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Introduction: 
NP-complete problems are problems where the amount of time to solve the problem is 

defined by a non-polynomial equation. In other words, it increases extremely quickly with the 

size of the problem. Exact solutions to these problems become infeasible as the problem size 

increases due to large increases in computation time.  

The traveling salesman problem (TSP) is a classic example of an NP-complete problem. 

In the traveling salesman problem, a salesman has many cities that he needs to visit. He wants to 

save time by traveling the shortest route possible. As more cities are added, the time it takes to 

exactly solve the problem increases in a non-polynomial fashion. This means that the time it 

takes to solve the problem increases exponentially. An exact solver for the problem, such as a 

brute force solver, takes longer at an ever-increasing rate, or non-polynomial time. A program 

that can solve the problem in polynomial time, albeit not exactly, is notable because the problem 

itself is NP-complete. 

Evolutionary algorithms are excellent candidates for finding optimal but inexact 

solutions. Evolutionary algorithms apply the principles of evolution, random mutations using 

competition to perpetuate the best candidates, to finding an optimal solution. These algorithms 

are useful in solving problems which are otherwise difficult to solve. Evolutionary algorithms are 

a method to find an inexact solution (or sometimes the exact, but unproven, solution), while 

keeping computation time down. 
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Executive Summary: 
In this project, I attempt to solve the Traveling Salesman Problem (TSP) using 

evolutionary algorithms, and compare this method to other methods like a brute force solver and 

a greedy solver. The Traveling Salesman Problem is NP-complete because more cities to travel 

to are added, the number of solutions that need to be compared or searched to increases in a non-

polynomial fashion. The solution that an evolutionary algorithm uses ignores large numbers of 

poor solutions, and optimizes out solutions in a random, yet methodical way, like evolution. 

First, I created problem generators. There were 3 generators – a line known-answer-test, a 

circle-and-spokes known answer test and a random generator. 

Then I created a greedy solver. The created solver works very well on the line known-

answer-test, but cannot always solve problems from the other 2 generators. 

I also created a brute force solver that used recursion to crawl the solution tree. An 

improved brute force solver was written that pruned the tree to shorten the solution time. 

However, this was still solving the TSP in non-polynomial time. The brute force solver was used 

to generate known answers for random problems with small numbers of cities. 

Then I generated an evolutionary algorithm solver. The evolutionary algorithm solver 

required some fine tuning to get the desired behavior. The most important improvements were 

around the types of mutations that it created. However, even then it would get stuck in local 

minimums when attempting to solve problems from the random generator. The evolutionary 

algorithm was able to get to its best solutions in polynomial time allowing solving problems with 

many, many more cities than would ever be possible with a brute force solver. 

The optimal solver ended up being a hybrid solver. This was my most significant 

achievement on the project. I discovered that by seeding the first generation of parents with 

solutions from a greedy solver, the performance of the evolutionary algorithm was greatly 

enhanced. When following a greedy solver, the initial generation starts significantly closer to the 

real answer. Being closer to the start results in fewer generations to find the real answers.  

When comparing the solver, it is readily apparent how inefficient the brute force solver 

is. In one year of time on my PC, the brute force solver would solve at most a problem with 29 

cities in 1 year. The pure evolutionary solver would solve 430 cities in 1 year. The hybrid 
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greed/evolutionary solver was several orders of magnitude faster than the pure evolutionary 

solver.  

 

The Solvers: 
Brute Force Solver 

 The first solver was the brute force solver. The brute force solver uses a recursive 

subroutine to search a tree of possible solutions. An example solution tree is shown in the figure 

below. 
 

 

 

Example Solution Tree for 3 Cities 

 

The pseudo-code for the recursive subroutine is as follows – 

recursiveFunction (problem, solution_so_far): 

 foreach city in (cities): 

  if (city not already in solution_so_far) then 

append city to solution_so_far 

recursiveFunction(problem, solution_so_far) 
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An improved version of the brute force solver was created that abandoned the search on a given 

branch if the distance of the solution_so_far exceeded the optimal solution even before the all of 

the cities were added to the solution. 

 

Greedy Solver 

The second solver was a greedy solver. The greedy solver looks at only “n” possible 

solutions for a problem with “n” cities. It uses a different starting city for each possible solution. 

It builds each solution by creating a chain were the next city is the closest unchosen city to the 

current city in the chain. The greedy solver always works with the line known-answer-test. 

However, it is flawed and it easy to create problems that break the greedy solver. Below is an 

example of how the greedy solver would solve a solution starting at city 1 and always jumping to 

the next closest solution.  

 

Example of Greedy Solver Starting at City 1 

 

Notice that it gets pulled away from city 7 because it always chased the closest city. This 

can “trick” the simple algorithm into a solution that is not exact. 
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Evolutionary Algorithm Solver 

The evolutionary solver was the focus of my project. The evolutionary solver consists of 

4 steps: create parents, mutate, calculate results, prune children. These steps are shown in the 

figure below. 

  

Steps in the Evolutionary Algorithm 

 

 

The ways that the parents are mutated massively affects the outcome of the program. 

Much of my time was spent looking at where the evolutionary algorithm was getting stuck and 

what new mutations it needed to find better solutions. The first versions simply picked one 

individual city in the solution and moved it to a new place in the order of cities. This resulted in 

“optimal” solutions where whole subsets of cities that are in the wrong spot and moving cities 

one by one greatly decreases the likelihood that these subsets of almost right solutions get put in 

the right spot. As an example, an ideal solution could be (1, 2, 3, 4, 5) and this type of mutation 

would get stuck on (3, 4, 5, 1, 2). The solution to this problem was to move whole subsets of 
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cities around at random. The size of the subset to be moved is also random. This allows whole 

subsets to be moved into the correct space in only one operation. 

 

The second problem was that some “optimal” solutions could not jump to the exact 

solution because the number of mutations required to reach that solution did not match the 

number of mutations the algorithm was making. This could either be 1 mutation was needed and 

the algorithm as making 3 mutations or it could be that 3 mutations were required but the 

algorithm was only doing 1 mutation and 1 mutation resulted in a really bad solution. The 

solution to this problem was to randomize the number of mutations as well. 

 

A third problem was that some “optimal” solutions had subsets in the wrong order. For 

example, if (1, 2, 3, 4, 5) was the exact solution, the algorithm could become stuck on (3, 2, 1, 4, 

5). The solution to this problem was to allow subsets to be reversed as well. 

 

The first evolutionary algorithms that I created used completely random solutions for the 

1st generation of parents. This solver was compared against the brute force solver using problems 

from the random generator for small numbers of cities. Large numbers of cities used the line 

known-answer-test, since the brute force solver could not solve problems with more than 10 or 

so cities in a reasonable amount of time. 

 

Hybrid Greedy/Evolutionary Algorithm Solver 

 

Towards the end of the project, I discovered that using a hybrid greedy/evolutionary 

solver produced exceptional results. This was my best achievement on the project. This 

algorithm would first run the greedy solver and save the solution for each possible starting city. 

These solutions would then be used as the first generation of parents in the evolutionary 

algorithm. This method significantly reduces the number of generations needed to solve a 

problem and also greatly improves the likelihood of finding the exact solution. 

 

  With the un-pruned brute force solver, 10 cities could be solved in 1 year on my PC. 

With a pruned brute force solver, 29 cities can be solved in 1 year. With the evolutionary solver, 
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430 cities can be solved in 1 year. Examining the number of permutations that each problem has 

really puts the efficiency of the algorithm into perspective. This is shown in the following table. 

 

Algorithm Maximum Cities Permutations 

Unpruned brute force 10 10! = 3.6 x 106 

Pruned brute force 29 29! = 8.8 x 1030 

Evolutionary 430 430! = 2.3 x 10947 

 

Number of Permutations for Maximum Cities in 1 Year of Compute Time 

 

Verification of results: 
 There are many ways to verify or break solvers, and find problems in the solvers if they 

exist. I used three methods of breaking and testing my solvers. I wrote 3 problem generators. The 

main input to each generator was the total number of cities to use in the problem. The output of 

each generator was a 2D array of “n” x “n” size where “n” is the number of cities in the problem. 

This array was a lookup table for the distance between two cities. These problem generators were 

a Line generator, a Random generator, and a Circle and Spokes generator.  

The line generator placed all of its cities equidistant apart on a straight line. The Line 

generator is a known answer test, for it only has 2 possibilities. The 2 possibilities being 1 to N 

in order, and the other possibility N to 1 in order.  

 

Line Problem with All of the Cities in an Ordered Straight Line 

 

The line generator could be used in speed tests for the evolutionary solver and un-pruned 

brute force solver. The random nature of the evolutionary solver prevents it from seeing the 

contrived order of the problem. The unpruned brute force solver is an exhaustive search of every 

single possible solution so it too is immune to the contrived order of the problem. However the 
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line generator could not be tested for speed with a pruned brute force solver, because it would 

quickly find 1 to N within a short amount of time and then ignore an artificially large portion of 

the solution. The greedy solver also finds the contrived nature of the line generator problems 

easy to solve.  

The next puzzle generator was random generator. There were 2 versions of this that were 

used during the course of the challenge. The first version of the random generator created 

random distances between cities. This could possibly result in cities that could not be represented 

on a 2D plane. This made visualizing the problem difficult. The second version created random x 

and y coordinates for each city and then the distance between the points using the distance 

formula and gave those distances to the solvers. This made visualizing the problem on a piece of 

paper easier. It also more closely represents a real world version of the TSP.  

 

 

The third and final generator written for the project was Circle and Spokes, which was 

meant to stump the greedy solver. The generator created a circle of cities, then added 2 or more 

outliers that were further than the average distance between the cities on the center circle. When 

the greedy solver looks at this problem it will go around the circle first, then see that it has 

outliers to go to and reach those last. This results in a wrong answer. But the brute force solver 

will see all solutions and see that overall going around the circle, and stopping at the spokes as it 

passed would be an optimal solution.  
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Circle and Spokes Example with Solution Shown 

 

Early on, I was able to get my brute force solver to correctly solve the problems with a 

small number of cities and could use that to compare against solutions the other solvers. This 

was important when using the random problem generator since it does not have known answers. 

This allowed me to find situations that the evolutionary algorithm solver cannot solve on its own.  

 

At first I tested the evolutionary solver on problems from the line generator as that was an 

easy known answer test to use. Also the evolutionary solver doesn’t see the line as a line, 

because it is random in how it solves the problem. This is useful because it doesn’t require much 

extra code, compute time or file IO to find the answer because there are only 2 possible answers 

for every puzzle. I later on shifted the evolutionary solver problems from the random generator 

with known answers from the brute force solver. This showed me that it wasn’t finding the 

accurate answers easily when given a wider set of possibilities. This is method of testing is 

where many of the improvements to the evolutionary algorithm came. It allowed for a large 

amount of testing on random puzzles up to 14 cities. More than 14 cities would take too long for 

the brute force solver to find the solution to use as a known answer. 

By the end of the project, I had created the hybrid greedy/evolutionary solver that would 

run the greedy solver first and use the greedy solver solutions as the first generation of parents. 

This lead me to the discovery that was contrary to my initial predictions on the greedy solver. 

The greedy solver was able to solve many problems from the random problem generator (all 

under 14 cities because these are the only random problems with known answers).This led me to 

use the circle and spokes problem to force the greedy solver to fail, in which the evolutionary 

solver would find the correct answer in only a few more generations. With the circle and spokes 

problem I had the same limitation as random problems in that I don’t have a method to find the 

exact answer for any generated circle and spokes problem. 
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Configuring the evolutionary solver: 
 As many people who have used evolutionary algorithms to solve their own problems 

should know, evolutionary algorithms can take a bit of tweaking and modification to make them 

work well enough for a specific problem. A “tuned” evolutionary algorithm is therefore often 

specific to a problem and what the problem requires. After tweaking the evolutionary solver a 

bit, I have figured out a few things to watch out for with an evolutionary solver for the Traveling 

Salesman Problem. Evolutionary algorithms center on a generation. The more ways a generation 

can change, adapt, and improve, the better the results will be. There are a few general things that 

people tweak most in the problems.  

How many parents do you keep out of each generation? This effects a little bit of the 

variation in the generation. With the traveling salesman problem, the answers I am looking for 

are very straightforward and the best parent in one generation normally comes up as the best 

parent in the next generation too, so keeping the number of parents down can save time by not 

generating too many unused children.  

How many children do you allow each parent to have? The answer is similar to the 

previous part. Because the problem has a very straightforward progression towards the correct 

answer. Ideally, there should be as few children as possible while still getting a steady 

improvement from one generation to the next. So this number also is better to be kept low. 

 One of the other tweaks that you do in evolutionary algorithms is in a whole segment of 

its own. How do you mutate the parent to get the child? This often asks questions like how you 

are mutating the parent to reach the result? How many times you mutate the parent in this way to 

reach your answer? And finally, how large is each mutation? In my program I simply have to 

reorder the cities of the solution. But how I did even that simple task changed throughout the 

project. I found that problems with local minimums were best solved by changing how the 

program mutates parents to get children. 

 At first, I started with only a single mutation type. I moved one city somewhere else in 

the order of cities in the solution. This resulted in a fairly good results for the line generator 

problems, but I also found that this could be slow when the program found a set of cities in an 

order but in the wrong spot. With the number of mutations not being high enough per generation, 
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and the fact that the odds of moving groups of cities anywhere in one generation being so low it 

had to be fixed. The simple solution was to instead of taking a single city at a time and moving it, 

I would move whole segments of the solution around. This resulted in a significant increase in 

getting the problem moved forward. A minor problem here was that also some segments were in 

a reverse order, which is problematic. The simple fix is to reverse the order of the group every 

now and then to get an improvement on that segment.  

 The last three things I did to the problem was to every generation add a new wildcard 

parent that did not come from the children. This was not as effective as expected. I introduced 

this after noticing that on a very rare occasion on smaller numbers of cities I would randomly 

guess the right city on the first try. This did not pay off as the number of cities in the problem 

grew.  

I then set the number of mutations to make on the parent completely random, because 

every solution may require more or less mutations to change to what it needs improve. I finally 

prevented my program from allowing two parents in a generation to be the same, because if all 

the parents are all the same, my program is being redundant. I want to look at more solutions, not 

a bunch of the same. 

 

Here is a list of the progression of mutations: 

1) Move a single city to a new location 

2) Move a subset of random length to a new location 

3) Allow subsets to be reversed as they are moved 

4) Add a wildcard parent each generation (this mutation was abandoned later) 

5) Randomize the number of mutations 

6) Remove duplicate parents 

 

Results: 
The number of permutations for a solution of “n” cities is n! (n factorial) which results in 

a non-polynomial time problem. I timed multiple solvers, which include the unpruned brute force 

algorithm, the pruned brute force algorithm, and the evolutionary solver. I did not time the 

greedy solver because I believed it was inferior and would too often find wrong answers to more 

complicated random generated cities sets. With my brute force solver times, I have demonstrated 
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that the Traveling Salesman Problem is solvable in non-polynomial time. With my evolutionary 

solver I find a solution for the Traveling Salesman Problem demonstrating that the problem can 

often be “solved” in polynomial time. However, proving whether or not this “optimal” solution is 

the absolute best solution is quite another issue. 

In order to find the results of my programs I need to time how long it takes them to run 

and find the correct answer. To do this I use a combination of the python subprocess module and 

the python timeit module. I time how long it takes for the subprocess call to my code to return. 

This allows me to set up a while loop to run through the a progressively larger number of cities. 

There is more discussed in appendix A. For the purposes of testing, I ensure that evolutionary 

solver both can, and does find the correct solution, by making the brute force solver save out the 

solution it finds. I feed this known correct answer to the evolutionary solver to check if it has 

found that known answer yet. If not, keep running. Originally I was only able to get my 

evolutionary solver to solve up to 13 cities at a time. This problem was mainly resulting from a 

well hidden bug in the code. In later testing, I still only tested up to 14 cities from the random 

generator because running the brute force solver to get the known answer would take too long for 

more than 14 cities. When the evolutionary solver solved more than 14 cities, I used problems 

from the line generator. The reason I can solve for problems from the line generator with the 

evolutionary solver and not have skewed time results is because the evolutionary solver is truly 

random, and often unpredictable. The same puzzle solved twice will take a different amount of 

time and could even find a different solution. This randomness means that a line does not show 

up differently to the evolutionary algorithm, just like any other shape of cities given to it. This is 

not true for the pruned brute force solver. It always looked at the first city compared to the 

second city, then the next city, and so on, given the same problem. This also means when doing 

the time tests I cannot set the pruned brute force solver, because I know that every time it will 

find the first line solution within a short amount of time, and then continually cut off large 

segments of the tree, resulting in an artificially shorter time. I didn’t bother timing the greedy 

solver because its initially predicted usability and quality of answer is significantly lower than 

both the brute force solver and the evolutionary algorithm solver. In later tests, when combined 

with an evolutionary solver, it proved to be more accurate than expected to be. 

 I know my solvers are reaching their solutions in non-polynomial time or polynomial 

time because of the shape of their lines on a graph. The equation of their trend lines also 
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demonstrate this. For example the pruned brute force equation has a trend line equal to 100.3965x - 

4.3843 + 0.05 where x represents the number of cities. This has the x in the exponent making it a 

non-polynomial time solution. To the contrary, the evolutionary algorithm has a solution time 

trend line of (x5.4697 / 8077602) + 0.05 with x representing the number of cities. X is raised to the 

power of 5.4 making it a polynomial time solution. 
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Data and analysis: 

 

The logarithmic chart shows solution times for an unpruned brute force, pruned brute force, 

evolutionary solver time, and predicted trend lines. The predicted trend lines were generated by 

hand after visually seeing which Excel trend line visually matched the actual line the best. The 

equation for the pruned brute force is 100.3965x - 4.3843 + 0.05. The equation for the evolutionary 

algorithm is (x5.4697 / 8077602) + 0.05. The graph above shows the difference between something 

solving in non-polynomial time, either the red or the blue lines, and something solved in 

polynomial time, the navy blue line. On a logarithmic chart, the equation 10x is a straight line 

(i.e. a non-polynomial equation). It is also interesting to see how with the unpruned brute force 

solver (blue line) the times it takes is very consistent. It closely matches the trendline. The reason 

for this is that it always looks at every permutation. The pruned brute force solver and 

evolutionary solvers both fluctuate with the problem. What they prune is influenced by the 

random nature of the problem, or in the case of the evolutionary algorithm, its own random 

nature. Finally we have the evolutionary solver which can get the correct solution for most 

problems in a decent amount of time. The evolutionary solver is very clearly a random solver in 

that the randomness can make some puzzles take significantly longer than others even if they 

have the same number of cities. 
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A hybrid greedy/evolutionary algorithm was mentioned before in the paper, but couldn’t 

accurately be timed here. The greedy algorithm can solve a line accurately in almost no time, and 

surprisingly could solve most random problems in almost no time due to the greedy solver 

outperforming its expectations. The greedy solver was initially expected to find a wrong answer 

for most the random sets of cities, and thus remained untested until very late in the project. This 

was a mistake as the greedy solver has proven itself more useful than expected, especially when 

used in a hybrid approach with the evolutionary algorithm. A circle and spokes problem is the 

best known answer test to demonstrate the short comings of the pure greedy solver. I therefore 

began using those problems as the benchmark for the hybrid solver. The problem with this is 

during the time of this research, a method of determining the known answer for every circle and 

spokes problem was not be found. Without a way to tell the evolutionary solvers that they found 

the correct answer, there wasn’t a good found to tell them when to stop. Therefore, it is difficult 

to benchmark the solver. 
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Comments about the code, and tools used: 

First off, the choice of python was more for convenience than fast code. The team was originally 

more than one person and it was a common language with which we were the most comfortable. 

I knew that the results I got would still be proportional to someone else’s even though mine runs 

in the slower python. The version control systems saved me so many times. It is an indispensable 

tool and one to never forget. Allowing you to bring back files from before you tried to do 

something that doesn’t work is indispensable. Also notepad++ makes importing code into a 

document very easy with its exporter plugin built in. I did not include code from some of my 

scripted automated testers. These were quick scripts that would loop a desired number of times, 

and every time create a new set of cities n in size, count it and print the number to make sure it 

did it right, then run my python code using subprocess and timing it. 
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EVOLUTIOANRY ALGORYTHM SOLVER 
 
import sys,pickle, pprint, random, signal, inspect, copy, os, traceback 
from os import path as p 
from operator import eq 
import time 
 
# Argument File Name Parsing 
if len(sys.argv) < 2 or len(sys.argv) > 3: 
  print("error, arg size invalid") 
  print("asuming file.txt") 
  inject = "file.txt" 
else: 
 inject = sys.argv[1] 
# File Loading 
output = open(p.split(p.abspath(inspect.getsourcefile(lambda _: None)))[0] + 
"\\..\\Puzzles\\"+inject,"r") 
c_cities = pickle.load(output) 
output.close() 
 
# c = constant, do not touch, at least mostly 
# i = instance, for loops n stuff 
# p = progress, for things you are working with in this area 
# f = data used to output the final result 
 
# tweaks 
# how many children each one creates 
# a large portion of these are/should be unused 
c_parents  = 20 
c_children = 10 
p_ParentsList = [] 
lasttime = 0 
 
# Switch to deside if its a line or a problem to find the solution from brute 
force solvers false = line true = brute force verified 
docompare = False 
# code 
# switch to output things 
if docompare: 
 output2 = open(p.split(p.abspath(inspect.getsourcefile(lambda _: 
None)))[0] + "\\..\\Puzzles\\"+inject+"solution","r") 
 f = output2.readline() 
 output2.close() 
 solution = int(float(f)) 
 
# generates the new parents for the beginning 
def genNewParent(): 
 p_cities = [] 
 while len(p_cities) < len(c_cities): 
  i_city = random.randint(0,len(c_cities)-1) 
  if not (i_city in p_cities): 
   p_cities.append(i_city) 
 return p_cities  
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def mutateParent(p_parent):  
 if len(p_parent.getCities()) < p_parent.getChanges(): 
  print "not designed to run more changes than there are cities" 
  exit(1) 
 
 p_Child = [] 
 while len(p_Child) < p_parent.getChanges(): 
  # choose what city to mess up 
  i_Change = chooseCity(p_Child, 0, len(p_parent.getCities())-1) 
  # seperate segmetn from the point to mess up 
  newGroup = removeGroup(p_parent, i_Change, 0, 
len(p_parent.getCities())-1,0.7, 0.7) 
  # reverse if needed 
  if random.randint(0,10) < 8: 
   newGroup.reverse() 
  # insert into a new position 
  placeGroup(p_parent, newGroup, 0, len(p_parent.getCities())-1) 
 return p_parent 
 
# This is a new method to do the chooseing city stage in muteate parent 
def chooseCity(previouslyChosen,minSize,maxSize): 
 while True: 
  choice = random.randint(minSize,maxSize) 
  if choice in previouslyChosen: 
   continue 
  else: 
   previouslyChosen.append(choice) 
   return choice 
 
# Also for mutate parent, but removes parts instead 
def removeGroup(p_parent, startPoint, minSize, maxSize, 
chanceOfStartPointLater,chanceOfEndDistance): 
 flip = False 
 if random.random() > chanceOfStartPointLater: 
  flip = True 
  if startPoint-maxSize > 0: 
   maxSize = startPoint 
 else: 
  if maxSize <= len(p_parent.getCities())-startPoint: 
   maxSize = len(p_parent.getCities())-startPoint-1 
 endDistance = random.randint(minSize,maxSize) 
 if not flip and random.random() < chanceOfEndDistance: 
  endDistance = 0 
 
 if endDistance >= len(p_parent.getCities()): 
  endDistance = len(p_parent.getCities())-1 
 citySegment = [] 
 startPointCopy = startPoint 
 while (flip == False and startPoint < endDistance) or (flip==True and 
startPoint > endDistance): 
  #print "=======" 
  #print "flip       = " + str(flip) 
  #print "startPoint = " + str(startPoint) 
  #print "endPoint   = " + str(endDistance) 
  #print "lenCities  = " + str(len(p_parent.getCities())) 
   
  if flip: 
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   citySegment.append(p_parent.getCities().pop(startPoint)) 
   startPoint -= 1 
  else: 
  
 citySegment.append(p_parent.getCities().pop(startPointCopy)) 
   startPoint += 1 
 return citySegment 
 
# Also for mutate parent, but places the parts back 
def placeGroup(p_parent, part, minPlace, maxPlace): 
 location = random.randint(minPlace,maxPlace) 
 for item in part: 
  p_parent.getCities().insert(location,item) 
  location += 1 
 
 
# gets the distance from a list of cities 
def getDistance(p_list):  
 distance = 0 
 city_index = 0 
 while (city_index < len(p_list) -1): 
  city_a = p_list[city_index] 
  city_b = p_list[city_index+1] 
  distance += c_cities[city_a][city_b] 
  city_index += 1 
 return distance 
  
# this runs a generation, creates children, and kills them off 
def generation(p_ParentsList): 
 return optimizeGroup(createChildren(p_ParentsList)) 
  
def createChildren(p_ParentsList): 
 # creates children 
 p_ParentsListDupe = list(p_ParentsList) 
 while len(p_ParentsListDupe) < (c_children+1)*len(p_ParentsList): 
  for i_parent in p_ParentsList: 
   ParentChild = i_parent.clone(i_parent) 
   Child = mutateParent(ParentChild) 
   p_ParentsListDupe.append(Child) 
 return p_ParentsListDupe 
 
def minuteTime(): 
 numstring = str(time.time()/100) 
 return int(float(numstring[:numstring.find('.')+3])) 
  
def optimizeGroup(p_overallGrouping):  
 # Parents Not yet integrated into the Parents list will be called 
children 
 global lasttime 
 # goes through and sorts out if this is shorter 
 p_optimizedParentsList = [] 
 for i_child in p_overallGrouping: 
  keepThisSolution = False 
  duplicate = False 
  if len(p_optimizedParentsList) < c_parents: 
   i_child.mutateChanges() 
   p_optimizedParentsList.append(i_child) 
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  else: 
   lastLargest = -1 
   for item in p_optimizedParentsList:  
    if i_child.getDistance() < item.getDistance(): 
     keepThisSolution = True 
    if  not False in map(eq, i_child.getCities(), 
item.getCities()): 
     duplicate = True 
   if keepThisSolution and not duplicate: 
    marker = 0 
    while marker < c_parents: 
     if lastLargest == -1 or 
p_optimizedParentsList[marker].getDistance() > 
p_optimizedParentsList[lastLargest].getDistance() : 
      lastLargest = marker 
     marker = marker+1 
    p_optimizedParentsList[lastLargest] = i_child 
    lasttime = minuteTime() 
 return p_optimizedParentsList 
  
#================= PARENT CLASS =================# 
#================================================# 
class parent: 
 # vars 
 maxChangesToChange = 3 
 changesToMake = 3 
 changesToMakeMin = 1 
 groupingChangesMin, groupingChangesMax = 0, 0 
 distance = 0 
 cities = [] 
 def __init__(self): 
   self.cities = genNewParent() 
 def clone(self,p_parent): 
  return copy.deepcopy(p_parent) 
 def mutateChanges(self): 
  while True: 
   x = random.randint(-3,2) 
   if self.changesToMake+x <= self.changesToMakeMin or 
self.changesToMake+x >= len(self.cities): 
    pass 
   else: 
    self.changesToMake = self.changesToMake+x 
    break 
 def setCities(self,ccities): 
  self.cities=ccities 
  self.updateDistance() 
 def updateDistance(self): 
  self.distance = getDistance(self.cities) 
 def getCities(self): 
  return self.cities 
 def getDistance(self): 
  self.updateDistance() 
  return self.distance 
 def getChanges(self): 
  return self.changesToMake 
 def setChanges(self, changes): 
  self.changesToMake = changes 
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# ================= MAIN =================# 
# ========================================# 
def main(): 
 global p_ParentsList 
 global parent 
 global lasttime 
 lastime = minuteTime() 
 lineSolution = range(0,len(c_cities)) 
 reverseLineSolution = list(lineSolution) 
 reverseLineSolution.reverse() 
 iterations = 0 
 while iterations <= 10: 
  if p_ParentsList == []: 
   while len(p_ParentsList) < c_parents: 
    temp = parent() 
    p_ParentsList.append(temp) 
    del temp 
     
  for i in p_ParentsList: 
   if i == None: 
    print "error i is none" 
    exit(1) 
  # Add a wild card. Then run a generation 
  #WildCard = parent() 
  #p_ParentsList.append(WildCard) 
  p_ParentsList = generation(p_ParentsList) 
  if True: #print if true 
   i = 0 
   while i < len(p_ParentsList): 
    print str(i) + " " + 
str(p_ParentsList[i].getCities()) + " " + str(p_ParentsList[i].getDistance()) 
+ " " + str(p_ParentsList[i].getChanges()) 
    i+=1 
     
   print "-----------------------------------" 
  # this code relates to finding a solution 
  if docompare: 
   distances = [] 
   for p_parent in p_ParentsList: 
    distances.append(p_parent.getDistance()) 
   if solution in distances: 
    print distances 
    break 
  else: 
   for p_parent in p_ParentsList: 
    if not False in map(eq, lineSolution, 
p_parent.getCities()) or not False in map(eq, reverseLineSolution, 
p_parent.getCities()): 
     signal_handler(None,None) 
  if lastime+len(c_cities)<minuteTime(): 
   print "i give up" 
   break 
  iterations += 1 
 signal_handler(None,None) 
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# ===ignore===   
# This code is for when the program exits. Whether its its ctrl+c or by 
timing out/solving the puzzle 
def signal_handler(signal, frame): 
 global output 
 global p_ParentsList 
 global parent 
 print "\n" 
 output3 = open(p.split(p.abspath(inspect.getsourcefile(lambda _: 
None)))[0] + "\\..\\test\\"+inject,"w") 
 for pparent in p_ParentsList: 
  print str(pparent.getCities())+ " " + str(pparent.getDistance()) 
  for n in pparent.getCities(): 
   output3.write(str(n)) 
   output3.write("\t") 
  output3.write("\n") 
 print "==end?==" 
 if docompare: 
  output2 = open(p.split(p.abspath(inspect.getsourcefile(lambda _: 
None)))[0] + "\\..\\Puzzles\\"+inject+"solution","r") 
  x = output2.readline() 
  y = output2.readline() 
  print y + " " + x 
 # output3 = open(p.split(p.abspath(inspect.getsourcefile(lambda _: 
None)))[0] + "\\..\\Puzzles\\"+inject+"log","w") 
 # pickle.dump(c_Log,output3) 
 output3.close 
 if not signal == None: 
  print " " + 1 
 exit(0) 
signal.signal(signal.SIGINT, signal_handler) 
main() 
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GREEDY SEEDED EVOLUTIOANRY ALGORYTHM SOLVER 
 
import sys,pickle, pprint, random, signal, inspect, copy, os, traceback 
from os import path as p 
from operator import eq 
import time 
 
# Argument File Name Parsing 
if len(sys.argv) < 2 or len(sys.argv) > 3: 
  print("error, arg size invalid") 
  print("asuming file.txt") 
  inject = "file.txt" 
else: 
 inject = sys.argv[1] 
# File Loading 
output = open(p.split(p.abspath(inspect.getsourcefile(lambda _: None)))[0] + 
"\\..\\Puzzles\\"+inject,"r") 
c_cities = pickle.load(output) 
output.close() 
 
# c = constant, do not touch, at least mostly 
# i = instance, for loops n stuff 
# p = progress, for things you are working with in this area 
# f = data used to output the final result 
 
# tweaks 
# how many children each one creates 
# a large portion of these are/should be unused 
c_parents  = 10 
c_children = 10 
p_ParentsList = [] 
lasttime = 0 
 
# Switch to deside if its a line or a problem to find the solution from brute 
force solvers false = line true = brute force verified 
docompare = False 
# code 
# switch to output things 
if docompare: 
 output2 = open(p.split(p.abspath(inspect.getsourcefile(lambda _: 
None)))[0] + "\\..\\Puzzles\\"+inject+"solution","r") 
 f = output2.readline() 
 output2.close() 
 solution = int(float(f)) 
 
# generates the new parents for the beginning 
def genNewParents(): 
 parentsList = [] 
 while len(parentsList) < len(c_cities): 
  workingParent = [] 
  workingParent.append(len(parentsList)) 
  while len(workingParent) < len(c_cities): 
  
 workingParent.append(findNextClosestUnusedCity(workingParent[-
1],workingParent)) 
   #print "loop 1" 
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  parentsList.append(parent(workingParent)) 
  #print "loop 2" 
 print "generated parents" 
 return parentsList 
 
def findNextClosestUnusedCity(currentCity,usedCities): 
 i = 0 
 target = -1 
 while i < len(c_cities): 
  if not i == currentCity and (target == -1 or 
c_cities[currentCity][i] < c_cities[currentCity][target]) and (not i in 
usedCities): 
   target = i 
  i+=1 
 return target 
 
def mutateParent(p_parent):  
 if len(p_parent.getCities()) < p_parent.getChanges(): 
  print "not designed to run more changes than there are cities" 
  exit(1) 
 
 p_Child = [] 
 while len(p_Child) < p_parent.getChanges(): 
  # choose what city to mess up 
  i_Change = chooseCity(p_Child, 0, len(p_parent.getCities())-1) 
  # seperate segmetn from the point to mess up 
  newGroup = removeGroup(p_parent, i_Change, 0, 
len(p_parent.getCities())-1,0.7, 0.7) 
  # reverse if needed 
  if random.randint(0,10) < 8: 
   newGroup.reverse() 
  # insert into a new position 
  placeGroup(p_parent, newGroup, 0, len(p_parent.getCities())-1) 
 return p_parent 
 
# This is a new method to do the chooseing city stage in muteate parent 
def chooseCity(previouslyChosen,minSize,maxSize): 
 while True: 
  choice = random.randint(minSize,maxSize) 
  if choice in previouslyChosen: 
   continue 
  else: 
   previouslyChosen.append(choice) 
   return choice 
 
# Also for mutate parent, but removes parts instead 
def removeGroup(p_parent, startPoint, minSize, maxSize, 
chanceOfStartPointLater,chanceOfEndDistance): 
 flip = False 
 if random.random() > chanceOfStartPointLater: 
  flip = True 
  if startPoint-maxSize > 0: 
   maxSize = startPoint 
 else: 
  if maxSize <= len(p_parent.getCities())-startPoint: 
   maxSize = len(p_parent.getCities())-startPoint-1 
 endDistance = random.randint(minSize,maxSize) 
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 if not flip and random.random() < chanceOfEndDistance: 
  endDistance = 0 
 
 if endDistance >= len(p_parent.getCities()): 
  endDistance = len(p_parent.getCities())-1 
 citySegment = [] 
 startPointCopy = startPoint 
 while (flip == False and startPoint < endDistance) or (flip==True and 
startPoint > endDistance): 
  #print "=======" 
  #print "flip       = " + str(flip) 
  #print "startPoint = " + str(startPoint) 
  #print "endPoint   = " + str(endDistance) 
  #print "lenCities  = " + str(len(p_parent.getCities())) 
   
  if flip: 
   citySegment.append(p_parent.getCities().pop(startPoint)) 
   startPoint -= 1 
  else: 
  
 citySegment.append(p_parent.getCities().pop(startPointCopy)) 
   startPoint += 1 
 return citySegment 
 
# Also for mutate parent, but places the parts back 
def placeGroup(p_parent, part, minPlace, maxPlace): 
 location = random.randint(minPlace,maxPlace) 
 for item in part: 
  p_parent.getCities().insert(location,item) 
  location += 1 
 
 
# gets the distance from a list of cities 
def getDistance(p_list):  
 distance = 0 
 city_index = 0 
 while (city_index < len(p_list) -1): 
  city_a = p_list[city_index] 
  city_b = p_list[city_index+1] 
  distance += c_cities[city_a][city_b] 
  city_index += 1 
 return distance 
  
# this runs a generation, creates children, and kills them off 
def generation(p_ParentsList): 
 return optimizeGroup(createChildren(p_ParentsList)) 
  
def createChildren(p_ParentsList): 
 # creates children 
 p_ParentsListDupe = list(p_ParentsList) 
 while len(p_ParentsListDupe) < (c_children+1)*len(p_ParentsList): 
  for i_parent in p_ParentsList: 
   ParentChild = i_parent.clone(i_parent) 
   Child = mutateParent(ParentChild) 
   p_ParentsListDupe.append(Child) 
 return p_ParentsListDupe 
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def minuteTime(): 
 numstring = str(time.time()/100) 
 return int(float(numstring[:numstring.find('.')+3])) 
  
def optimizeGroup(p_overallGrouping):  
 # Parents Not yet integrated into the Parents list will be called 
children 
 global lasttime 
 # goes through and sorts out if this is shorter 
 p_optimizedParentsList = [] 
 for i_child in p_overallGrouping: 
  keepThisSolution = False 
  duplicate = False 
  if len(p_optimizedParentsList) < c_parents: 
   i_child.mutateChanges() 
   p_optimizedParentsList.append(i_child) 
  else: 
   lastLargest = -1 
   for item in p_optimizedParentsList:  
    if i_child.getDistance() < item.getDistance(): 
     keepThisSolution = True 
    if  not False in map(eq, i_child.getCities(), 
item.getCities()): 
     duplicate = True 
   if keepThisSolution and not duplicate: 
    marker = 0 
    while marker < c_parents: 
     if lastLargest == -1 or 
p_optimizedParentsList[marker].getDistance() > 
p_optimizedParentsList[lastLargest].getDistance() : 
      lastLargest = marker 
     marker = marker+1 
    p_optimizedParentsList[lastLargest] = i_child 
    lasttime = minuteTime() 
 return p_optimizedParentsList 
  
#================= PARENT CLASS =================# 
#================================================# 
class parent: 
 # vars 
 maxChangesToChange = 3 
 changesToMake = 3 
 changesToMakeMin = 1 
 groupingChangesMin, groupingChangesMax = 0, 0 
 distance = 0 
 cities = [] 
 def __init__(self, cityInput): 
   self.cities = cityInput 
 def clone(self,p_parent): 
  return copy.deepcopy(p_parent) 
 def mutateChanges(self): 
  while True: 
   x = random.randint(-3,2) 
   if self.changesToMake+x <= self.changesToMakeMin or 
self.changesToMake+x >= len(self.cities): 
    pass 
   else: 
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    self.changesToMake = self.changesToMake+x 
    break 
 def setCities(self,ccities): 
  self.cities=ccities 
  self.updateDistance() 
 def updateDistance(self): 
  self.distance = getDistance(self.cities) 
 def getCities(self): 
  return self.cities 
 def getDistance(self): 
  self.updateDistance() 
  return self.distance 
 def getChanges(self): 
  return self.changesToMake 
 def setChanges(self, changes): 
  self.changesToMake = changes 
# ================= MAIN =================# 
# ========================================# 
def main(): 
 global p_ParentsList 
 global parent 
 global lasttime 
 lastime = minuteTime() 
 lineSolution = range(0,len(c_cities)) 
 reverseLineSolution = list(lineSolution) 
 reverseLineSolution.reverse() 
 iterations = 0 
 while iterations <= 10: 
  if p_ParentsList == []: 
   p_ParentsList = genNewParents() 
   print "GENERATED NEW PARENTS" 
     
  for i in p_ParentsList: 
   if i == None: 
    print "error i is none" 
    exit(1) 
  # Add a wild card. Then run a generation 
  #WildCard = parent() 
  #p_ParentsList.append(WildCard) 
  p_ParentsList = generation(p_ParentsList) 
  if True: #print if true 
   i = 0 
   while i < len(p_ParentsList): 
    print str(i) + " " + 
str(p_ParentsList[i].getCities()) + " " + str(p_ParentsList[i].getDistance()) 
+ " " + str(p_ParentsList[i].getChanges()) 
    i+=1 
     
   print "-----------------------------------" 
  # this code relates to finding a solution 
  if docompare: 
   distances = [] 
   for p_parent in p_ParentsList: 
    distances.append(p_parent.getDistance()) 
   if solution in distances: 
    print distances 
    break 
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  else: 
   for p_parent in p_ParentsList: 
    if not False in map(eq, lineSolution, 
p_parent.getCities()) or not False in map(eq, reverseLineSolution, 
p_parent.getCities()): 
     signal_handler(None,None) 
  if lastime+len(c_cities)<minuteTime(): 
   print "i give up" 
   break 
  iterations += 1 
 signal_handler(None,None)   
# ===ignore===   
# This code is for when the program exits. Whether its its ctrl+c or by 
timing out/solving the puzzle 
def signal_handler(signal, frame): 
 global output 
 global p_ParentsList 
 global parent 
 print "\n" 
 output3 = open(p.split(p.abspath(inspect.getsourcefile(lambda _: 
None)))[0] + "\\..\\test\\"+inject,"w") 
 for pparent in p_ParentsList: 
  print str(pparent.getCities())+ " " + str(pparent.getDistance()) 
  for n in pparent.getCities(): 
   output3.write(str(n)) 
   output3.write("\t") 
  output3.write("\n") 
 print "==end?==" 
 if docompare: 
  output2 = open(p.split(p.abspath(inspect.getsourcefile(lambda _: 
None)))[0] + "\\..\\Puzzles\\"+inject+"solution","r") 
  x = output2.readline() 
  y = output2.readline() 
  print y + " " + x 
 # output3 = open(p.split(p.abspath(inspect.getsourcefile(lambda _: 
None)))[0] + "\\..\\Puzzles\\"+inject+"log","w") 
 # pickle.dump(c_Log,output3) 
 output3.close 
 if not signal == None: 
  print " " + 1 
 exit(0) 
signal.signal(signal.SIGINT, signal_handler) 
main() 
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GREEDY SOLVER 
 
import sys, pickle, pprint 
#input into the program 
if len(sys.argv) < 2 or len(sys.argv) > 3: 
  print("error, arg size invalid") 
  print("asuming file.txt") 
  inject = "file.txt" 
else: 
 inject = sys.argv[1] 
output = open("../Puzzles/"+inject,"r") 
cities = pickle.load(output) 
output.close() 
 
#program itself 
solutionset = [] 
distances = [] 
while len(solutionset) < len(cities): 
 firstcity = len(solutionset) 
 solutions = [] 
  
 solutions.append(firstcity) 
 distances.append(0) 
 while len(solutions) < len(cities)-1: 
  closestcity = -1 
  row = 0 
  while row < len(cities): 
   #print str(lastcity) + " " + str(row) + " " + 
str(lastshortest) + " " + str(cities[lastcity][row]) + " " + 
str(cities[lastcity][lastshortest]) 
   #print "LAST = " + str(solutions[-1]) + " CLOSEST = " + 
str(closestcity) + " COMPARE TO " + str(row) + " WHICH IS " + 
str(cities[solutions[-1]][row]) 
   if ((closestcity == -1) or (cities[solutions[-
1]][closestcity] > cities[solutions[-1]][row])) and not (row in solutions): 
    closestcity = row 
   row += 1 
  distances[-1] = distances[-1]+cities[solutions[-1]][closestcity] 
  solutions.append(closestcity) 
  #print "Solutions is now " + str(solutions) 
 solutionset.append(solutions) 
pprint.pprint(solutionset) 
#print distances 
least = -1 
i = 0 
while i < len(distances): 
 if least == -1: 
  least = i 
 elif distances[i] < distances[least]: 
  least = i 
 i+=1 
#print least 
#print solutionset[least] 
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BRUTE FORCE SOLVER 
 
import sys, pickle, pprint, inspect 
from os import path as p 
#input into the program 
if len(sys.argv) < 2 or len(sys.argv) > 3: 
  print("error, arg size invalid") 
  print("asuming file.txt") 
  inject = "file.txt" 
else: 
 inject = sys.argv[1] 
output = open(p.split(p.abspath(inspect.getsourcefile(lambda _: None)))[0] + 
"\\..\\Puzzles\\"+inject,"r") 
c_cities = pickle.load(output) 
output.close() 
#startprogram yay 
# c = constant, do not touch, at least mostly 
# i = instance, for loops n stuff 
# p = progress, for things you are working with in this area 
# f = data used to output the final result 
i_cityWidth = 0 
f_distance = -1 
f_cities = [] 
 
 
# p_used is progress for i am using it in progress in this recursefunction 
def recurseFunction(p_thisCity, p_used, p_distance): 
 p_used.append(p_thisCity) 
 global f_distance 
 global f_cities 
  
 if len(p_used) >= len(c_cities): 
  if f_distance == -1 or f_distance > p_distance: 
   f_distance = p_distance 
   f_cities = p_used 
  return 
 i_cityCheck = 0 
 while i_cityCheck < len(c_cities): 
  i_checkDistance = p_distance+c_cities[p_thisCity][i_cityCheck] 
  if i_cityCheck in p_used: 
   i_cityCheck = i_cityCheck + 1 
   continue 
  elif (not i_checkDistance >= f_distance) or (f_distance  == -1): 
   recurseFunction(i_cityCheck, list(p_used), i_checkDistance) 
  i_cityCheck = i_cityCheck + 1 
    
while i_cityWidth < len(c_cities): 
 print i_cityWidth 
 recurseFunction(i_cityWidth, [], 0) 
 i_cityWidth = i_cityWidth+1   
#print "success?" 
print f_distance 
print f_cities 
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output2 = open("../Puzzles/"+inject+"solution","w") 
output2.write(str(f_distance)+"\n"+str(f_cities)) 
output2.close() 
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NORMAL GENERATOR FILE 
 
"""This program is intended to generate the files that the solver will use to 
find the shortest between several cities... 
--features-- 
-options for number of cities 
-options for shapes of cities(default of 2, line and non line) 
-options for filename output 
-options for outputing many files 
-uses pickle to dump files to load later 
work in progress file 
""" 
from pprint   import pprint 
from optparse import OptionParser 
from os import path as p 
import re, random, pickle, sys, math, os, inspect 
 
class gb(): 
 range = "1 1000" 
 size = 7 
 file = "file.txt" 
 type = "random" 
 
# generates cities in random places 
def randomgenerate(): 
 size=options.size 
 print("\nrandom Generation") 
 seq = parserange() 
 min, max = seq[0], seq[1] 
 overall, row = 0, 0 
 allcities,rowcities = [],[] 
 print size 
 while overall < size: 
  rowcities=[] 
  while row < size: 
   if overall == row: 
    rowcities.append(0) 
   elif overall>row: 
    rowcities.append(allcities[row][overall]) 
   else: 
    rowcities.append(random.randrange(min,max)) 
   row+=1 
  allcities.append(rowcities) 
  overall+=1 
  row=0 
 return allcities 
def randomGenerateWithPoints(): 
 size = options.size 
 group = [] 
 x = 0 
 seq = parserange() 
 min, max = seq[0], seq[1] 
 while x < size: 
 
 group.append(((random.randint(min,max)),(random.randint(min,max)))) 
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  x+=1 
 output = open( p.split(p.abspath(inspect.getsourcefile(lambda _: 
None)))[0] + "\\..\\Puzzles\\points"+options.file,'w') 
 pickle.dump(group,output) 
 output.close() 
 allcities = [] 
 for item in group: 
  build = [] 
  for something in group: 
   distance = int(math.sqrt(math.pow((something[0]-
item[0]),2)+math.pow((something[1]-something[1]),2))) 
   build.append(distance) 
  allcities.append(build) 
 return allcities 
 """ 
 overall, row = 0, 0 
 allcities,rowcities = [],[] 
 print size 
 while overall < size: 
  rowcities=[] 
  while row < size: 
   if overall == row: 
    rowcities.append(0) 
   elif overall>row: 
    rowcities.append(allcities[row][overall]) 
   else: 
    rowcities.append(random.randrange(min,max)) 
   row+=1 
  allcities.append(rowcities) 
  overall+=1 
  row=0 
 return allcities 
 print("\nrandom generation with pointed grid") 
 """ 
# generates a straight line of cities, does nothing now 
def linegenerate(): 
 size=options.size 
 seq = parserange() 
 min, max = seq[0],seq[1] 
 overall, row = 0,0 
 allcities, rowcities=[],[] 
 #prepare segments 
 difference= max-min 
 segment = difference/size 
 while overall < size: 
  rowcities=[] 
  while row < size: 
   cur=0 
   if overall == row: 
    rowcities.append(0) 
   elif overall>row: 
    rowcities.append(allcities[row][overall]) 
   else: 
    rowcities.append(int(segment*math.fabs(overall-row))) 
   row+=1 
  allcities.append(rowcities) 
  overall+=1 
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  row=0 
 return allcities 
  
#generates the cities in circles/rings, intended to be hard to solve 
def circlegenerate(): 
 print("WOOPS: Circle generation required too many changes, its in its 
own project file.") 
 exit(1) 
def parserange(): 
 ranges = re.match("(\w+) (\w+)", options.range) 
 return int(ranges.group(1)),int(ranges.group(2)) 
   
# ----options code---- 
parser = OptionParser() 
parser.add_option("-s", "--size", dest="size", type="int", 
     help="the number of cities to have") 
parser.add_option("-r", "--range", dest="range", type="string", 
     help="the range of distances for a city to 
have, must have quotes") 
parser.add_option("-f", "--file", dest="file", type="string", 
     help="the file to use, add .txt yourself") 
parser.add_option("-t", "--type", dest="type", type="string", 
     help="the type of creation to use, possible 
choices are line, and random for now\ndoes change usage of -r") 
parser.add_option("-d", "--defaults", dest="defaults", type="string", 
     help="shows the default values possible for 
this program, have ANYTHING in the space after example: \"-d 1\"") 
(options, args) = parser.parse_args() 
 
if not options.defaults is None: 
 print("====DEFAULTS====") 
 print("range: "+str(gb.range)) 
 print("size: "+str(gb.size)) 
 print("type: "+str(gb.type)) 
 print("file: "+str(gb.file)) 
 exit(0) 
 
if options.range is None: 
 options.range = gb.range 
if options.size is None: 
 options.size = gb.size 
if options.type is None: 
 options.type = gb.type 
if options.file is None: 
 options.file = gb.file 
# and now we call the generation methods 
# add new generation methods using a new if == 
if options.type.upper() == "RANDOM": 
 cities = randomgenerate() 
elif options.type.upper() == "LINE": 
 cities = linegenerate() 
elif options.type.upper() == "CIRCLE": 
 cities = circlegenerate() 
elif options.type.upper() == "POINT": 
 cities = randomGenerateWithPoints() 
elif options.type.upper() == "POINTS": 
 cities = randomGenerateWithPoints() 
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# finally write files here 
output = open(p.split(p.abspath(inspect.getsourcefile(lambda _: None)))[0] + 
"\\..\\Puzzles\\"+options.file,'w') 
pickle.dump(cities,output) 
output.close() 
print("done and success") 
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CIRCLE AND SPOKES GENERATOR FILE 
 
"""This program is intended to generate the files that the solver will use to 
find the shortest between several cities... this is also the circle generator 
only 
do to the different types of options this got its own file 
work in progress file 
""" 
#Has a high chance of being merged with other code 
from pprint   import pprint 
from optparse import OptionParser 
import re, random, pickle, sys, math 
#try: 
# from globalvars import circlegeneratorglobal as gb 
#except(ImportError): 
# print("wai u no have everything!") 
# print("\nglobalvars.py") 
# exit(1) 
 
parser = OptionParser() 
parser.add_option( "-i", "--ring1", dest="ring1", type="int", 
     help="the number of cities in ring one") 
parser.add_option( "-o", "--ring2", dest="ring2", type="int", 
     help="the number of cities in ring two") 
parser.add_option("-f", "--file", dest="file", type="string", 
     help="the file to use, add .txt yourself") 
parser.add_option("-d", "--defaults", dest="defaults", type="string", 
     help="shows the default values possible for 
this program, have ANYTHING in the space after example: \"-d 1\"") 
(options, args) = parser.parse_args() 
#if not options.defaults is None: 
# print("====DEFAULTS====") 
# print("cities ring one: "+str(gb.ring1)) 
# print("cities ring two: "+str(gb.ring2)) 
# print("file: "+str(gb.file)) 
# exit(0) 
if options.ring1 is None: 
 options.ring1 = gb.ring1 
if options.ring2 is None: 
 options.ring2 = gb.ring2 
if options.file is None: 
 options.file = gb.file 
#actually do things here because yes 
cities = [] 
allcities = [] 
ring1scale=1000 
ring2scale=2000 
i=1 
while i < options.ring1+1: 
 x=ring1scale*math.sin((2*math.pi*i)/options.ring1) 
 y=ring1scale*math.cos((2*math.pi*i)/options.ring1) 
 cities.append((x,y)) 
 i+=1 
i=1 
while i < options.ring2+1: 
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 x=ring2scale*math.sin((2*math.pi*i)/options.ring2) 
 y=ring2scale*math.cos((2*math.pi*i)/options.ring2) 
 cities.append((x,y)) 
 i+=1 
x = 0 
y = 0 
overall, row = 0,0 
while overall < options.ring2+options.ring1: 
 rowcities=[] 
 while row < options.ring2+options.ring1: 
  if overall == row: 
   rowcities.append(0) 
  elif overall > row: 
   rowcities.append(allcities[row][overall]) 
  else: 
   rowcities.append(int(math.sqrt(math.pow(cities[row][0]-
cities[overall][0],2)+math.pow(cities[row][1]-cities[overall][1],2)))) 
  row+=1 
 allcities.append(rowcities) 
 overall+=1 
 row=0 
# finally write files here 
output = open("../Puzzles/"+options.file,'w') 
pickle.dump(allcities,output) 
output.close() 
print("done 


