

The Digital Aristotle

The New Mexico Supercomputing Challenge
Final Report

April 1, 2015

Team 137
Saint Pius X High School

Team Members: Thomas R. Curtin and Samuel J. Gervais
Mentor: Jordan E. Medlock

Correspondence: samgervais512@gmail.com

Running Title: The Digital Aristotle

mailto:samgervais512@gmail.com

TABLE OF CONTENTS

1. Abstract 3

2. Background 4

3. Problem Statement 6

4. Methods 7

5. Results 14

6. Conclusion 15

7. Discussion 16

8. Acknowledgement 17

9. Bibliography 18

10. Appendix 19

 10.1. Software 19

10.2 Source Code 20

The Digital Aristotle 2

1. Abstract
 Traditional education is generalized and inefficient in society and can be

improved on. Traditional tutoring while better than traditional education, still

contains significant flaws and can be perfected through the use of computing. More

individual and accessible means of tutoring can be created to teach both students

who are struggling and excelling the information best suited for them. This will be

achieved by the use of searching capabilities and adaptive code to create a more

individual and online tutor. Also lectures will be added to allow a more dynamic

and less linear learning experience. For the first year, Digital Aristotle contains a

database of open source knowledge and returns pertinent information based on the

student’s input.

The Digital Aristotle 3

2. Background
Throughout history, humans have searched for better ways to gain

knowledge and share it with others. This desire to learn created the education

system seeking to share knowledge with everyone. However, the education

system has many flaws, most prominently in the lack of individualized attention

given to students that are either struggling or excelling in the subject matter.

This method used in schools is inefficient and needs a more dynamic and

individual approach to ensure better understanding of the subject material. To

fix this tutoring was created to fill the need of individualized attention to better

develop a student’s understanding of the subject.

Although tutoring is a step above normal education, there are still significant

problems and room for improvement. These problems stem from the need of a

human to identify the needs of the student and decide the best way for the

student to learn. This process is limited in the lack of tutors to fill the need of

the students, the expense of the tutor to tutor the student. These problems make

traditional tutoring inefficient compared to other means of tutoring. Other

tutoring programs have been created to more efficiently teach students.

Other online websites have been created to solve these problems with

traditional tutoring, one being Kahn academy. Kahn academy takes a different

approach to giving students the assistance necessary to understand the subject.

They use tutoring videos and online assignments to help students understand

curriculum to solve the problem of expense and amount of tutors. This method

however good, still has flaws that have to be addressed. For one the

individualization of tutoring is not as prevalent as the free aspect of Kahn

academy. This is a problem because the way Kahn Academy teaches is not

The Digital Aristotle 4

effective to all students. This lack of individual attention is still covered by

traditional tutoring which allows for improvement on both.

Another prominent tutoring system is Aleks. Aleks takes a different

approach than Kahn Academy by focusing on the individual aspects of tutoring

rather than the human aspects. Aleks uses adaptive questioning to determine

what the student is most ready to learn. This process is flawed due to the lack of

human interaction which is needed to round out the learning experience. This

lack of interaction is also fulfilled by the still imperfect system of tutoring and

can be expounded on with the use of all elements of tutoring. All tutoring

systems seem to have a lack of well-rounded teaching ability which is prevalent

in traditional tutoring which has room for improvement.

The Digital Aristotle 5

3. Problem Statement
We are creating the Digital Aristotle with the desired goal of bringing

greater and more achievable education to students who face hardships with a

certain subjects. This goal is essential due to the complex nature of material,

especially in mathematics, which causes great confusion for the student. The

way subject material is taught in a traditional classroom is set to be directed

linearly and within a specific time range, therefore subject material is either

taught too fast or too slow for the students. The gaps in understanding for

students who do not comprehend the material at the rate of the classroom not

only hurts their studies while they are learning the material, but it also hurts

their future progress with that material; this is especially prominent

mathematics because in all fields, advanced parts are based off of more basic

parts. There are also not enough teachers in comparison to every student to be

able to effectively give personal and individualized recognition towards the

scholar’s complications. This is an unavoidable consequence which forces the

student to maintain large misconceptions that cannot be easily and quickly

explained. Furthermore, we are making the Digital Aristotle to be used freely

on a webpage in order to allow for more students to gain access to the

information without the high costs of a human tutor. This gives most students

the ability to receive individualized tutoring in a convenient manner because of

the Digital Aristotle’s form of a webpage. The webpage, with its main use of a

search bar, also gives the user the capability to ask questions on material that

they do not understand, and receive a guided answer to benefit their knowledge.

Lastly, the Digital Aristotle is created to aid students who struggle in their

studies and seek to find greater knowledge outside the classroom in assistance

with their course.

The Digital Aristotle 6

4. Methods
 A largely important aspect of the Digital Aristotle is its user-interface

conveniently based in a webpage. The most prominent use of the user-interface

is with the search bar displayed on the webpage in which the user can type text

into, and the input is used to determine the output of pages displayed on the

page. The client-side of the webpage is comprised of three documents

containing its programming: HyperText Markup Language (HTML), JavaScript

with JQuery, and Cascading Style Sheet (CSS) files. The HTML file loads the

scripts for JavaScript, and CSS style which ultimately allows for the use of the

webpage beyond only displaying text; it also creates the search bar and output

which is used as the main user-interface device. The JavaScript document

contains the main functions of the webpage as it is used to store the user’s

input, and use that input to produce images which most closely relate to the

input. It does this by saving the inputted text as a string in a variable which is

then slightly pruned in order to remove unnecessary spaces at the beginning and

end of the string. After this, the variable is sent to a document-locating program

which compares the input to multiple different texts in a database, and the

names and file locations of the pictures that most close relate to the input are

returned as a variable. Finally, these pictures are displayed in order on the

webpage for the user to read and use. The CSS, on the other hand, contributes

primarily to the aesthetics of the webpage as opposed to the JavaScript main use

being for the actual function of the webpage. The CSS is used to align the text,

search bar, output, and images on the page; it also adds margins and color to the

background of the page. In short, the user control of the Digital Aristotle is used

on a webpage which brings up information based upon the user’s input into the

search bar.

The Digital Aristotle 7

 The server-side portion of the webpage creates the link between the human-

computer interaction aspect of the program and the document-locating program.

The server program mainly uses the Tornado web framework, an asynchronous

web server based in Python which is used for quick and continuous use of the

web server. The program creates multiple handling classes that are used to

display the client-side portions to on the webpage, and displayed to the user;

another class is created to receive the user’s input in the search bar, and then

display the results of that from the document-locating program. The handling

classes first find the Multi-Purpose Internet Mail Extensions (MIME), a process

used to identify files on through a server based off of their format, of a file that

will be used with the webpage. This opens the file in the background as an

object with Python’s “open” function, and it is then created in a binary form

using Python’s “read” function. This can be used and displayed by the Tornado

server for the user to utilize. The searching class works by creating the database

from the document-locating program, and then sends the user’s input to the

server from the JavaScript document to find the results based off of the input

from the document-locating program. Subsequently, the results are sent to be

displayed on the webpage through the server. These classes are assembled using

Tornado’s request handler where the classes are applied with their

corresponding files and components that they use to display and include on the

webpage. The use of this server and webpage allow for the more customizable

application for the Digital Aristotle, and the more efficient demonstration of the

results. These elements create the main use and function for the human-

computer interaction in order to make it as advantageous for the user as

possible. In conclusion, the server uses numerous classes in order to display

components of the webpage for the user, and also so that it is able to function

The Digital Aristotle 8

quickly and efficiently with the client-side portion as well as to produce the

most efficient and utilitarian human-computer interaction.

The main facet of the Digital Aristotle is its knowledge database which is

created from the set of free e-books provided by Project Gutenberg. The

database creation is located within the document-locating program, and it is

created as a JSON (JavaScript Object Notation) Schema. The database is

composed in a cascading style where a book object contains a list a chapters

which contains a list of subchapters which contains the text of the book. The

main book object is the database encompasses the simplest set of keys and

values, but it is necessary in order to easily access the more important chapters

and subchapters object; the book object only contains the actual book’s name,

chapters, and, if available, the publish date and isbn. The chapters object are

comprised of the chapter’s name, subchapters in that chapter, and all of the

pages within that chapter. The chapter’s name is used by the document-locating

program to test if the chapter is about what the user searches, and if it is, then

the pages value is used by the webpage to display those pages. Then, the

subchapters object contains the subchapter’s name, the text in that subchapter,

and the amount of pages in the subchapter. The name of the subchapter is used

correspondingly to the name of the chapter, but the text is based accumulatively

to the similar words in the text compared to the user’s input. The database in

this format is created in Python using a class object for each of the elements.

The first class created is used by the other class objects so that they can be

serialized which is the process that allows for the database to be written in

JSON and used in Python. The next classes, the Book, Chapter, and SubChapter

classes, are created with the contents mentioned previously, and each of them

inherit the serializable class which allows each of them to later be used by the

The Digital Aristotle 9

document-locating Python functions. After all of these classes are defined, a

function is used to actually make the database in the correct composition. The

creation begins by making a variable that contains the Book object, and another

that contains a JSON document based off of the Book which has each of the

book’s pages and the words with their fonts on that page. Each page is then

searched, and based on the font of a group of words, they are categorized into

chapters and subchapters. As a final step, the JSON file produced is modified so

that it can be searched through and read by Python with the same categories as

in the JSON database. Briefly, multiple classes are used to create a JSON

database with book, chapters, and subchapters objects which can be used by the

document-locating functions to return the correct chapter or subchapter based

on its contents.

Figure 1. A representation of the JSON database format with its sub-

sections.

The Digital Aristotle 10

 The document-locating program is used to find the pages of a chapter or

subchapter after comparing an input to the name and text in the chapter or

subchapter. This process is completed using many functions, the most important

of these being the levenshtein distance. The levenshtein distance is a method

used for measuring the differences between two strings, and it is used to

compare the differences between an input and the title of a chapter or

subchapter in order to produce a fuzzy search. The levenshtein function

compares the two strings by matching each of their characters and setting a

different value based on the action needed to get them the match (i.e. insertion,

substitution, or deletion). The main locating function is used to find an index

which uses the levenshtein distance on the chapter and subchapter, and the text

in the subchapter to find a more accurate comparison of the input and chapter or

subchapter. This function first creates a nested function which is used to create

a negative accumulator where every word that is not a stop-word, words that are

not relevant to data search, but used in spoken and written English, matches the

input subtracts one form this accumulator; the levenshtein distance of the word

in the chapter or subchapter compared to the input divided by each of the words

in the subchapter is then added to the accumulator. In order to make this process

quicker, the process is “memoized” which is the technique of storing results of a

function that use bulk amounts of processing power with repeated or redundant

calculations. After this, another nested function is defined which creates an

index that starts as being the levenshtein distance of the chapter or subchapter’s

name. This index is modified differently depending on if the type of the chapter

being used is a chapter or subchapter. If it is a subchapter, then the index is only

modified by adding its accumulator found in the function described before. On

the other hand, if it is a chapter, then another accumulator is created which

contains the sum of the accumulators of each subchapter found by the other

The Digital Aristotle 11

nested function. The average accumulator is then found by dividing that by the

total number of subchapters in the chapter, and that is added to index. This can

be signified with the following function where W represents the average number

of words the subchapters, S represents the number of subchapters present, and L

represents the levenshtein distance of every word:

A list of these indexes are created, and the another function is used to find

the smallest of these by using Python’s ability to create a variable representing

infinity to compare each index to this variable until the chapter with the

smallest index is found and returned. A final searching function is defined

which uses these functions to compare the string of the name of a chapter or

subchapter and the name’s individual words, and return the chapter with the

lowest index. To conclude, the levenshtein distance between an input and the

chapter or subchapter’s name and text is used to create a fuzzy search that is

able to accurately find a matching chapter or subchapter.

 In conclusion, the user control of the Digital Aristotle begins on a webpage

where the user has the ability to input a string of characters; this input is then

sent by the server to a document-locating program. The document-locating

The Digital Aristotle 12

program allots the text to numerous functions which mainly use the Levenshtein

distance, a method used for measuring the differences between two strings, and

compares the text to chapters, sub-chapters, and text held within the JSON

database. The database is created by “searching” through a PDF of a

mathematics book and using the disparity in font between sections in the book

to construct a codified database in which a more accurate result will be

produced based upon the user’s input. After the chapter which most relates to

the input string is found, the chapter’s pages are displayed for the user on the

webpage.

The Digital Aristotle 13

5. Results

The Digital Aristotle, being a four-year project, is far from its culmination,

but the first year or stage of the project has been completed. In this stage, a

database containing mathematics from free e-books provided by Project

Gutenberg has been forged and culled. A document-locating program has also

been created with the use of searching through this database, and an intricate

use of functions have been made to compare an input to the many chapters and

subchapters in the database in order to find the chapter or subchapter that best

compares to that input. For simple use of the program, we have made a

webpage with a simple search bar that is joined with the much more

complicated document-locating program for the user to add their input, and the

pages of the book relating to that input are displayed below for the user to

employ. This webpage is connected to a customizable server which links the

webpage to the document-locating program. These are what the first year of the

project is comprised of, and it is all functional without many complications. A

functional server and webpage have also been created which makes the program

more accommodating, so the first-year of the project is operable.

The Digital Aristotle 14

6. Conclusion

Education is a key part of society that impacts every citizen looking to excel

in life. Currently the approach to teaching students is flawed due to the

generalized teaching in classrooms rather than individual attention. Tutoring

tries to fill this lack of individualized attention by having a teacher teach the

material in what they believe is the most effective to their students

understanding. Tutoring still has flaws that can be improved on such as the

amount of tutors compared to the amount of students. Other flaws include the

expense of hiring a tutor and the time it takes to tutor. The use of adaptive code

in Digital Aristotle creates an individualized attention for the students by

understanding their strengths and weaknesses. Digital Aristotle impacts the

foundation of traditional education by being an easy source to gain a deeper

understanding of the knowledge sought. As the first year closes on this project,

Digital Aristotle is a base foundation of what is going to be accomplished. The

search engine allows for students to search for specific topics within the

database and allows them to find relevant information to assist them. The full

project solves the problem of students needing individual assistance by using a

adaptive algorithm to adapt to the students strengths and weaknesses and to

have a human element as well. This approach is unique to Digital Aristotle

through the use of multiple tutoring methods used in cooperation.

The Digital Aristotle 15

7. Discussion

The Digital Aristotle tutoring system, much like its human namesake, seeks

to transform selective areas of knowledge and effectively communicate this

knowledge to students. Although the scope for development of Digital

Aristotle in the first year of this multiyear project was limited by design,

significant progress in planning continuous improvements in Digital Aristotle.

The Digital Aristotle tutoring system consists of a database of knowledge

commonly referred to as the knowledge-base, an overarching knowledge

retrieval subsystem, and a human-computer interface enabling input queries and

output visualization of retrieved information. The first year effort created a

baseline system comprised of a knowledge-base and search engine that retrieves

information from an algebra textbook based on user input queries. Completion

and use of the baseline Digital Aristotle system revealed many insufficiencies.

These insufficiencies guiding our planning for future improvements and

upgrades to Digital Aristotle. Most notably we plan on increasing the content

and diversity of the knowledge-base. In addition, the lack of selectivity in

retrieved information, and lack of specificity pertaining to the user input query

will need to be fixed as well. This project will be improved on throughout the

next 4 years as it is an ambitious project. This organizational system will better

segment the goals of Digital Aristotle.

The Digital Aristotle 16

8. Acknowledgements
 We would like to thank Jordan E. Medlock for his invaluable knowledge in

programming and his assistance throughout this entire project. We would also

like to thank our parents for constant support and help editing this paper. Lastly

we would like to thank CGP Grey for piquing our interest in the topic of

individualized education.

The Digital Aristotle 17

9. Bibliography

Kahn, Salman. "Khan Academy." Khan Academy. N.p., n.d. Web. 29 Mar.
2015.

NYU, and UCI. "ALEKS -- Assessment and Learning, K-12, Higher Education,
Automated Tutor, Math." ALEKS -- Assessment and Learning, K-12, Higher

Education, Automated Tutor, Math. N.p., n.d. Web. 29 Mar. 2015.

Clarke, Wallace. A First Book in Algebra. N.p.: n.p., n.d. Project Gutenberg. 27
Aug. 2004. Web. 24 Mar. 2015.

"NumPy." NumPy — Numpy. N.p., n.d. Web. 31 Mar. 2015.
"Tornado." Tornado Web Server — Tornado 4.1 Documentation. N.p., n.d. Web.
31 Mar. 2015.
"SciPy.org." SciPy.org — SciPy.org. N.p., n.d. Web. 31 Mar. 2015.

The Digital Aristotle 18

10. Appendix
10.1. Software

Tornado - http://www.tornadoweb.org/en/stable/
Tornado is a Python web framework and asynchronous networking library.

PIL - http://www.pythonware.com/products/pil/

The Python Imaging Library (PIL) adds image processing capabilities to your

Python interpreter. This library supports many file formats, and provides

powerful image processing and graphics capabilities.

Levenshtein - http://www.levenshtein.net/

The Levenshtein distance calculates the differences between two strings to

determine how to modify one string to obtain another string.

NumPy - http://www.numpy.org/

NumPy is the fundamental package for scientific computing with Python. It is a

powerful N-dimensional array object, provides sophisticated

(broadcasting) functions tools for integrating C/C++ and Fortran code,

and useful linear algebra.

SciPy - http://www.scipy.org/

SciPy is a Python-based ecosystem of open-source software for mathematics,

science, and engineering. It works in cooperation with NumPy and

Matplotlib.

Matplotlib - http://matplotlib.org/

The Digital Aristotle 19

http://www.tornadoweb.org/en/stable/
http://www.pythonware.com/products/pil/
http://www.levenshtein.net/
http://www.numpy.org/
http://www.scipy.org/
http://matplotlib.org/

matplotlib is a python 2D plotting library which produces publication quality

figures in a variety of hardcopy formats and interactive environments across

platforms.

NLTK - http://www.nltk.org/

The Natural Language Toolkit (NLTK) is needed for building Python programs to

work with human language data.

 10.2. Source Code
 """
Authors: Samuel J. Gervais and Thomas R. Curtin
School: Saint Pius X High School
Email: samgervais512@gmail.com
Description: Main database creation, search, and document-
locating program
"""
####### Modules Begin

import json
from matplotlib.pylab import *
import numpy as np
from numpy import *
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import matplotlib.colors as colors
import random
import time
from itertools import chain
import nltk
import os.path

####### Modules End

Data Components Begin

class Serializable(object):
 '''

The Digital Aristotle 20

http://www.nltk.org/

 Creates a class that allow for the creation of a
 JSON database while still being able to be used in Python
 '''
 @classmethod
 def fromJsonFile(cls,fname):
 f = open("Math6")
 document = json.loads(f.read().encode('utf8'))
 return cls.fromJsonObj(document)

 @classmethod
 def fromJsonObj(cls,obj):
 pass

 def toJSONObj(self):
 pass

 def __str__(self):
 return (json.dumps(self.toJSONObj(), indent=2))

class Book(Serializable):
 '''
 Creates a class that will contain major components
 (book's name, chapters, isbn, and publish_date) of
 the database based on the math book
 '''
 # str [Chapter] str str
 def __init__(self,name,chapters,publish_date,isbn):
 self.name = name
 self.chapters = chapters
 self.publish_date = publish_date
 self.isbn = isbn

 @classmethod
 def fromJsonObj(cls,dictionary):
 '''
 Creates a dictionalry with components of the book
 '''

The Digital Aristotle 21

 return cls(dictionary['name'],[Chapter.fromJsonObj(obj)
for obj in
dictionary['chapters']],dictionary['publish_date'],dictionary['i
sbn'])

 def toJSONObj(self):
 '''
 Adds information to dictionary based on dictionary
 values created in the "fromJSONObj" function
 '''
 return {'name' : self.name, 'chapters' :
[obj.toJSONObj() for obj in self.chapters], 'publish_date':
self.publish_date, 'isbn': self.isbn}

class Chapter(Serializable):
 '''
 Makes a class which will contain the a chapter's name,
 SubChapter object, and the number of pages in the entire
chapter
 '''
 # str [Sub_Chapter]
 def __init__(self,name,subchapters,pages):
 self.name = name
 self.subchapters = subchapters
 self.pages = set(pages)

 '''
 Next two functions do the same JSON creation as in the
"Book"
 class, except it uses dictionary values for the chapter's
name.
 subchter, and pages
 '''
 def toJSONObj(self):
 return {'name' : self.name, 'subchapters' :
[x.toJSONObj() for x in self.subchapters],
'pages':list(self.pages)}

The Digital Aristotle 22

 @classmethod
 def fromJsonObj(cls,dictionary):
 return
cls(dictionary['name'],[SubChapter.fromJsonObj(obj) for obj in
dictionary['subchapters']],dictionary['pages'])

class SubChapter(Serializable):
 '''
 Makes a class which will contain a subchapter's name, the
 text in the subchapter, and the amount of pages in the
SubChapter
 '''
 # str [Paragraph]
 def __init__(self,name,text,pages):
 self.name = name
 self.text = text
 self.pages = set(pages)

 '''
 The next two fucntions do the same JSON database creation as
in the
 "Book" class, except it uses dictionary values for the
SubChapter's
 name, text in the SubChapter, and the number of pages in the
subchpter
 '''
 @classmethod
 def fromJsonObj(cls,dictionary):
 return cls(dictionary['name'],
 dictionary['text'],
 dictionary['pages'])

 def toJSONObj(self):
 return {'name' : self.name, 'text' : self.text, 'pages':
list(self.pages)}

Data Components End

The Digital Aristotle 23

####### Data Creation Begin

def createNewMathOut():
 '''
 Function to use classes in "Data components" to create the
JSON database
 by searching through each page of the book, and using the
font to determine
 where the type of object, chapter, subchapters, or text, the
information belongs
 '''
 f = open("LinedMath.json")
 book = Book('A First Book in Algebra',[],"","")
 document = json.loads(f.read().encode('utf8'))
 chapter = None
 subchapter = None
 for (page_num, page) in enumerate(document):
 page_num += 1
 for line in page: # Searches by each line of text on a
single page
 if line[u'font'] == 5: # chapter
 chapter = Chapter(line[u'data'], [], [page_num])
 book.chapters.append(chapter)
 subchapter = None

 elif line[u'font'] == 3: # Subchapter
 subchapter = SubChapter(line[u'data'], '',
[page_num])
 if chapter is None:
 chapter = Chapter('No Name Chapter', [],
[page_num])
 chapter.subchapters.append(subchapter)

 elif subchapter is not None:
 subchapter.text += u'\n' + line[u'data']
 subchapter.pages.add(page_num)
 chapter.pages.add(page_num)

The Digital Aristotle 24

 else:
 subchapter = SubChapter("No Name",
line[u'data'], [page_num])
 if chapter is None:
 chapter = Chapter('No Name Chapter', [],
[page_num])
 chapter.subchapters.append(subchapter)

 fout = open("newMathOut.json",'w')
 string = json.dumps(book.toJSONObj())
 fout.write(string) # Creates the database as a text file

def readBook():
 '''
 Function used to search through the JSON in python
 database created in the fucntions
 '''
 f = open('newMathOut.json')
 book = Book.fromJsonObj(json.loads(f.read()))
 return book

####### Data Creation End

####### Search Data Begin (Functions)

def levenshtein(source, target):
 '''
 Function used to compare two strings for their similarity by
comparing
 the individual characters in the strings, and finding what
is needed to
 make them the same (i.e. insertion, substitution, or
deletion). Returns
 a number based on the changes required; the smaller the
number, the closer
 the two strings are to eachother.
 '''
 if len(source) < len(target):

The Digital Aristotle 25

 return levenshtein(target, source)

 if len(target) == 0:
 return len(source)
 source = np.array(tuple(source))
 target = np.array(tuple(target))

 previous_row = np.arange(target.size + 1)
 for s in source:
 # Insertion
 current_row = previous_row + (0.1)

 # Substitution or matching:
 current_row[1:] =
np.minimum(current_row[1:],np.add(previous_row[:-1], (target !=
s) * (3)))

 # Deletion
 current_row[1:] = np.minimum(
 current_row[1:],
 current_row[0:-1] + (1))
 previous_row = current_row

 return previous_row[-1]
levenshtein = np.vectorize(levenshtein)

def minimumChapter(xs):
 '''
 Function used to find the chapter with the least amount of
difference
 between the input and a (sub)chpter's text and name given an
index where
 the smallest index is the (sub)chapter with the least
difference
 '''
 smallest = float("inf")
 smallestChapter = None
 for (value, chapter) in xs:

The Digital Aristotle 26

 if value < smallest:
 smallest = value
 smallestChapter = chapter
 return smallestChapter

numberOfTimesRan = 0
filtered_words_global = []
def bestChapter(input_string, chapters):
 '''
 Function used to return the chapter or subchapter withe the
smallest
 difference between the input. It compares all of the
chapters and
 subchapters to the input
 '''
 def countWordsInSubChapter(subchapter):

 '''
 Function that changes a subchapters text into a lost of
individual
 words, and then removest irrelevant words, stop words,
from this list.
 It then creates a negative accumulator where one is
subtracted from it
 if the word matches the input. The sum of levenshtein
distance of a word
 divided by every word is then added to this accumulator.
 '''
 global numberOfTimesRan, filtered_words_global
 numberOfTimesRan += 1
 accum = 0
 text = subchapter.text
 words = text.split()
 filtered_words = [w.lower() for w in words if not
w.lower() in stopWords and not isInt(w) and w.isalpha() and
len(w) > 2]
 accum -= len([w for w in filtered_words if w ==
input_string])

The Digital Aristotle 27

 filtered_words_global += filtered_words
 for word in filtered_words:
 comp = levenshteinDistance(input_string,word)
 accum += float(comp) / len(words)
 return accum

 countWordsInSubChapter = memoize(countWordsInSubChapter)

 def chapterPlusIndex(chapter):
 '''
 Function used to return the (sub)chapter with the name
and text closest to the
 input by comparing their levenshtein distances with a
created index which is more
 accurate than the other chapters or SubChapters
 '''
 index = levenshteinDistance(input_string, chapter.name)
 if type(chapter) is SubChapter:
 index += countWordsInSubChapter(chapter)
 elif type(chapter) is Chapter:
 accum = 0
 for subchapter in chapter.subchapters:
 accum += countWordsInSubChapter(subchapter)
 accum = accum/len(chapter.subchapters)
 index += accum

 return (float(index), chapter)
 xs = map(chapterPlusIndex, chapters)
 return minimumChapter(xs)

def memoize(f):
 '''
 Function used to make searching the database quicker in the
"bestChapter" function by repeating
 a code that has been ran before in the same way so it takes
less time to run it again for another
 chapter
 '''

The Digital Aristotle 28

 memory = dict()
 def memoizedFunction(x):
 if x in memory:
 return memory[x]
 else:
 memory[x] = f(x)
 return memory[x]
 return memoizedFunction

def getChapter(input_string,book):
 '''
 Function used to find the chapter or subchapter that is
closet to the input by comparing the input
 to every chapter and SubChapter with the "bestChapter"
function
 '''
 return bestChapter(input_string, list(chain(*[c.subchapters
for c in book.chapters])) + book.chapters)

def levenshteinDistance(str1,str2):
 '''
 A function which takes two string and converts them into
unicode, and then compares them with the "levenshtein"
 function after making them lowercase and removing periods
from the strings
 '''
 str1, str2 = unicode(str1), unicode(str2)
 return
levenshtein(str1.lower().rstrip('.'),str2.lower().rstrip('.'))

def isInt(string):
 '''
 A function used to test if a string contains numbers and
returns a list of those strings.
 This is used to remove numbers from the comparison of the
input to the text in SubChapters
 '''
 string = [x for x in string if x in '0123456789']

The Digital Aristotle 29

 return len(string) > 0

####### Search Data End (Functions)

####### Search Data Begin

These stop words are words that are not related to data seach,
but used in spoken and written English
stopwords = """
a about above after again agains all am an and any are aren't as
at be because been before being below between both but by can't
cannot
could couldn't did didn't do does doesn't doing don't down
during each few for from further had hadn't has hasn't have
haven't having he
he'd he'll he's her here here's hers herself him himself his how
how's i i'd i'll i'm i've if in into is isn't it it's its itself
let's me
more most mustn't my myself no nor not of off on once only or
other ought our ours ourselves out over own same shan't she
she'd she'll
she's should shouldn't so some such than that that's the their
theirs them themselves then there there's these they they'd
they'll they're
they've this those through to too under until up very was wasn't
we we'd we'll we're we've were weren't what what's when when's
where
where's which while who who's whom why why's with won't would
wouldn't you you'd you'll you're you've your yours yourself
yourselves first
second twice third fourth - + one two three four five six seven
eight nine ten john many times much will can miles years cent
men hours
exercise man must
"""
stopWords = stopwords.split()

def search(input_string,book):

The Digital Aristotle 30

 '''
 Main function which uses the functions above to compare an
input to the
 book's chapters and subchapter, and returns the chapter with
the closest
 related information
 '''
 filtered_words_global = []
 chapter = getChapter(input_string,book)
 return displayPages(chapter.pages)

def displayPages(pages):
 '''
 Function used to return the chapter's pages file names which
are
 used to find the file locations of the book's pictures
 '''
 pages = sorted(list(pages))
 return [os.path.join('Math6-%03d.png'%(x)) for x in pages]

####### Search Data End
'''
Statement used by server to run the search using an input sent
from the webpage
'''
if __name__ == '__main__':
 createNewMathOut()
 book = readBook()
 search(u'',book)

The Digital Aristotle 31

'''
Authors: Samuel J. Gervais and Thomas R. Curtin
School: Saint Pius X High School
Email: samgervais512@gmail.com
Description: Uses Tornado software to create a server for the
webpage to run on.
'''
import tornado.ioloop
import tornado.web
from mimetypes import MimeTypes
import urllib
import tornado.escape
import data
import json
import os.path

class MainHandler(tornado.web.RequestHandler):
 def get(self):
 f = open("../HTML/index.html")
 s = f.read()
 self.write(s)

class HTMLFileHandler(tornado.web.RequestHandler):
 def get(self,fileName):
 url = urllib.pathname2url(fileName)
 t = MimeTypes().guess_type(url)
 print t
 self.set_header("Content-Type", '' + t[0] + ';
charset="utf-8"')
 f = open("../HTML/" + fileName)
 s = f.read()
 self.write(s)
class MathFiles(tornado.web.RequestHandler):
 def get(self,fileName):

The Digital Aristotle 32

 url = urllib.pathname2url(fileName)
 t = MimeTypes().guess_type(url)
 print t
 self.set_header("Content-Type", '' + t[0] + ';
charset="utf-8"')
 f = open("../IPython/tranMath6/" + fileName)
 s = f.read()
 self.write(s)

class QueryHandler(tornado.web.RequestHandler):
 def get(self, query):
 print "searching"
 data.createNewMathOut()
 book = data.readBook()
 results = data.search(query,book)
 print "here"
 self.write(json.dumps(results))

application = tornado.web.Application([
 (r"/", MainHandler),

(r"/(index\.css|index\.js|Digital%20Aristotle\.png|DA\.png|doge\
.png|favicon.ico)", HTMLFileHandler),
 (r"/(Math6-[0-9]+\.png)", MathFiles),
 (r"/search/(.*)", QueryHandler)
])

if __name__ == "__main__":
 application.listen(8888)
 tornado.ioloop.IOLoop.instance().start()

The Digital Aristotle 33

<!--
Authors: Samuel J. Gervais
School: Saint Pius X High School
Email: samgervais512@gmail.com
Description: Program to creat webpage with attached JavaScript
and CSS files
-->
<!DOCTYPE html>
<html lang="en-US">
 <head>
 <title>Digital Aristotle</title>
 <link rel="icon" type="image/png" href="DA.png">
 <script
src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.m
in.js"></script>
 <script type="application/javascript"
src="index.js"></script>
 <link rel="stylesheet" type="text/css" href="index.css">
 </head>

 <body>

 <input type="text" placeholder="Search" autocomplete="off"
id="search">
 <div id="output">
 </div>
 </body>
</html>

The Digital Aristotle 34

// Authors: Samuel J. Gervais and Thomas R. Curtin
// School: Saint Pius X High School
// Email: samgervais512@gmail.com
// Discription: Program for the main functions of the search bar
which sends search to server, and displays the results.
$(document).ready(function() {
 $("#displayImg").hide().show(1000);
 $("#search").delay(1000).hide().slideDown(1000);
 $("#search").change(function() {
 var search=$("#search").val();
 search = $.trim(search);
 if(search == "doge") {
 $("#output").empty()
 $("#output").prepend('<img src="doge.png"
/>').hide(100).show(1000);
 }
 else if(search == "acknowledge") {
 var random = Math.floor(Math.random()*10);
 console.log(random)
 var acknowl = [
 "http://jordanemedlock.com",
 "http://www.cgpgrey.com"
];
 if(random % 2 == 0) {
 window.open([acknowl[0]]);
 }
 else {
 window.open([acknowl[1]]);
 }
 }
 else {
 $.getJSON("/search/" + encodeURIComponent(search),
function(data) {
 console.log(data);
 $(output).empty()
 for (var i = data.length - 1; i >= 0; i--) {
 console.log(data[i]);

The Digital Aristotle 35

 $("#output").prepend('');
 }
 })
 }
 })
})

The Digital Aristotle 36

/*
Authors: Samuel J. Gervais and Thomas R. Curtan
School: Saint Pius X High School
Email: samgervais512@gmail.com
Discription: The CSS program for the aesthetics of the webpage.
*/
body {
 text-align: center;
 background-color: #DDD
}

#search {
 height: 10%;
 font-size: 40pt;
 border-radius: 10px;
 outline-width: 0;
 width: 70%;
}

#displayImg {
 width: 50%;
}

#output {
 display: block;
 margin-left: 0 auto;
 margin-right: 0 auto;
 text-align: center;
 overflow-x:scroll;
 position: relative;
 width: 100%;
 height: 100%;
 font-size: 20pt;
 display: inline-block;
}

The Digital Aristotle 37

