
Simulation of Planetary Bodies in the Universe (N-Body)

New Mexico Supercomputing Challenge

Final Report

Team 21

Desert Academy

Team Members a a a a a a a a a a aa a a a a a a a a a sda sd sad as dasd asd as das d as das d a

Salvador Brandi a a a a a a a a a a a aa a a a a a a a a a sda sd sad as dasd asd as das d as das d

a

Damian Browne a a a a a a a a a a aa a a a a a a a a a sda sd sad as dasd asd as das d as das d a

Cameron Mathis a a a a a a a a a a aa a a a a a a a a a sda sd sad as dasd asd as das d as das d a

Project Mentors

Jeffrey Mathis

Jocelyne Comstock

Carolyn Brandi

Executive Summary

In Newtonian mechanics, the N-body problem is the problem of of predicting

the motion of astral bodies with gravity. Study of the N-body problem involves

ideas of classical mechanics such as Newton’s law of universal gravitation, inertia,

mass and velocity of astral bodies, Kepler’s laws of planetary motion and the

inverse-square law. Our solar system is an N-body system. N-body simulation is the

simulation of astral bodies under gravity, using laws of classical mechanics to define

how the astral bodies move.

The goal of our project is to model the N-body problem in NetLogo. Code

defining how astral bodies interact implements the inverse square law and a

gravitational constant to calculate gravitational force between them. Our project

has not generated numerical data yet because, our model of should be finished

before testing is done and we feel ours isn't there yet.

Problem

For a very long time physicists have toyed with the idea that with enough

random instances of particles following physical rules, usually the law of universal

gravitation, inertia, and collisions, the chance of a random orbit could be high,

similar to how our own universe started. Our team researched the N-body problem

and sought to recreate it, using netlogo. We wondered, how many trials could it

take to create a near-perfect orbit? What variables could we manipulate to get us

there faster? This model shows our take on the N-body simulation using the inverse

square law and force and velocity variables.

Method

Our model was made entirely in NetLogo due to its strong agent based

approach. The source code is available in Appendix B at the end of this report. We

also used a two dimensional setup as opposed to a three dimensional approach.

On the setup screen are sliders that can be manipulated to slightly change

the model’s behaviors. The “number” slider defines the number of turtles spawned

when the “Setup” button is pressed. “Base_mass” defines the starting mass of

“planets” (the default breed), and “stars,”.“Stars” are stationary “planets” with one

hundred times the “base_mass.” “Path_fade” defines how quickly paths, which are

created by “planets” as they move, will fade. The “Star?” switch defines whether

there will be “stars” in the simulation.

The model is only displayed in NetLogo’s “World” but, we use turtles-own

variables “xc” and “yc,” which are used for a turtle’s true coordinates. D_sqrd is the

square of the distance between two planets, used in the inverse square law.

Another set of turtles-own variables are “fx” and “fy” which determine the x and y

component of the force vector and is defined by the inverse square law:

set fx ((cos (atan (c_yc - yc) (c_xc - xc))) * (base_mass / d_sqrd))

set fy ((sin (atan (c_yc - yc) (c_xc - xc))) * (base_mass / d_sqrd))

“Vx” and “vy” define the velocity of a planet based on its force and the gravitational

constant given above:

set vx (vx + (fx * g))

set vy (vy + (fy * g))

Our global variables consist of: “c_xc” and “c_yc,” “g,” and “w_var.” “c_xc”

and “c_yc” determine the x and y coordinates of the “closest-planet” which is

determined by: “let closest-planet min-one-of turtles [distance self].” “G” is the

gravitational constant being 6.67E-11 in our universe, but we have defined it as .5.

“W_var” defines who to ask for determining the force of gravity. This variable is a

replacement to “c_xc” and “c_yc” but, whether this is more accurate than “c_xc”

and “c_yc,” is unclear.

 Originally we approached the N-body problem by only using Newton’s Law of

Universal Gravitation, which only made all the planets clump up into a ball, which is

not entirely accurate on the grand scheme of things. At the time of publishing this

paper, we have not conquered the problem we have when two planets “collide.” In

most cases, when two planets have the same x and y coordinate they “slingshot”

off the screen, never to be seen again.

Verification and Validation

Even though our model is not entirely accurate, it recreates with graphical

simplicity and mathematical correctness of the N-body simulation. Through many

many trials, we realize that normal orbits are incredibly complex and hard to obtain

through any normal means, and causes us to conclude that our own solar system is

an incredible anomaly of the universe, and verifies why the universe existed for so

long without star-planet systems or large galaxies.

As the aforementioned conclusion was the one we expected, The model was

successful in serving its proper purpose, and has helped us to better understand

information we know, leading our team to believe that our project was very helpful

in achieving our desired effect, and modeling what wa required.

Analysis and Conclusion

Our model is a partially accurate representation of the N-body

simulation that has representations of how astral bodies with gravity

interact, but is missing factors. The tendency of planets to attract slowly at

first and then very quickly as they near suggests correct implementation of

the inverse square law to make planets gravitate towards each other, and

the way they interact in this matter is reasonable. They also have the

tendency to accelerate away from one another at an unreasonable rate upon

collision, which is an emergent pattern that was unpredicted or is a result of

error in code. Additionally, planets approaching the sun accelerate rapidly as

earlier mentioned, after their apparent contact with the sun, which suggests

As orbit hasn't been observed in the model, fundamental problems related to

how the planets interact may be present, or orbit is an emergent pattern

observed only when full detail of the n-body problem has been accounted for

and our model is not extensive enough.

Reviewing the current model opens windows for future study. The next

thing to do with the model is to further research how orbit fits into the n-

body problem, and to look at other models in NetLogo that simulate these

ideas so that we may identify what ours is missing and why we have not

seen orbit. More research into real n-body systems could be done to further

check our model to identify what additions are needed. Additionally the

model could be expanded by accounting for the event of a collision, where

two planets might break into pieces or combine masses, or any combination

of potential outcomes. The model could also be taken in a different direction

by modeling our solar system using the current model's code. Our model

serves as basics that could be used for additions or further models.

Most Significant Achievement

Throughout this year’s project, we struggled with many code based as well

as team based problems. Our team faced hurdles, most notably math beyond our

level, code languages we were not familiar with, and ideas we could not fully

understand. However, we remedied these situations using the varying amount of

resources we had on hand, such as consulting others, and putting the necessary

time into it ourselves. One of the largest things we accomplished this year was

implementing multiple equations and overall physical mechanics accurately into our

code. It required our team’s time, much brainstorming and more than a few

meetings in to achieve

 Beyond even this, one of our biggest achievement was learning how to

coordinate work, stay on task, and just generally work as a team. Throughout this

year, we learned the hard way, wasting valuable time and putting us behind. But

because of this, our team learned the value of working together and doing things

well, each team member helping one another with their own, individual hurdles.

Acknowledgments

Although this was largely a project independent from outside help, it's

important to acknowledge the advice and expertise of our project advisors, Mr. Jeff

Mathis and Ms. Jocelyne Comstock. We also thank Julia Fjeldsted, Mariam Browne,

and Carolyn Brandi; their help organizing meetings between the group outside of

school was invaluable and essential to getting the project finished. Additionally, Ms.

Comstock is our physics teacher, and we thank her not only for physics class

introducing to us concepts utilized in our model but for her advice on implementing

these concepts. We also want to thank our friend Kara Fischer, who was a member

of our team last year and continued to give genius insight and thoughtful advice

throughout our project this year that helped to navigate through mental blocks.

Appendix A: References

● Board, John A. Jr (1999), Humphres, Christopher W., Lambert, Christophe G.,

Rankin, William T., and Toukmaji, Abdulnour Y., Ewald and Multipole Methods for

Periodic N-Body Problems, in the book Computational Molecular Dynamics:

Challenges, Methods, Ideas by editors Deuflhard, Peter, Hermans, Jan,

Leimkuhler, Benedict, Mark, Alan E., Reich, Sebastian, and Skeel, Robert D.,

Springer Berlin Heidelberg, pp. 459–471, http://dx.doi.org/10.1007/978-3-642-58360-

5_27, ISBN 978-3-540-63242-9.

● Chenciner, Alain (2007), Three body problem, Scholarpedia, 2(10):2111,

doi:10.4249/scholarpedia.2111

Appendix B: Code

http://dx.doi.org/10.1007/978-3-642-58360-5_27
http://dx.doi.org/10.1007/978-3-642-58360-5_27
http://en.wikipedia.org/wiki/Special:BookSources/9783540632429
http://www.scholarpedia.org/article/Three_body_problem

breed [planets planet]

breed [stars star]

turtles-own

[fx ;; x-component of force vector

 fy ;; y-component of force vector

 vx ;; x-component of velocity vector

 vy ;; y-component of velocity vector

 xc ;; real x-coordinate (in case particle leaves world)

 yc ;; real y-coordinate (in case particle leaves world)

 d_sqrd ;; square of the distance to the defined turtle (c_xc/c_yc or w_var)

 t_b_mass ;; turtle's base_mass

]

 ;; run universal gravitation formula on each turtle for each turtle, make a

variable that adds one each time it loops, this variable cannot be the id of

self

globals

[c_xc ;; x-coordinate of "closest-particles'" base_mass

 c_yc ;; y-coordinate of "closest-particles'" mas

 g ;; Gravitational Constant to slow the acceleration

 w_var ;; variable determining who to ask for gravitation

]

to setup

 clear-all

 set g .5

 set w_var 1

 set-default-shape planets "circle"

 set-default-shape stars "circle"

 create-planets number

 [

 set size 10

 fd (random-float (max-pxcor - 6))

 set vx 0

 set vy 0

 set xc xcor

 set yc ycor

 set t_b_mass base_mass

 set size (3 * base_mass / (4 * pi)) ^ (1 / 3) * (10 / (3 / (4 * pi)) ^ (1

/ 3)) / 2 ;; accurate proportions of the size of spherical bodies and their

mass

]

 if Star? = true [;; a separate "experiment" to see if orbits are working

 create-stars 1 [

 set xcor -25

 set ycor -25

 sun_settings

]

 create-stars 1 [

 set xcor 50

 set ycor 0

 sun_settings

]

 create-stars 1 [

 set xcor 0

 set ycor 50

 sun_settings

]

]

 reset-ticks

end

to sun_settings

 set shape "circle"

 set t_b_mass base_mass * 100

 set size (3 * t_b_mass / (4 * pi)) ^ (1 / 3) * (10 / (3 / (4 * pi)) ^ (1 /

3)) / 2 ;; accurate proportions of the size of spherical bodies and their

mass

 set color yellow

end

to go

 ifelse w_var > number [

 set w_var 0

][

 set w_var w_var + 1

]

 ask planets [

;; let closest-planet min-one-of turtles [

;; distance self

;;]

if turtle w_var != nobody [

 set c_xc [xc] of turtle w_var

 set c_yc [yc] of turtle w_var

 gravitate

]

]

;; fade-patches

 tick ;; might wanna change where this goes

end

to gravitate ;; Planet Procedure

 update_force

 update_velocity

 update_position

 update_collide

end

to update_force ;; Planet Procedure

 ;; Similar to 'distancexy', except using an unbounded plane.

 set d_sqrd (((xc - c_xc) * (xc - c_xc)) + ((yc - c_yc) * (yc - c_yc)))

 ;; prevents divide by zero

 ifelse (d_sqrd != 0)

 [

 ;; Calculate component forces using inverse square law

 set fx ((cos (atan (c_yc - yc) (c_xc - xc))) * (base_mass / d_sqrd))

 set fy ((sin (atan (c_yc - yc) (c_xc - xc))) * (base_mass / d_sqrd))

]

 [

 ;; if d_sqrd = 0, then it's at the base_mass, thus there's no force.

 set fx 0

 set fy 0

]

end

to update_velocity ;; planet Procedure

 ;; Now we update each particle's velocity, by taking the old velocity and

 ;; adding the force to it.

 set vx (vx + (fx * g))

 set vy (vy + (fy * g))

end

to update_position ;; planet Procedure

 set xc (xc + vx)

 set yc (yc + vy)

 ifelse patch-at (xc - xcor) (yc - ycor) != nobody

 [

 setxy xc yc

 if (path_fade != 100)

 [ifelse (color = white)

 [set pcolor red + 3]

 [set pcolor color + 3]

]

]

 [hide-turtle]

end

to update_collide

 let closest-planet min-one-of turtles [

 distance self

]

 if c_xc - xc = 0 and c_yc - yc = 0 [

 print "Hello World"

]

 ;; fade-patches

 ask patches with [pcolor != black]

 [ifelse (path_fade = 100)

 [set pcolor black]

 [if (path_fade != 0)

 [fade]

]

]

end

to fade ;; Patch Procedure

 let new-color pcolor - 8 * path_fade / 100

 ;; if the new-color is no longer the same shade then it's faded to black.

 ifelse (shade-of? pcolor new-color)

 [set pcolor new-color]

 [set pcolor black]

end

