

Red Light Green Light

New Mexico

Supercomputing Challenge

Final Report

April 1st, 2015

Team 132

School of Dreams Academy

Team Members:
Victoria Troyer

Clara Sims

Sponsor:
Eric Brown

Mentor:
Creighton Edington

1

Table of contents

Background ………………………………………………………………………1

Introduction……………………………………………………………………….2

Program/Code…...………………………………………………………………...3

Hypothesis…………………………………………………………………….......4

Materials…………………………………………………………………………..5

Experimental Procedure………………………………………………………......6

Results………………………………………………………………………….....7

Conclusion………………………………………………………………………..8

Future Expansion…………………………………………………………………9

Acknowledgments……………………………………………………………….10

Bibliography……………………………………………………………………..11

2

Background

 Last year we were both a part of the School of Dreams Academy’s Lemelson-MIT

InvenTeam. This team invented “Police ALERT”, a monitoring device for police officers that

detects potential threats within a 40 ft. 360° radius around their patrol vehicle1. A device with a

camera looking up at a conical mirror is placed on the roof of the patrol vehicle. The police

officer in the vehicle is warned via an in-cab indicator when motion is detected within the stated

parameters1. The in-cab indicator includes both audio and visual cues of where the motion is

coming from along with an integrated user interface to control which areas the device is

monitoring1. Police ALERT is unlike other existing technology for police officers. It protects

against approaching threats they were previously blind to and reduces the likelihood of an

ambush while in their patrol vehicle1. The alpha prototype cost $500 to fabricate. We were the

authors of the patent application for this device. The inspiration for the project Red Light Green

Light came from exploring other practical applications for this device.

Introduction

 The very first traffic light system installed was on the corner of Euclid Avenue and East

105th Street in Cleveland, Ohio2. The year was 1914 and this electric traffic signal was wired to

a manually operated switch inside a control booth2. Since then driving nations have evolved

with traffic lights, not only being used worldwide as the primary form of traffic regulation, but

have also come a long way in their technology.

 Right now the most public traffic systems use time, detection, or four-way-stops (stop

signs). The most commonly used traffic light system is the timed system, which uses traffic

3

coordination. This means traffic analysts calculate through data analysis of many different

intersections, the most efficient times to set for each light3. Every city has different times set for

their traffic lights because each has their unique traffic flow and employ different analysts,

however, the average stop light is set to operate with a red phase of 100 seconds, a green phase

of 60 seconds, and a yellow phase lasting roughly 10 seconds3. The detection system uses an

inductive loop4. This is a loop of wire that is imbedded into the surface of the pavement leading

up to the traffic light in order to detect vehicles and change the light according to how many

vehicles are waiting on either side4. The four way stop is a common intersection where four stop

signs conduct traffic to stop and let other vehicles go accordingly to who arrived at the

intersection first. This system is used on roads with relatively light traffic flow.

After researching the current methods of traffic regulation it is clear that these methods

are effective and efficient. They would have to be with an exponentially increasing population of

over 217 million licensed drivers in America in 20145. However, we believe they could, and

need to be more efficient. Not because, yes, it is annoying to sit at a red light when there are no

other vehicles in sight, but because the use of diesel and fuel in transportation is the second

largest output of carbon dioxide in the U.S. today, accounting for 32% of annual carbon dioxide

emissions6. One way to target this problem would be to drive less. However, in a country that

relies heavily on vehicles for transportation, much more than other industrialized countries who

take advantage of high-speed rail, we need to find a way to decrease carbon dioxide emissions

without lowering drive time.

The purpose of our project is to decrease carbon dioxide emissions from idling vehicles.

The average American spends 16 minutes a day or more idling in their vehicles. This equates to

16 ounces of carbon dioxide being released into the atmosphere per day per vehicle6. With 190

4

million licensed drivers and 217 million registered vehicles in America in 2014, that is roughly

over 1 billion pounds of carbon dioxide emissions per year5. If our motion light system works

effectively, we will decrease the idle time at traffic lights and therefore we will significantly

reduce carbon dioxide emissions from vehicles.

The objective of our project is to develop a new traffic light system that decreases vehicle

idle time at traffic lights, and costs less than imbedding wires into the road when installing an

inductive loop. The system we propose would use motion detection, and would ultimately be

applied to a device similar to that of our “Police ALERT” model. We decided that rather than

focusing on modifying the actual device we would test our motion light system in a pre-existing

NetLogo program. This way we could compare the motion system to the timed, detection, and

four way stop system in order to determine its effectiveness.

Program/Code

The pre-existing NetLogo program that we used for our project was set up as a model of

traffic moving through a city traffic grid. It allowed users to control traffic through global

variables, such as speed limit and the number of vehicles. We kept these, along with the grid size

x and y which controls how many intersections there are, and added the three other light systems

(detector, stop-sign, and motion).

5

Hypotheses

1. If we simulate a traffic program that uses the motion light-system, then the traffic flow

will be more efficient.

2. If we simulate a traffic program that uses the motion light-system, then the traffic flow

will not change.

3. If we simulate a traffic program that uses the motion light-system, then the traffic flow

will be less efficient.

Materials

1. Computer

2. NetLogo program

Experimental Procedure

1. The first step for this project was to analyze the pre-existing code in NetLogo

2. Then, keeping many aspects of the pre-existing program including timed system, we

modified it to fit our needs by adding the following.

a. Motion, detection and four way stop

3. Determined ticks-per-cycle would equal 24 hours (43200)

4. We determined 0.0625 pounds of carbon dioxide equaled 1 minute of idling

5. Inserted Extra-CO2 emissions as equal to wait time per vehicle

a. vehicle idling for 1 minute (1 minute of wait time) = 0.0625 pounds of CO2

emissions

6. Inserted wasted fuel as equal to wait time per-vehicle

6

a. vehicle idling for 1 minute = .0025 gallons of wasted fuel

7. We ran each light system for the equivalent of 24 hours (43200- ticks)

a. 30 ticks = 1 minute

b. 30(60) = 1800

c. 1800(24) = 43,200

d. 43,200 ticks = 1 day

8. Through behavior-space we documented the data from each light system to an Excel

spreadsheet

a. grouping extra carbon dioxide emissions for all four systems

b. grouping wasted fuel for all four systems

c. grouping speed for all four systems

d. grouping wait time for all four systems

9. We then compared, analyzed, and graphed the data.

Results

The results of this project are shown through graphs and charts.

7

The data above represents the amount of wasted fuel in gallons per seconds of wait time. 95 cars
are measured during a 24 hour period.

The data above represents the amount of wasted fuel in gallons per seconds of wait time. 235
cars are measured during a 24 hour period.

8

The data above represents the average wait time per car in seconds (0.5 equals 1 second). 95 cars
are measured during a 24 hour period.

The data above represents the average wait time per car in seconds (0.5 equals 1 second). 235
cars are measured during a 24 hour period.

9

The data above represents the amount of carbon dioxide emitted per seconds of wait time. 95
cars are measured during a 24 hour period.

The data above represents the amount of carbon dioxide emitted per seconds of wait time. 235
cars are measured during a 24 hour period.

10

The data above represents the average speed of 95 cars measured during a 24 hour period.

The data above represents the average speed of 235 cars measured during a 24 hour period.

11

Discussion

 While conducting the experiment for Red Light Green Light, we determined that the

motion light system was more effective than the other three systems (time, detector, stop sign),

but only when there was less traffic. When the amount of vehicles was set equal to or below 95

there was less wait time, less wasted fuel, and lower carbon dioxide emissions than the other

three systems. However, anywhere above that number of vehicles a major grid-lock occurred.

We speculate that this could be from insufficient detail in our code. For example, in a grid-lock

situation, a vehicle will enter the intersection and then stop in the middle of it. When this

happens the motion system simply stops working because it does not know what light to change

when there is no motion being detected.

Our stop sign and detector light systems became more efficient when the number of

vehicles was between 100 and 145. Still, like the motion system, these two systems also became

congested, almost to the point of grid-locked, soon after exceeding 145 vehicles. The timed

system was the least efficient up until 145 vehicles. After that it was significantly more efficient

up until our maximum of 235 vehicles. We did not run the system with more than 235 vehicles,

but the fact that the timed system did not appear to become grid-locked at any point led us to

exciting questions about its effectiveness in evacuation or natural disaster situations. More

12

research and experimentation would need to be done to prove this but it is a possibility for future

projects.

 The traffic grid model is a very simplified model. Traffic only goes in one direction, and

there are no turning lanes. As a result of this we are not sure how these things would affects any

of the systems, especially the motion and timer light systems. Thinking about the practical

applications of the device, we speculate that it would be hard to mount the motion detection

traffic light in large intersections. Because of the need for the motion device to be mounted in the

middle of the intersection, we are not sure if it would works with more than two lanes going in

each direction. The timer system may become grid-locked with more than two lanes going in

either direction, also. This is speculation and further testing needs to be done for conclusive and

reliable evidence to support these claims.

 The fact that the motion system was the best light system with 96 vehicles and below supports

our idea that this would be an effective alternative to the detection and timer systems in rural,

small town, and relatively low traffic areas.

Conclusion

 In conclusion our first hypothesis (If we simulate a traffic program that uses the motion

light-system, then the traffic flow will be more efficient) was correct. In areas with less traffic

i.e. small towns and suburban areas the motion light system would be beneficial and an

improvement in cost, efficiency and decreasing negative environmental impact. It would reduce

CO2 emissions from idling cars, waste less fuel, and there would be a decrease in travel time for

individual cars. Even in traffic situations where the detection system and motion system are close

in their effectiveness the motion system is more cost efficient and easier to install then installing

13

and maintaining the inductive loop of the detector traffic control system. As stated in the

introduction, the motion system may only cut back on wait time by what seems to be a slim

margin, but when trying to reduce carbon dioxide emissions and waste less fuel, every little bit

counts.

Practical Application

 With development and further testing, our project is the beginning step to a practical real

world solution to more efficient and environmentally friendly traffic regulation. For practical

application our code would have to be applied to a device similar to that of Police ALERT, the

device discussed in the background.

Future Expansion

• Can our program be applied to the device previously used for Police ALERT or

one similar to it?

• Will be it be as effective in the actual monitoring of traffic systems as it was

shown to be in our code?

• Does the timer light-system ever become grid-locked?

• If the timer light-system doesn’t ever become completely grid-locked could it be

used as a backup for every traffic light in an emergency or evacuation situation?

• How will adding turn lanes, and lanes going in two directions affect each light

system?

14

Acknowledgements

 Thank you to everyone who made our research and experimentation possible. We

couldn’t have done it without your help!

Bibliography

1. Grubb, Chloe. "Lemelson-MIT Program." School of Dreams Academy InvenTeam. 1 Jan.
2014. Web. 10 Mar. 2015.

2. Staff, History.com. "First Electric Traffic Signal Installed." History.com. A&E Television
Networks, 1 Jan. 2009. Web. 4 Mar. 2015.

3. "Mathematical Modelling in Traffic Flows." Web. 9 Mar. 2015.

4. "How Does a Traffic Light Detect That a Car Has Pulled Up? - HowStuffWorks."
HowStuffWorks. HowStuffWorks.com, 1 Apr. 2000. Web. 9 Mar. 2015.

5. "Blueprint for Safety - Risk Control Coverage Guide." Blueprint for Safety - Risk Control
Coverage Guide. Web. 9 Mar. 2015.

6. "Carbon Dioxide Emissions." EPA. Environmental Protection Agency, 2 July 2014. Web.
8 Feb. 2015.

15

Code

; Modified for Supercomputing Challenge (SODA - Sims and Troyer)
; Prediction - an "ALERT"-based traffic control system will develop into a CAS

globals
[
 grid-x-inc ;; the amount of patches in between two roads in the x direction
 grid-y-inc ;; the amount of patches in between two roads in the y direction
 acceleration ;; the constant that controls how much a car speeds up or slows
down by if
 ;; it is to accelerate or decelerate

 num-cars-stopped ;; the number of cars that are stopped during a single pass thru
the go procedure

 ;; patch agentsets
 intersections ;; agentset containing the patches that are intersections
 roads ;; agentset containing the patches that are roads
 light-timer ;;

 max-patch-motion ;; sets the maximum value for motion in an intersections radius
based on grid size
 extra-CO2-emissions
 mean-mean-speed-of-turtles ;; The average of the average of the speed of cars
 temp-mean-speed-value
 wasted-fuel ;; How much fuel waisted from cars stopped/Slow
 mean-wait-time-of-turtles;; Average of the average wait time of cars
 temp-wait-time-of-turtles
]

turtles-own
[
 speed ;; the speed of the turtle

16

 up-car? ;; true if the turtle moves downwards and false if it moves to the right
 wait-time ;; the amount of time since the last time a turtle has moved
]

patches-own
[
 intersection? ;; true if the patch is at the intersection of two roads
 green-light-up? ;; true if the green light is above the intersection. otherwise, false.
 ;; false for a non-intersection patches.
 my-row ;; the row of the intersection counting from the upper left corner of the
 ;; world. -1 for non-intersection patches.
 my-column ;; the column of the intersection counting from the upper left corner of
the
 ;; world. -1 for non-intersection patches.
 my-timer ;; the phase for the intersection. -1 for non-intersection patches.
 num-north-cars
 num-west-cars
]

;;;;;;;;;;;;;;;;;;;;;;
;; Setup Procedures ;;
;;;;;;;;;;;;;;;;;;;;;;

;; Initialize the display by giving the global and patch variables initial values.
;; Create num-cars of turtles if there are enough road patches for one turtle to
;; be created per road patch. Set up the plots.
to setup
 clear-all
 setup-globals

 ;; First we ask the patches to draw themselves and set up a few variables
 setup-patches

 set-default-shape turtles "car"

 if (num-cars > count roads)
 [
 user-message (word "There are too many cars for the amount of "
 "road. Either increase the amount of roads "
 "by increasing the GRID-SIZE-X or "
 "GRID-SIZE-Y sliders, or decrease the "
 "number of cars by lowering the NUMBER slider.\n"

17

 "The setup has stopped.")
 stop
]

 ;; Now create the turtles and have each created turtle call the functions setup-cars and
set-car-color
 crt num-cars
 [
 setup-cars
 set-car-color
 record-data
]

 ;; give the turtles an initial speed
 ask turtles [set-car-speed]

 reset-ticks
end

;; Initialize the global variables to appropriate values
to setup-globals
 set num-cars-stopped 0
 set grid-x-inc world-width / (grid-size-x)
 set grid-y-inc world-height / (grid-size-y)

 ;; sets max vaule for motion detection
 ifelse grid-x-inc >= grid-y-inc
 [
 set max-patch-motion grid-y-inc / 3
]
 [
 set max-patch-motion grid-x-inc / 3
]

 ;; don't make acceleration 0.1 since we could get a rounding error and end up on a patch
boundary
 set acceleration 0.099
end

;; Make the patches have appropriate colors, set up the roads and intersections agentsets,
;; and initialize the traffic lights to one setting
to setup-patches
 ;; initialize the patch-owned variables and color the patches to a base-color

18

 ask patches
 [
 set intersection? false

 set green-light-up? true
 set my-row -1
 set my-column -1
 set my-timer -1
 set pcolor brown + 3
]

 ;; initialize the global variables that hold patch agentsets
 set roads patches with
 [(floor((pxcor + max-pxcor - floor(grid-x-inc - 1)) mod grid-x-inc) = 0) or
 (floor((pycor + max-pycor) mod grid-y-inc) = 0)]
 set intersections roads with
 [(floor((pxcor + max-pxcor - floor(grid-x-inc - 1)) mod grid-x-inc) = 0) and
 (floor((pycor + max-pycor) mod grid-y-inc) = 0)]

 ask roads [set pcolor white]
 setup-intersections
end

;; Give the intersections appropriate values for the intersection?, my-row, and my-column
;; patch variables. Make all the traffic lights start off so that the lights are red
;; horizontally and green vertically.
to setup-intersections
 ask intersections
 [
 set intersection? true
 set green-light-up? true
 set my-timer 0

 set my-row floor((pycor + max-pycor) / grid-y-inc)
 set my-column floor((pxcor + max-pxcor) / grid-x-inc)
 set-signal-colors
]
end

;; Initialize the turtle variables to appropriate values and place the turtle on an empty road
patch.
to setup-cars ;; turtle procedure
 set speed 0

19

 set wait-time 0
 put-on-empty-road
 ifelse intersection?
 [
 ifelse random 2 = 0
 [set up-car? true]
 [set up-car? false]
]
 [
 ; if the turtle is on a vertical road (rather than a horizontal one)
 ifelse (floor((pxcor + max-pxcor - floor(grid-x-inc - 1)) mod grid-x-inc) = 0)
 [set up-car? true]
 [set up-car? false]
]
 ifelse up-car?
 [set heading 180]
 [set heading 90]
end

;; Find a road patch without any turtles on it and place the turtle there.
to put-on-empty-road ;; turtle procedure
 move-to one-of roads with [not any? turtles-on self]
end

;;;;;;;;;;;;;;;;;;;;;;;;
;; Runtime Procedures ;;
;;;;;;;;;;;;;;;;;;;;;;;;

;; Run the simulation
to go

 update-intersections-timer

 if light-system = "timer"
 [
 ;; have the intersections change their color based on timing
 set-signals-timer
 set num-cars-stopped 0
]

20

 if light-system = "motion"
 [
 ;; have the intersections change their color based on motion
 set-signals-motion
 set num-cars-stopped 0
]

if light-system = "detector"
 [
 ;; have the intersections change their color based on motion
 set-signals-detector
 set num-cars-stopped 0
]

if light-system = "stop-sign"
 [
 ;; have the intersections change their color based on motion
 set-signals-stop-sign
 set num-cars-stopped 0
]

 ;; set the turtles speed for this time thru the procedure, move them forward their speed,
 ;; record data for plotting, and set the color of the turtles to an appropriate color
 ;; based on their speed
 ask turtles
 [
 set-car-speed
 fd speed
 record-data
 set-car-color
]

 let current-gas-wasted (num-cars-stopped * 0.0025) / 30 ;; stop for 1min = .0025
gallons of gas wasted
 set wasted-fuel wasted-fuel + current-gas-wasted ;; in gallons

 let current-poll (num-cars-stopped * 0.0625) / 30 ;; stop for 1min = 1oz of CO2 and
1oz = .0625 pounds
 set extra-CO2-emissions extra-CO2-emissions + current-poll

21

 set temp-mean-speed-value temp-mean-speed-value + mean [speed] of turtles
 set mean-mean-speed-of-turtles (temp-mean-speed-value / (ticks + 1))

 set temp-wait-time-of-turtles temp-wait-time-of-turtles + mean [wait-time] of turtles
 set mean-wait-time-of-turtles (temp-wait-time-of-turtles / (ticks + 1))

 ;; update the phase and the global clock
 tick
end

;; have the traffic lights change color if phase equals each intersections' my-phase
to set-signals-timer
 ask intersections
 [
 if my-timer >= ticks-per-cycle
 [
 set green-light-up? (not green-light-up?)
 set-signal-colors
]
]
end

;; This procedure checks the variable green-light-up? at each intersection and sets the
;; traffic lights to have the green light up or the green light to the left.
to set-signal-colors ;; intersection (patch) procedure
 ifelse green-light-up?
 [
 ask patch-at -1 0 [set pcolor red]
 ask patch-at 0 1 [set pcolor green]
]
 [
 ask patch-at -1 0 [set pcolor green]
 ask patch-at 0 1 [set pcolor red]
]
end

;; set the turtles' speed based on whether they are at a red traffic light or the speed of the
;; turtle (if any) on the patch in front of them
to set-car-speed ;; turtle procedure
 if pcolor = (white - 1)

22

 [set speed 0.0000001]
 ifelse pcolor = red
 [set speed 0]
 [
 ifelse up-car?
 [set-speed 0 -1]
 [set-speed 1 0]
]
end

;; set the speed variable of the car to an appropriate value (not exceeding the
;; speed limit) based on whether there are cars on the patch in front of the car
to set-speed [delta-x delta-y] ;; turtle procedure
 ;; get the turtles on the patch in front of the turtle
 let turtles-ahead turtles-at delta-x delta-y

 ;; if there are turtles in front of the turtle, slow down
 ;; otherwise, speed up
 ifelse any? turtles-ahead
 [
 ifelse any? (turtles-ahead with [up-car? != [up-car?] of myself])
 [
 set speed 0
]
 [
 set speed [speed] of one-of turtles-ahead
 slow-down
]
]
 [speed-up]
end

;; decrease the speed of the turtle
to slow-down ;; turtle procedure
 ifelse speed <= 0 ;;if speed < 0
 [set speed 0]
 [set speed speed - acceleration - random-float .05]

end

;; increase the speed of the turtle
to speed-up ;; turtle procedure
 ifelse speed > speed-limit ;; slows down car if traveling faster than speed limit

23

 [set speed speed-limit]
 [set speed speed + acceleration + random-float .03]
end

;; set the color of the turtle to a different color based on how fast the turtle is moving
to set-car-color ;; turtle procedure
 ifelse speed < (speed-limit / 2)
 [set color blue]
 [set color cyan - 2]
end

;; keep track of the number of stopped turtles and the amount of time a turtle has been
stopped
;; if its speed is 0
to record-data ;; turtle procedure
 ifelse speed = 0
 [
 set num-cars-stopped num-cars-stopped + 1
 set wait-time wait-time + 1
]
 [set wait-time 0]
end

;; have the traffic lights change color based on motion of cars
to set-signals-motion
 update-intersections-motion
 ask intersections
 [
 if num-north-cars > num-west-cars and green-light-up? = false
 [
 set green-light-up? (not green-light-up?)
 set-signal-colors
]

 if num-north-cars < num-west-cars and green-light-up? = true
 [
 set green-light-up? (not green-light-up?)
 set-signal-colors
]
]
end

24

;; have the traffic lights change color based on cars stopped at red light
to set-signals-detector
 update-intersections-detector
 ask intersections
 [

 if num-north-cars > 0 and (ticks-per-cycle / 2) > my-timer and green-light-up? =
false
 [
 set green-light-up? (not green-light-up?)
 set-signal-colors
 set my-timer (ticks-per-cycle / 2 + 1)
]

 if num-west-cars > 0 and (ticks-per-cycle / 2) > my-timer and green-light-up? = true
 [
 set green-light-up? (not green-light-up?)
 set-signal-colors
 set my-timer (ticks-per-cycle / 2 + 1)
]
]
end

;; have cars take turns at intersections (stop signs)
to set-signals-stop-sign
 update-intersections-stop-sign
 ask intersections
 [
 ask patch-at -1 0 [set pcolor (white - 1)]
 ask patch-at 0 1 [set pcolor (white - 1)]

 if num-north-cars > 0
 [
 set green-light-up? (not green-light-up?)
]

 if num-west-cars > 0
 [
 set green-light-up? (not green-light-up?)

25

]
]
end

to update-intersections-timer
 ask intersections
 [
 if my-timer >= ticks-per-cycle
 [
 set my-timer 0
]

 set my-timer my-timer + 1
]
end

to update-intersections-motion
 ask intersections
 [
 let my-pxcor pxcor
 let my-pycor pycor
 set num-north-cars count turtles in-radius motion-detection with [heading = 180 and
ycor >= my-pycor]
 set num-west-cars count turtles in-radius motion-detection with [heading = 90 and
xcor <= my-pxcor]
 ;let closest-car min-one-of turtles [distance myself]

]
end

to update-intersections-detector
 ask intersections
 [
 let my-pxcor pxcor
 let my-pycor pycor
 set num-north-cars count turtles in-radius 1.6 with [heading = 180 and ycor > my-
pycor and speed <= 0.01]
 set num-west-cars count turtles in-radius 1.6 with [heading = 90 and xcor < my-pxcor
and speed <= 0.01]
 ;let closest-car min-one-of turtles [distance myself]

26

]
end

to update-intersections-stop-sign
 ask intersections
 [
 let my-pxcor pxcor
 let my-pycor pycor
 set num-north-cars count turtles in-radius 1.6 with [heading = 180 and ycor > my-
pycor and speed <= 0.001]
 set num-west-cars count turtles in-radius 1.6 with [heading = 90 and xcor < my-pxcor
and speed <= 0.001]
 ;let closest-car min-one-of turtles [distance myself]
]
end

; Copyright 2003 Uri Wilensky.
; See Info tab for full copyright and license.
; NOTE - used within the agreement specified by Wilensky (Edington 10NOV14)

27

28

