
Cyber-Security at Desert Academy

New Mexico

Supercomputing Challenge

Final Report

April 1st, 2015

Team #20

Desert Academy

Team Members
Jonas Kaare-Rasmussen

Lileigh Thomas

Teachers
Jocelyne Comstock

Jeff Mathis

Mentor
Jed Crandall

 1

Table of Contents
Executive Summary 3

Introduction 4

 Background Information 5

 Problem 6

Method 6

 Permission 6

 Low-Security Information Gathering 7

Local-Privilege Escalation Attack 9

 High-Security Information Gathering 10

 Hacks 13

Results 16

 Patches 19

Conclusion 19

Appendixes 21

 Appendix 1 21

 Appendix 2 22

Appendix 3 22

Appendix 4 26

Sources 26

 2

Executive Summary

 Cyber-security is indisputably a new and big problem in our society.

Major hacks occur often. This proves that cyber-security is a major problem

in our present day society. This begs the question, “how secure are we?”

This project revolves around attempting to see how secure our student

accounts at Desert Academy are from a vicious external hacker, and from

students inside the school.

 This project attempted to violate the security of the server of which

hosts the student accounts from inside the school. This was done in five

steps. The first step was gaining legal permission from the school to attempt

to hack into the server, within certain boundaries so that only student-

generated information was accessed in the project. The second step was

finding external information about the server using the program Nmap. This

program finds the open, closed, and blocked ports. The third step was a very

specific Local-Privilege Escalation attack. This involved giving our student

accounts heightened privileges. The fourth step was gathering server-based

information using a plethora of bash commands. The final step was the

actual hacks. The hacks included many shellshock attacks, a vulnerable

script attack, and finally a DOS attack.

All of the attacks were unsuccessful. This gives strong evidence to the

fact that the server is safe from both an internal hacker, and an external

hacker. However, during this project it became evident that a student could

easily access other student-generated information. Simply changing the

working directory in a shell to another student’s home directory does this.

As our goal stated, we successfully found a vulnerability in the server setup,

and plan on patching it with a couple changes in the server permissions

layout.

 3

Introduction

Background Information

 Cyber-security is a very large topic, and a very new struggle for our

society. Information integrity and security has always been important, but it

has become exponentially more important. It is estimated that every two

days we generate about 5 Exabyte’s of new data online 1 . This is

approximately the same amount of data generated from the dawn of

civilization to about 200357. With this much information, and sharing of

information, it is hard to simply quarantine the data from people who use it

viciously. Though much of this data is insignificant, like the most recent

picture of you in the park, a large portion of this data is incredibly

confidential and sensitive. Some of this data includes bank account

information to even personal identities.

To protect the important information, companies have designed

different protection methods. These methods are in essence what cyber-

security is about. Initially security on the Internet was very weak. A person

could hack a system, simply by naming a password file something as trivial

as “message-of-the-day.64” This is no longer the case. However, cyber-

security is still a big problem. For instance, approximately 73% of all

Americans have been victims of a computer leak66.

Present day security protocols are powerful to say the least. However,

if a computer is connected to a network, it can be hacked simply because

1 This data come from Techcrunch.com, and is an old figure from 2010. (citation #
57)

 4

another computer can access parts of it. In the same way, if a person knows

information, that person could leak that information, simply by knowing it.

Different types of computer have different types of security protocols.

For instance, a supercomputer in a National Lab probably runs on what is

called a “Local Area Network” (LAN). This means that the computer resides

on a network with other computers, but not connected to the Internet at

large. In other words, that supercomputer cannot access data on the Internet,

like emails or YouTube. This is a very good method of security, because

then only an insider can hack the system.

A more often used security method for big computers is limiting the

connection power. This is what most big companies do. When a company

must access the Internet, they use massive security methods, like firewalls,

and other very well planned security protocols. This is what most big

companies, and governments use to protect their computers. Though, small

and in reality not powerful computers can hack through such firewalls, these

computers are great for two reasons. The first is the information of the

computers, which is generally sensitive. The second is the fact that servers

as such, have a lot of power, which makes them ideal to launch hacking

campaigns, and spam.

Small businesses and schools often have servers for websites and

student information. These are generally powerful computers, with little

information on them, and therefore little security. This makes them big

targets for hackers. The idea is simple; if a hacker can gain access to a

powerful server, like a school server, they can launch a much bigger and

more in-depth attack. This makes school servers’ security key.

 5

Desert Academy is a small school that could potentially be a target for

some big attacks, so security is very important. This project is based off of

analyzing Desert Academy's security, and attempting to violate it.

At the same time, this project looks at how secure student accounts

are from other students. This is to protect student-generated information.

Desert Academy has two servers. They have a server named Doc.

This server is the host for the teacher, staff and test accounts. It is also the

DNS (Domain Name System) server. The secondary server is name Marty.

This server hosts the student accounts and is also the DHCP server

(Dynamic Host Configuration Protocol).

Problem

 Our project basically attempts to understand the security of our

school, to help protect the student’s data. Our question was “can we hack

into the Desert Academy Server system?”

Method

 Our method consisted of five distinct steps. The first step was

obtaining permission from the school. The second was finding information

about the system externally. The third step was a very specific hack on a

client computer to give our already existing student accounts heightened

privileges. The fourth step consisted of finding more information accessible

only by the newfound privileges. The final step was the major hack attempts,

which were only possible because of the information gathered in steps one

and three.

Permission

 6

 Hacking is illegal. There are many international, national and local

laws protecting digitized information and computer system’s integrity. One

such law is called FERPA (Family Education Rights and Protection Act) 67.

This law protects student education records, and makes it illegal for such

records to be published without the consent of the student as well as the

parent, if the student is less the 18. FERPA makes it illegal for others to

view educational records, so if a hacker were to hack into a server they

would be in direct violation of FERPA, as well as other laws. To protect

ourselves from violation of FERPA, we needed to find out what was on the

server. After talking to the school’s technology director, we came to the

conclusion that the server contained only student-generated data. In other

words, the server held only student accounts. Any personal or confidential

data was held on a local computer, so our project was legal, as long as we

obtained written permission from the Technology Director, the Head of

School, and the legal authority at the school (see appendix 1). After this was

obtained, our project could begin.

Low-Security Information Gathering

 The first step on infiltrating Desert Academy’s network was finding

its public IP address. Like telephones, every device that connects to the

network has a specific number, called an IP number (IP stands for Internet

Protocol). Some organizations have many devices that are routed through an

internal server rather than connecting to the Internet directly. These

organizations generally have an umbrella public IP address, and then every

device under the umbrella address has a local address, which generally takes

the form of 192.168. x. x, where x is an integer between 0 and 255 (both

included). Finding the public IP of the Desert sever was key, and it was also

 7

very easy. We simply turned on a school computer and went to the website

http://www.whatismyip.com/. This site spit out a number (not printed here

due to security concerns). To verify that we had the correct IP address, we

asked a fellow student who was using his personal computer but had

connected to the Internet in the school to go to the same site and look up the

IP address. He got the same sequence of numbers verifying that we had the

correct IP address.

 There are two types of IP addresses. There are dynamic public IP

addresses, and static public IP addresses. As the name suggest, a dynamic

public IP address changes, whereas the static public IP address does not.

After finding Desert’s IP address, we were ready to gather more information,

but this was only possible if the IP address remained constant. We proved

this by accessing the same website (http://www.whatismyip.com/) for the

next couple days. The idea behind a dynamic address is that it changes often,

therefore making it harder to hack. Because of the fact that the address did

not change within a couple days (much less minutes or hours) we made the

educated assumption that the school worked under a static IP address.

The Internet is composed of computers talking to each other. A

computer talks to another computer through doors, called ports. There is a

large number of ports that have their own ways of communication. Most of

the ports are closed, which means that they do no accept information, but

still register if there is an attempt to communicate. Some ports are open,

which means that information travels freely through them. Lastly, a small

amount of ports ignore all information sent to them. These are called filtered

ports. A good way to learn about the security of a server is to understand the

server’s port settings. This is done with a program called Nmap. Nmap is a

program that does port scans. There are three types of port scans. The first

 8

http://www.whatismyip.com/
http://www.whatismyip.com/

port scan, called a vertical scan, sends packets of information to all the port

on a single IP and records the responses. There is also a horizontal scan,

which sends packets to a single port on numerous different IP’s looking for a

computer with a specific port open. The final type is called a box scan,

which is a mix between both a horizontal scan and a vertical scan.

We downloaded Nmap on a Linux computer and did an external port

scan on the umbrella IP address for Desert Academy. This showed us that

the Desert server had two services running, and the ability to receive

“pings”. These services were share screen services, so that in all, was no

help. This, in the end, isn’t completely true, as it was masked by the firewall,

which blocked a couple ports.

After the port scan was complete, we were finished with our external

research, and we started working on internal research, which required a

local-privileges escalation.

Local-Privilege Escalation Attack

 Desert Academy uses primarily Apple computers. Mac computers run

the Unix operating system. This means that there are different things that

different user types can do. There are two major user types, the standard

user, and the superuser. The superuser, often called the root user can do

almost anything. At Desert Academy, all student accounts are mounted on a

server named Marty. The student accounts have user privileges, but not root

privileges for the obvious security reasons.

Based on the fact that we have student accounts, we can easily give

ourselves the root privileges. Mac computers have a mode called single-user

mode. This is accessible by booting the computer up while hold the

command and s key. This mode is a read only version of the computer

 9

without network capabilities. It is easy to mount the system so that it is

writable, using the commands “fsck –y” (this command looks for problems

in the system and fixes them)47 and the command “mount –uw /” (this

command actually reattaches the mount “/” with read and write privileges)28.

As default, single-user mode runs in root. With the power of a local root

account, it is possible to change some very specific files.

Unix-based systems have a command line called BASH (Bourne-

Again SHell). In Bash there is a command called sudo, which stands for

‘superuser do’. It is a command that lets the user run a command as root. To

be able to use the sudo command, however, the user account must be noted

by the system. The system allows only accounts noted in the sudoers file use

the sudo command.

While in single user mode, we changed the permission of the sudoers

file, and simply added our names to the sudoers file. This gave our student

accounts root privileges on the local machine. This was the third local

privilege escalation attack we tried, and the only successful attack.

We tried two other attacks that occurred in the single-user mode. We

attempted an attack that revolves around unlocking the keychain on the local

admin account. This was not a hack, but rather a feature. It was a method for

password retrieval, if the user forgot the password. This feature however, is

very outdated. It was removed in Mac OS X 10.3, whereas we were using

Mac OS X 10.10. Another Local Escalation attack we attempted was

running a script we found online. This script could be installed using a

thumb drive. It worked by giving a root shell to an external computer, but

this script was also outdated.

High-Security Information Gathering

 10

The next step was gathering information about the server so that we

could find vulnerabilities. This step was done with relatively small tasks that

cumulated to a large image of the server. Most of this step was done with

small bash commands that had extensive outputs. A description of each of

these commands follows.

 The first command we used to map the server was ‘traceroute’. This

command is called such because it follows the route of a packet, and

displays where the packet is, as well as how long it takes to get there27. This

command showed us that there were no steps between the local computer

and the server. This meant that there was no firewall or router between the

server and the computer. This was a good sign for our project.

The next command was df -h. df is a command that shows the free

disk space on the computer. -h is a modifier to the df command to make it

human readable, rather than a string of numbers26. This command showed us

that the local computer did not have very much stored on it, but that the

information was stored on the server. This was already known.

The third command was netstat -a. Netstat is a command that showed

how the network was working. -a is a modifier to show network connecting

with the server25. This showed us the handshakes between Kerberos; the

password daemon Mac servers have, as well as the fact that the server was

using afpovertcp (Apple Filesharing Protocol over Transfer control Protocol)

to communicate with the local machine. This just goes to prove that the

server is in fact a Mac server, which we already knew.

The fourth scouting command was one of the most useful commands

for this section of the project. System_profiler is a command used to show

all the programs on a computer, their version number, as well as a ton of

information about the installed applications24. Though this command reports

 11

the account programs and setup, the accounts are stored on a server, and they

run mirroring the server, so it is basically a window into the servers

programs. One of the most interesting things the system profile showed us

was the fact that the Adobe Reader is outdated. There is a serious

vulnerability in this version of Adobe. However, it yet to published in great

detail. This means that, though the vulnerability has been uncovered, the

actual exploit has not been published. It is called CVE-2014-915912. The

idea is that there is some malicious code buried in a PDF, and upon opening

the PDF the code is executed, however, there are no details on how this

works. It is a type of buffer overflow attack. In simplest terms, a buffer

overflow attack works by executing in the wrong place. When a code runs to

display a PDF for instance, it writes to a buffer, but a special PDF might

have some code that does not fit into the buffer’s limits. This code then gets

written to overflow memory, and the malicious code runs. This showed us

that outdated stuff gets updated for a reason, and it is a good idea to update

your systems.

The fifth command used for this section was the dig command. The

dig command looks domain information such as DNS (Domain Name

System) and DHCP (Dynamic Host Configuration Protocol). Therefore it is

aptly named the domain information groper30. This command helped our

project by showing us the DNS is passed out by the Doc server, whereas the

Marty server passes out the IP’s.

The mount and host commands are very similar, and both did not help

with the project too much. The mount command looks at the mounts on the

computer28, and host looks at the host29. Mount showed us the mounts, but

we already knew them, as they were shown mostly in the df output. The host

 12

similarly showed the hostname and the IP address. This was obtained earlier

with the dig command.

 While inside, we used the Nmap program again, to generate a port

scan of the server internally. This proved to do very little, as it gave the same

results as outside the server.

Hacks

We attempted three different major hacks, each requiring different

information, infiltration methods and steps. They were many shellshock

attacks, a script attack, and finally a DOS ping flood attack.

Shellshock attacks

Shellshock is a vulnerability that was published on the 24th of

September in 20145. It is actually a wide spread of similar exploits.

Shellshock, in general, works by passing the computer an empty variable,

and then attaching a line of code, or a script to the empty variable. This only

works when the variable runs in a different, and new environment. There are

three major remote types of the shellshock bugs. The first is used against

websites hosted on a Unix-based server. Some websites have Common

Gateway Interface (CGI) running9. CGI is a very common way of creating

dynamic features on a websites68. Another shellshock exploit is through

openSSH (Open Secure SHell)9. The final type of remote shellshock exploit

is through a DHCP server9.

The CGI attack works by handing the CGI scripts a new environment.

The key component for making this work is of course the CGI capability,

which is found only in websites. The marty.da.org server does not host a

website other then the default Mac Server website. This website does not use

 13

anything close to CGI, but we decided to try to pass it something anyways.

We used the command

Curl simply transfers a URL, and -H modifies it to add extra headers. User

Agent is an already existing header, which has a value but this command

attempts to change the value of User-Agent to nothing. Afterwards, it

attaches a malicious command. Though this example simply prints a

directory all student accounts already have access to, more malicious code

could be inserted into the ‘cat homedirs_students’ section. Of course, the

third section specifies where the curl command is pointed. This did not work

because there was nowhere to pass the curl command to. This is an example

of code injection, which generally takes the form of Expected Command;

Unexpected Command; This is shown with yellow, and green respectfully:

 The OpenSSH attack works by simply piling too many commands on

each other5. OpenSSH has a thing called “ForceCommand.” This command

must be run upon shell startup, even if the user asks the shell to run a

different command. The forced command is placed in a new environment

generally called “SSH_ORIGINAL_COMMAND.” If the shell is set to

bash, the bash shell will parse the “”SSH_ORIGINAL_COMMAND” upon

start up. A manufactured “SSH_OPEN_COMMAND” can exploit the

shellshock vulnerability. For this to be successful, a server must have

OpenSSH and have the shell set to bash. Desert Academy's server does not

have OpenSSH5.

curl -H “User-Agent: () { :;}; cat homedirs_students” marty.da.org

curl -H “User-Agent: () { :;}; cat homedirs_students” marty.da.org

 14

 The DHCP attack is by far the easiest to understand. As stated earlier,

every device connected to the Internet has an IP number. In the case that

computer connects to a server with Ethernet, generally, they need an IP

address to be given to them. This is what the DHCP server is for. When a

new computer pops up on a DHCP controlled network, it does not know

what it is, so the new computer asks, “Who am I?” The server then responds

with “I have never seen you before, so here a new address” and then hands

the new IP address to the recently opened computer, or the server states “I

have seen you before, here is your old IP” and passes the IP that computer

had used before5.

A DHCP attack works by implementing a rogue DHCP server on the

network. This server is designed so that it passes an IP address when a

computer asks for it, but also passes the string “{ :;}; ./script” as a special

option. The ./script then executes in the DHCP environment of the server,

effectively “shellshocking” the computer. For this to be successful, the target

computer must be rebooted, or at least drop from the network, while the

rogue server is online, and the target computer must ask for a DHCP

address. This will not work if the target computer has a static IP address. We

used the tftpd32 server program to run a rogue server5.

Script attack

Macintosh computers can have a file called .profile in their home

directory. This file is generally empty, but its purpose is to run commands

upon opening the terminal application. This file is generally used to tell

users that the company head is monitoring them, or explain something

special with the shell to a user, or lastly, give a greeting to a returning shell

user. It can also be used to say something to the user, such as “Hi User!”

 15

These commands generally are simply print commands, but they are not

limited to print commands. The idea with this script was to add lines to the

server .profile file so that it copied vital information from the server to a

place we could easily access it. This script would be run in a root shell with

no hold ups, using the command “nohup ./script.sh”. (See script in Appendix

2).

The third and final attack was a DOS attack. This attack was very

simple, and not very thought out. A DOS (Denial of Service) attack, in the

most general sense, is an attack that is used to bring down a server so that

other users cannot access it. A very simple method of doing such attacks is

called a ping flood. The ping command is simply a crafted packet that asks a

computer to reply to the sender. It is a common method to test if a computer

is working, and connected to the network. Generally pings are sent in

succession with a certain amount of time between them so that it does not

overwhelm the server. A ping flood without the time increment does

overwhelm the server. It literally floods the server with ping request, until

the server shuts down. This only works if the server does not have an ICMP

(Internet Control Message Protocol) cap.

These were the three hacks attempted on the school server.

Results

The three hacks were altogether unsuccessful, and the server was

never exploited. Each hack had its own error, mostly caused by us

overlooking a vital detail. The following will explain why each failed.

Our Shellshock attack was in a way almost successful. We had three

different attempts. The first was a local shellshock attempt, just to prove that

 16

the bash running on the client computer was vulnerable. We used the

command

env val=’() { :;}; echo BUSTED’ bash -c “echo End of command”

The results for this local attack showed us that the bash on the client

computer was vulnerable. Because it was vulnerable on the client computer,

it was a safe assumption that it was vulnerable on the server as well. Because

of these, we tried to shellshock one of the CGI-scripts. We used the

command

curl -H “User-Agent: () { :;}; cat homedirs_students” marty.da.org

Because of the fact the server has no CGI scripts this gave us an error

message about the target of the curl command, and stated it was not

working, but it also spit out a massive HTML (HyperText Markup

Language) file. Upon compiling this file we realized that it was the default

Mac website for servers that do not host websites. (The raw HTML and

compiled HTML is found in Appendix 3). So, in a sense this exploit worked,

because it did pass us information, just not the expected information.

The final attempt at a Shellshock attack was the DHCP attack; this

attack did not work because of the fact that the server does not use DHCP to

find its IP address. In other words, the server always knows who it is, and

does not use DHCP hookups, which makes this attack 100% obsolete.

The Script attack did not work. While trying to make it work on a

local machine, it was able to change the user accounts .profile file, while on

the local account, but when switching between two different local accounts

(the guest, and admin account) it gave the error that the .profile was only

root editable. This should not have been a problem, as I was using the sudo

command to change into the root environment. However, after some

 17

extensive research, I realized that sudo always asks for the user

authentication, which is in fact a hold up. Because we used the command

nohup, it ignores the hold up, and the script was running at user privilege

level. To fix this problem, we tried to open a root shell using the command

“sudo su -” and then running the script. This again did not work, and we do

not truly understand why. It again threw permissions errors, but we had a

root shell. Thought the root of these errors remains unknown, it is something

we will be looking into further.

The server, being a Macintosh computer, comes with a default ICMP

cap. This means that if too many ping requests are received, it will ignore

some of them. Therefore, a ping flood is completely ineffective, as the

computer simply ignores the attack.

These three attacks were not successful, however, when it comes to a

standpoint of student security, especially from the perspective of students

accessing other student’s information. Though this is more of an

administrator failure than a hack, it should be noted. Every file on a Unix

based system has 3 levels of permissions. It has Owner, Group, and World

permissions. Generally, the owner is the user, but at Desert Academy, all the

students are in the same group. If a student were to limit the groups’ power

on a certain file, they would limit their own power over the file, due to the

fact they are in the “student group”. They are simply being imaged on the

local machine. In other words, students can easily access, and change other

student accounts. This is shown by the fact that a simple change directory

command can bring a student into a fellow student's Desktop folder. This is

a security problem.

 18

This was also attempted from a student account (hosted on Marty) to a

teacher account (hosted on Doc). This was an attack that was meant merely

to prove a point. The two servers are not connected other than by the

network. To access anything on the Doc server, a student must use an

operable file transfer method, such as afpovertcp (Apple Filesharing

Protocol over Transfer control Protocol). The cd (change directory) method

described above does not do this. An error was expected, but the error that

occurred was far from expected. The error was an “Input/output error”

which traditionally indicates a disk failure. The Technology Director was

promptly informed, and he started doing disk analysis. Some of the Disks on

the Doc server were replaced, due to disk failure. After the disks were

repaired, the cd attack was attempted again to see if the teacher accounts

were now accessible from student accounts. Again, the input/output error

was given, so the original error was not due to disk failure. The error comes

from unknown origins, and will be reviewed in the future.

Patches

 The key to this project was gaining root privileges. Booting the

computer into single-user mode did this. Macintosh computer have a feature

where administrators can block single-user mode on computer that are meant

for more than one user. This is the firmware password. The firmware

password disables the single user mode as well as the verbose mode. It also

limits the power of recovery mode.

The problem with the students being able to access other student

accounts is a much more prominent problem. There is not an easy fix for this

problem. A temporary solution is for students to place all of their files in a

truecrypt folder, so that they can access their stuff, but others cannot. Other

 19

students can still place numerous copies of files on that student's desktop for

the fun of it, but they cannot ruin, or alter any of the students files

themselves. These, along with constant updating of software, are the only

patches this system needs.

Conclusion

The goal of this project was simply to analyze the security methods of

the Desert Academy server. Though, technically, we never broke into the

server, we did develop an idea of what the security at Desert Academy is

like. Most servers use firewalls and other precautions for protecting open

services. Desert however, simply does not have those services. Their

philosophy seems to be a hacker cannot break down the door, if there are no

doors.

Though the actual server is quite secure, the student-generated

information is far from protected from other students. As stated earlier,

students sit in the same group. Anyone in that group can access all the

groups’ information. In other words any student can access any other student

information.

Acknowledgements

 This project was only possible because of the support of the Desert

Academy Technology Department. Throughout the project, they always

found time to talk to us when we did not understand how the computers

worked. They gave us permission to potentially harm the servers, local

accounts, student computers and their own administrator accounts. They

were incredibly helpful and inspiring. In return, our project identified some

major disk failure, which the Technology Department promptly fixed.

 20

Though the Technology Department was immensely important, Jed

Crandall, our advisor, was truly the biggest inspiration and help in this

project. Our team came into this project not knowing anything about cyber-

security, but Jed quickly changed that. Every time something did not work,

or the outcome looked bleak, Jed would think of a new idea to try. He spent

many hours writing emails to us, and helping us attack the server. He was

the sole reason this project was finished. Without him, we would have given

up a long time ago.

Rudy Martinez, Geoff Alexander and Jeff Knockel also deserver

credit for this project, as they helped Jed help us. Their insight was one of

the main reasons are project has come this far.

Appendixes

 21

Appendix 1

Appendix 2

#!/bin/bash

 22

str="hello"
filename=/User/macadmin/.profile
while : ;
do
 sleep 1
 if [-e $filename]
 then
 value=$(grep -c "hello" $filename)
 if [$value -eq 0]
 then
 echo echo "it worked" >> $filename

 echo cd Desktop >> $filename
 exit
 fi
 else
 touch $filename
 fi

done

Appendix 3
Raw HTML script:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html;
charset=utf-8" />
 <title>Server</title>
 <style type="text/css">
 * {
 -webkit-box-sizing: border-box;
 -moz-box-sizing: border-box;
 -box-sizing: border-box;
 }
 body, html {
 background-color: #F2F3F4;
 color: #333333;
 font-family: 'Lucida Grande', 'Lucida Sans

 23

Unicode', Helvetica, Arial, Verdana, sans-serif;
 font-size: 14px;
 height: 100%;
 line-height: 21px;
 margin: 0px;
 text-align: center;
 word-spacing: -1px;
 }
 #wrapper {
 height: 100%;
 min-height: 660px;
 position: relative;
 }
 #content {
 padding: 26px;
 }
 #main {
 background: #FFFFFF;
 border: 1px solid #D5D5D6;
 border-top-color: #E0E1E2;
 border-bottom-color: #C0C1C2;
 margin: 0px auto 0px auto;
 padding: 20px 26px 19px 26px;
 width: 730px;
 -webkit-box-shadow: 0px 1px 3px rgba(0,0,0,0.1);
 -moz-box-shadow: 0px 1px 3px rgba(0,0,0,0.1);
 box-shadow: 0px 1px 3px rgba(0,0,0,0.1);
 -webkit-border-radius: 6px;
 -moz-border-radius: 6px;
 border-radius: 6px;
 }
 h1 {
 color: #000000;
 font-size: 28px;
 font-weight: normal;
 line-height: 36px;
 margin: 0px 0px 8px 0px;
 }
 p {
 line-height: 21px;

 24

 margin: 0px;
 }
 #main img {
 margin-bottom: 40px;
 margin-top: 48px;
 }
 #navigation {
 color: #646464;
 font-size: 12px;
 margin-top: 20px;
 }
 a, a:link, a:visited, a:active {
 color: #4B8ABA;
 text-decoration: none;
 margin: 3px;
 }
 a:hover {
 text-decoration: underline;
 }
 #footer {
 bottom: 6px;
 left: 0;
 position: absolute;
 right: 0;
 }
 #footer a {
 font-size: 12px;
 color: #B1B1B1;
 }
 </style>
 </head>
 <body>
 <div id="wrapper">
 <div id="content">
 <div id="main">
 <h1>Welcome to Server</h1>
 <p>Server simplifies configuring,
hosting, and managing websites. The intuitive interface makes it easy
to create a website, and provides advanced capabilities for
professional webmasters.</p>

 25

 <img src="Server.png"
width="256px" height="256px" alt="Server" />
 <p>Server makes it easy for groups to
collaborate by enabling Wiki in the Server application. To use your
own custom web content, you can also replace this placeholder page
by adding your own index file to the folder at
/Library/Server/Web/Data/Sites/Default.</p>
 </div>
 <div id="navigation">
 <a href="/webcal"
title="Calendar">Calendar |
 <a href="/changepassword"
title="Change Password">Change Password |
 <a href="/profilemanager"
title="Profile Manager">Profile Manager
 </div>
 <div id="footer">
 Copyright © 2011-2012
Apple Inc. All rights reserved.
 </div>
 </div>
 </div>
 </body>
</html>

Appendix 4

 26

Work Cited

Works Cited

1) Dr. Jed Crandall E-mail interview.

2) NVD. "Vulnerability Summary for CVE-2006-2369."

Http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2006-2369. NVD, 15 May 2006.

Web. 20 Nov. 2014.

 27

3) Wikipedia. "IP Address." Wikipedia. Wikimedia Foundation, 19 Nov. 2014. Web. 20 Nov.

2014.

4)Wikipedia. "Port Scanner." Wikipedia. Wikimedia Foundation, 14 Nov. 2014. Web. 20 Nov.

2014.

5)Wikipedia. "Shellshock (software Bug)." Wikipedia. Wikimedia Foundation, 16 Nov. 2014.

Web. 20 Nov. 2014.

6) Adobe. "Vulnerability Details : CVE-2014-9159." CVE-2014-9159 : Heap-based Buffer

Overflow in Adobe Reader and Acrobat 10.x before 10.1.13 and 11.x before 11.0.10 on

Windows and OS X a. CVeDetails, n.d. Web. 29 Jan. 2015.

7) "Adobe_Acrobat_vulnerabilities.html." Adobe_Acrobat_vulnerabilities.html. N.p., n.d. Web.

29 Jan. 2015.

8) Google Security Research. "OS X 10.9.x - Sysmond XPC Privilege Escalation." OS X 10.9.x

- Sysmond XPC Privilege Escalation. Google Security Research, n.d. Web. 29 Jan. 2015.

9) Graham-Cumming, John. "Inside Shellshock: How Hackers Are Using It to Exploit

Systems." Inside Shellshock. CloudFlare, 30 Sept. 2014. Web. 29 Jan. 2015.

10) Hunt, Troy. "Troy Hunt: Everything You Need to Know about the Shellshock Bash

Bug." Troy Hunt. Troy Hunt, 25 Dec. 2014. Web. 29 Jan. 2015.

11) Huttunen, Henrik. "Interactive Vim Tutorial." Interactive Vim Tutorial. N.p., n.d. Web. 29

Jan. 2015.

12) Jurczyk, Mateusz, and Gynvael Coldwind. "Adobe Reader and Acrobat CVE-2014-9159

Heap Buffer Overflow Vulnerability." Adobe Reader and Acrobat CVE-2014-9159 Heap

Buffer Overflow Vulnerability. SecurityFocus, 9 Dec. 2014. Web. 29 Jan. 2015.

13) Kaare-Rasmussen, Jonas. Traceroute to servers. 6 Jan. 2015. Raw data. Desert Academy,

Santa Fe.

14)Kaare-Rasmussen, Jonas. Mounts on Marty Server. 6 Jan. 2015. Raw data. Desert

Academy, Santa Fe.

 28

15) Kaare-Rasmussen, Jonas. What the Marty server is hosting. 6 Jan. 2015. Raw data. Desert

Academy, Santa Fe.

16) Kaare-Rasmussen, Jonas. Dig command on the server. 6 Jan. 2015. Raw data. Desert

Academy, Santa Fe.

17) Kaare-Rasmussen, Jonas. The system profile of the system. 6 Jan. 2015. Raw data. Desert

Academy, Santa Fe.

18) Kaare-Rasmussen, Jonas. Network statistic. 6 Jan. 2015. Raw data. Desert Academy, Santa

Fe.

19) Kaare-Rasmussen, Jonas. df command output. 6 Jan. 2015. Raw data. Desert Academy,

Santa Fe.

20) Kaare-Rasmussen, Jonas. Remote port scan on Desert output. 6 Jan. 2015. Raw data.

Desert Academy, Santa Fe.

21) Kaare-Rasmussen, Jonas. Local Marty Port scan. 6 Jan. 2015. Raw data. Desert Academy,

Santa Fe.

22) Kaare-Rasmussen, Jonas. Local Doc Port scan. 6 Jan. 2015. Raw data. Desert Academy,

Santa Fe.

23) BSD. Man Man. BSD General Commands Manual: Unix, 19 Sept. 2005. GZ.

24)Darwin. Man system_profiler. BSD System Manager’s Manual: Unix, 30 June 2003. GZ.

25)Darwin. Man netstat. BSD General Commands Manual: Unix, 15 June 2001. GZ.

26) BSD. Man df. BSD General Commands Manual: Unix, 8 May 1995. GZ.

27) 4.3 Berkeley Distribution. Man traceroute. BSD General Commands Manual: Unix, 29

May 2008. GZ.

28) 4th Berkeley Distribution. Man mount. BSD General Commands Manual: Unix, 16 June

1994. GZ.

29) BIND9. Man host. BIND9: Unix, 30 June 2000. GZ.

30) BIND9. Man dig. BIND9: Unix, 30 June 2000. GZ.

31) BSD. Man cat. BSD General Commands Manual: Unix, 21 March 2004. GZ.

 29

32) SUDO. Man sudo. MAINTENANCE COMMANDS: Unix, 19 July 2010. GZ.

33) Nmap. Man nmap. Nmap Reference Guide: Unix, 13 Aug. 2014. GZ.

34) BSD. Man chmod. BSD General Commands Manual: Unix, 8 July 2004. GZ.

35)Curl 7.27.0. Man curl. Curl Manual: Unix, 27 July 2012. GZ.

36) BSD. Man env. BSD General Commands Manual: Unix, 27 Aug Sept. 1993. GZ.

37) BSD. Man ftp. BSD General Commands Manual: Unix, 18 July 2007. GZ.

38)BSD. Man ssh. BSD General Commands Manual: Unix, 27 March 2015. GZ.

39)VIM. Man vim. Unix, 11 Apr. 2006. GZ.

40)1.7.4 Man sudoers MAINTENANCE COMMANDS: Unix, 21 July 2010. GZ.

41) BSD. Man visudo. MAINTENANCE COMMANDS: Unix, 14 July 2010. GZ.

42) BSD. Man grep. BSD General Commands Manual: Unix, 28 July 2010. GZ.

43) Darwin. Man ipfw. BSD System Manager’s Manual: Unix, 27 Sept. 2012. GZ.

44) BSD. Man du. BSD General Commands Manual: Unix, 2 June 2004. GZ.

45) BSD. Man id. BSD General Commands Manual: Unix, 26 Sept. 2006. GZ.

46) BSD. Man whoami. BSD General Commands Manual: Unix, 6 June 1993. GZ.

47) 4th Berkeley Distribution. Man fsck. BSD System Manager’s Manual: Unix, 18 May 2010.

GZ.

48) Trf transformer commands. Man bin. Unix, 1 Feb. 2004. GZ.

49)Darwin. Man dns-sd. BSD General Commands Manual: Unix, 27 March 2015. GZ.

50) BSD. Man arp. BSD System Manager’s Manual: Unix, 18 March 2008. GZ.

51) Mac OS X. Man ifconfig. BSD System Manager’s Manual: Unix, 27 March 2013. GZ.

52) BSD. Man rmdir. BSD General Commands Manual: Unix, 31 May 1993. GZ.

53) Mac OS X. Man open. BSD General Commands Manual: Unix, 10 Feb. 2004. GZ.

54) BSD. Man whois. BSD General Commands Manual: Unix, 14 June 2004. GZ.

55) MacOSX. Man dscl. BSD General Commands Manual: Unix, 25 Aug. 2003. GZ.

56) BSD. Man w. BSD General Commands Manual: Unix, 6 June 1993. GZ.

 30

57) Siegler. "Eric Schmidt: Every 2 Days We Create As Much Information As We Did Up

To 2003." TechCrunch. Techcrunch, 04 Aug. 2010. Web. 27 Mar. 2015.

58) Stevens, D. "Malicious PDF Documents Explained." IEEE Xplore. IEEExplore, 31 Jan.

2011. Web. 29 Jan. 2015.

59) Symantec Security Response. "ShellShock: All You Need to Know about the Bash Bug

Vulnerability." Symantec Security Response. Symantec, 25 Sept. 2014. Web. 29 Jan.

2015.

60) AllenD, and Sim. "How Can I Execute Local Script on Remote Machine and Include

Arguments?" Bash. Ed. Gilles. UNIX&LINUX, 20 Aug. 2013. Web.

30 Jan. 2015.

61)Blaabjerg, Tor, M1k3yo02, and Dennis.hempler. "Enabling SSH Daemon from Terminal

(OS X Lion)." Osx. Ed. Bytesum. Superuser, 24 Apr. 2012. Web. 30 Jan. 2015.

62) CVE Details. "Bypass." Security Vulnerabilities (Bypass). CVE Details, n.d. Web. 30 Jan.

2015.

63) The State of Security. Tripwire, n.d. Web. 30 Jan. 2015.

64) Wikipedia. "File Inclusion Vulnerability." Wikipedia. Wikimedia

Foundation, 19 Nov. 2014. Web. 30 Jan. 2015.

65) "What Is My IP - The IP Address Experts Since 1999." What Is My IP. N.p., 1999. Web. 27

Mar. 2015.

66) "StopTheHacker.com | Ten Scariest Hacking Statistics." StopTheHacker Ten Scariest

Hacking Statistics Comments. N.p., n.d. Web. 30 Mar. 2015.

<https://www.stopthehacker.com/2012/04/20/ten-scariest-hacking-statistics/>.

67) "Family Educational Rights and Privacy Act." Wikipedia. Wikimedia Foundation, 30 Mar.

2015. Web. 30 Mar. 2015.

<http://en.wikipedia.org/wiki/Family_Educational_Rights_and_Privacy_Act>.

68) "Common Gateway Interface." Wikipedia. Wikimedia Foundation, n.d. Web. 30 Mar. 2015.

<http://en.wikipedia.org/wiki/Common_Gateway_Interface>.

 31

