maxNLGrowthPerDay;
private int maxTime;
}

 28

package GrowthModel;

/* This pond is a basic pond simulation that has an array of data
* that has all of the values of algaeBiomass over the time of the simulation
*
* this also creates the model object
*/

public class PondWithGraphData extends Pond {

public PondWithGraphData(String data)
{
super(new AlgaeGrowthModel(.01,.01,.01,.25));
String[] dataSplit = data.split(" ");
int timesToRun = Integer.parseInt(dataSplit[0]);
double stepSize = Double.parseDouble(dataSplit[1]);
constructor(timesToRun, stepSize);
}
public PondWithGraphData(int timesToRun, double stepSize) {
super(new AlgaeGrowthModel(4593, 5, 0.5, 5)); // .01,.01,.01,.25
constructor(timesToRun, stepSize); // maybe right initial values 150,5,.01,250
}
public PondWithGraphData(int timesToRun, double stepSize, double A, double NL, double Chl, double N) {
super(new AlgaeGrowthModel(A, NL, Chl, N));
constructor(timesToRun, stepSize);
}

private void constructor(int timesToRun, double stepSize)
{
this.model.setStepSize(stepSize);
this.timesToRun = (int)((double)timesToRun / stepSize);
biomassData = new double[this.timesToRun];
biomassGrowthData = new double [this.timesToRun];
NLData = new double[this.timesToRun];
chlContentData = new double[this.timesToRun];
nitrogenConcData = new double[this.timesToRun];
daysToRun = timesToRun;
}
public void run() {
for (int i = 0; i < this.timesToRun; i++)
{
biomassData[i] = model.getBiomass();
biomassGrowthData[i] = model.getDCellGrowth();
NLData[i] = model.getNLConc();
chlContentData[i] = model.getChlContent();
nitrogenConcData[i] = model.getNitrogenConc();
model.update();
}
}
public double[] getTotalDryWeight() {
double[] algaeWeight = new double[biomassData.length];
for (int i = 0; i < biomassData.length; i++) {
algaeWeight[i] = biomassData[i] + NLData[i];
}
return algaeWeight;
}
public double[] getBiomassData() {
return biomassData;
}
public double[] getBiomassGrowthData() {
return biomassGrowthData;
}
public double[] getNLData() {
return NLData;
}
public double[] getChlContentData() {

 29

return chlContentData;
}
public double[] getNitrogenConcData() {
return nitrogenConcData;
}
public double getDaysToRun() {
return daysToRun;
}
public void print() {
System.out.println("Biomass Data");
for (int i = 0; i < timesToRun; i++) {
System.out.println(biomassData[i]);
}
}

private double biomassData[];
private double biomassGrowthData[];
private double NLData[];
private double chlContentData[];
private double nitrogenConcData[];
private double daysToRun;
private int timesToRun;
}

package GrowthModel;

import java.util.ArrayList;

public class RecordBiomass implements Recorder {

public RecordBiomass() {
biomass = new ArrayList<Double>();
names = new ArrayList<String>();
}
public void record(Simulation sim) {
biomass.add(sim.getModel().getAlgaeBiomass());
names.add(sim.getName());
}
public String toString() {
String str = new String();
for (int i = 0; i < biomass.size(); i++) {
String line = names.get(i) + " - biomass = " + biomass.get(i);
str += line;
System.out.println(line);
}
return str;
}

private ArrayList<Double> biomass;
private ArrayList<String> names;
}

package GrowthModel;

public interface Recorder {

public void record(Simulation sim);
public String toString();
}

package GrowthModel;

import java.util.ArrayList;

 30

public class RecordGraphData implements Recorder {

public RecordGraphData() {
biomassGraphs = new ArrayList<double[]>();
NLGraphs = new ArrayList<double[]>();
ChlGraphs = new ArrayList<double[]>();
NGraphs = new ArrayList<double[]>();
}
public void record(Simulation sim) { // should do checker to make sure PondWithGraphData
PondWithGraphData pond = (PondWithGraphData) sim.getPond();
biomassGraphs.add(pond.getBiomassData());
NLGraphs.add(pond.getNLData());
ChlGraphs.add(pond.getChlContentData());
NGraphs.add(pond.getNitrogenConcData());
}
public ArrayList<double[]> biomassGraphs;
public ArrayList<double[]> NLGraphs;
public ArrayList<double[]> ChlGraphs;
public ArrayList<double[]> NGraphs;
}

package GrowthModel;

public class RecordMaxGrowth implements Recorder {

public void record(Simulation sim) {
PondForSimulationUse pond = (PondForSimulationUse)sim.getPond();
if (maxPond == null) maxPond = pond;
else if (pond.getMaxNLGrowthPerDay() > maxPond.getMaxNLGrowthPerDay()) {
maxPond = pond;
maxSimName = sim.getName();
maxQZero = pond.model.getStartQt();
}
}
public String toString() {
return maxSimName;
}
public PondForSimulationUse getMaxPond() {
return maxPond;
}
public double getQZero() {
return maxQZero;
}
private double maxQZero = -1;
private PondForSimulationUse maxPond;
private String maxSimName = "";
}

package GrowthModel;

/* Simulation this is an abstract way of looking at running simulations in parallel
* Written by Ian Rankin (10/31/13)
*
* To use a simulation you create a new simulation and then pass it the AlgaeGrowthModel
* you are going to use and pass it a object that implements Runnable.
* The object that implements Runnable should abstractly be modeling an algae pond.
*
* Sample code to run a simulation using the BasicAlgaePond class as its runnable
*
* AlgaeGrowthModel model = new AlgaeGrowthModel(1, 1, 1, 1);
* Simulation simulation = new Simulation(new BasicAlgaePond(model));
* simulation.start();
*
* // once you use start you can not change anything until the
* // model is done (Sort of) (You can ish just don't) */

 31

public class Simulation {

public Simulation(Pond pond, String name) {
this.pond = pond;
this.name = name;
}
public void start()
{
thread = new Thread(pond);
thread.start();
}

public void waitForCompletion() throws InterruptedException {
thread.join();
}
public boolean isFinished() {
return !thread.isAlive();
}
public Pond getPond() {
return pond;
}
public AlgaeGrowthModel getModel() {
return pond.model;
}
public String getName() {
return name;
}
private String name;
private Pond pond;
private Thread thread;
}

/* RunnableScheduler
* This class is a protected class that should never be run without simulationScheduler and SchedulerDataHandler attached
* this class is what allows SimulationScheduler to be able to control the starting and recording of simulations.
*
* It does this by being a thread itself and every time it runs it checks if all of the simulaions running
* are done. If they are done then it looks to see if there is another simulation queued in the data handler
* if there is it starts that simulation. if there isn't then it sets it too NULL and once all simulations running
* are NULL then it stops the thread.
*
* You can set Simulations to be Simulations passed into it. of you can add a String with the data needed to save memory
*
*/

package scheduler;

import GrowthModel.Simulation;
import GrowthModel.*;

public class RunnableScheduler implements Runnable {

protected RunnableScheduler(SchedulerDataHandler dataHandler) {
handler = dataHandler;
numSimulationsRunning = 0;
simulations = new Simulation[numSimulationsToRun];
}
protected RunnableScheduler(SchedulerDataHandler dataHandler, int numSimulations) {
handler = dataHandler;
numSimulationsToRun = numSimulations;
numSimulationsRunning = 0;
simulations = new Simulation[numSimulationsToRun];
}

public void run() {
System.out.println("WEE");

 32

while ((!handler.toDo.isEmpty()) || (!(numSimulationsRunning == 0))) // stops the execution if
{
/*
// there is no more simulations to run and is currently not running anything
if (numSimulationsRunning < numSimulationsToRun) { // if it has room to run something
if (!handler.toDo.isEmpty()) { // if it has something else to run
startNextSimulation(getEmptyIndex());
}
}
*/
for (int i = 0; i < simulations.length; i++) {
if (simulations[i] == null) {
startNextSimulation(i);
}
else {
if (simulations[i].isFinished()) {
simulationDone(i);
}
}
}
}
}
public int getNumRunning() {
return numSimulationsRunning;
}
private void simulationDone(int index) {
numSimulationsRunning--;
handler.recorder.record(simulations[index]);
startNextSimulation(index);
}
private void startNextSimulation(int index) {
if (!handler.toDo.isEmpty()) {
simulations[index] = getNextSimulation();
simulations[index].start();
numSimulationsRunning++;
}
else simulations[index] = null;
}
private int getEmptyIndex() {
for (int i = 0; i < simulations.length; i++) {
if (simulations[i] == null) return i;
}
return -1; // oh uh!
}
private Simulation getNextSimulation()
{
Object polledObj = handler.toDo.poll();
Simulation nextSim = null;
if (polledObj instanceof Simulation)
{
nextSim = (Simulation) polledObj;
}
else if (polledObj instanceof String)
{
String stringData = (String) polledObj;
nextSim = newSimFromString(stringData);
}
return nextSim;
}

private Simulation newSimFromString(String data)
{
Pond pond = new PondForSimulationUse(data);
return new Simulation(pond, data);
}
private SchedulerDataHandler handler;

 33

private Simulation simulations[];
private int numSimulationsRunning;
private int numSimulationsToRun = 8; // set to a default value that can be changed only by the constructor
// why 8? this is because the computer being used to run these simulations is a quad core with each
// processor having 2 virtual cores for a total of 8 virtual cores.
}

// This contains the data that needs to be transfered between RunnableScheduler
// and SimulationScheduler.

package scheduler;

import java.util.ArrayDeque;
import java.util.Queue;

import GrowthModel.Recorder;
import GrowthModel.Simulation;

public class SchedulerDataHandler {

protected SchedulerDataHandler(Recorder recorder) {
this.recorder = recorder;
toDo = new ArrayDeque<Object>();
}
protected Queue<Object> toDo;
protected Recorder recorder;
}

/* SimulationScheduler
* The Simulation Scheduler is a way to handle all of
*
* sample code.
*
* SimulationScheduler scheduler = new SimulationScheduler(new RecordBiomass());
* for (int i = 0; i < 25; i++) {
* AlgaeGrowthModel model = new AlgaeGrowthModel(1, 1, 1, 1, 1, 1 , 1);
* scheduler.add(new Simulation(model, new BasicAlgaePond(model), ("Simulation " + i)));
* }
* scheduler.waitForFinish();
* scheduler.getRecorder().toString();
*
*/

package scheduler;

import GrowthModel.AlgaeGrowthModel;
import GrowthModel.BasicAlgaePond;
import GrowthModel.RecordBiomass;
import GrowthModel.Simulation;
import GrowthModel.Recorder;

public class SimulationScheduler {
/* Constructors
* These create new data Handlers and runnable Schedulers
* both require a data recorder to be passed to it.
* one allows you to change the number of threads that can be ran at the same time */
public SimulationScheduler(Recorder recorder) {
handler = new SchedulerDataHandler(recorder);
runnableScheduler = new RunnableScheduler(handler);
}
public SimulationScheduler(Recorder recorder, int numThreadsToRun) {
handler = new SchedulerDataHandler(recorder);
runnableScheduler = new RunnableScheduler(handler, numThreadsToRun);
}
/* add is the most important method in the scheduler.
* add allows you to add a new simulation to queue up to run

 34

* if it isn't already running it forces RunnableSchuduler to start */
public void add(Simulation sim) {
handler.toDo.add(sim);
startThreadIfDead();
}
public void add(String simData) {
handler.toDo.add(simData);
startThreadIfDead();
}
// returns the recorder.
public Recorder getRecorder() {
return handler.recorder;
}
// this tells you if there are any simulations currently running
public boolean isRunningSimulations() {
return ((thread != null) && (thread.isAlive()));
}
// this tells you if it has finished running everything in it
public boolean hasFinished() {
return handler.toDo.isEmpty() && (runnableScheduler.getNumRunning() == 0);
}
//This makes you wait until everything in the scheduler is done
public void waitForFinish() throws InterruptedException
{
while (!hasFinished()) {
Thread.sleep(500); // totally do not know about this number
}
}

// pretty self explanatory
private void startThreadIfDead() {
if ((thread == null))
{
thread = new Thread(runnableScheduler);
// thread.setPriority(Thread.MIN_PRIORITY); // maybe...
thread.start();
}
}
private SchedulerDataHandler handler;
private Thread thread;
private RunnableScheduler runnableScheduler;
}

import Graphics.Grapher;
import GrowthModel.PondForSimulationUse;
import GrowthModel.PondWithGraphData;
import GrowthModel.RecordMaxGrowth;
import GrowthModel.Simulation;
import scheduler.SimulationScheduler;

/* Main this is where the main function live plus any other high level functions for testing and such
*
* The current setup is creating 10 simulations to run a very basic growth model
* I mostly used it as a way of testing the frameworks
*/

public class Main {
public static void main(String[] args) throws InterruptedException // throws InterruptedException
{
SimulationScheduler scheduler = new SimulationScheduler(new RecordMaxGrowth());
// these optimized individual parts of the model
//for (double i = 1; i < 20000; i += 1) { // biomass
//for (double i = 1; i < 1000; i += 1) { // N
//for (double i = 0; i < 1; i += .025) { // Chl
//for (double i = 0; i < 10000; i += 1) { // NL
//for (double i = 0; i < 140; i++) { // Incident Irradiance

 35

//scheduler.add(Double.toString(i) +" 5 0.5 5 .0935 15 0.05");
//scheduler.add("4593 5 0.5 "+ Double.toString(i)+ " .0935 15 0.05");
//scheduler.add("4593 5 "+ Double.toString(i)+ " 5 .0935 15 0.05");
//scheduler.add("4593 "+ Double.toString(i)+ " .5 5 .0935 15 0.05");
//scheduler.add("4593 6569 .5 5 .0935 15 0.05 " + Double.toString(i));
//}
// this ran a huge optimizer
for (double i = 4585; i < 4600; i++) { // biomass 15
for (double j = 6560; j < 6575; j++) { // NL 15
for (double k = .4; k < .6; k += .05) { // chl 4
for (double l = 3; l < 8; l++) { // N 5
for (double m = 100; m < 110; m++) { // Incident Irradiance 10
scheduler.add(Double.toString(i) + " " + Double.toString(j) + " " +
Double.toString(k) + " " + Double.toString(l) + " .0935 5 .05 " + Double.toString(m));
}
}
}
}
}
scheduler.waitForFinish();
RecordMaxGrowth recorder = (RecordMaxGrowth)scheduler.getRecorder();
PondForSimulationUse maxPond = recorder.getMaxPond();
System.out.println(maxPond.toString());
System.out.println("Max Growth Per Day " + maxPond.getMaxNLGrowthPerDay());
System.out.println("Time it is for " + maxPond.getMaxNLTime());
System.out.println("Biomass " + maxPond.model.getStartBiomass());
System.out.println("NL " + maxPond.model.getStartNL());
System.out.println("Chl " + maxPond.model.getStartChl());
System.out.println("N " + maxPond.model.getStartN());
System.out.println("Incident irradiance " + maxPond.model.getIncidentIrradiance());

//---
// this runs the max simulation again and shows it in a graph
Grapher graph = new Grapher();
PondWithGraphData pond = new PondWithGraphData(10, .005, maxPond.model.getStartBiomass(),
maxPond.model.getStartNL(), maxPond.model.getStartChl(), maxPond.model.getStartN());
Simulation sim = new Simulation(pond, "Sim");
sim.start();
sim.waitForCompletion();
graph.addXLabels(10);
graph.addGraph(pond.getBiomassData());
graph.addGraph(pond.getNLData());
graph.addGraph(pond.getBiomassGrowthData());
graph.addGraph(pond.getTotalDryWeight());
}
}

