
Quantifying Literature's Quality

New Mexico
Supercomputing Challenge

Final Report
April 1, 2015

Team 57
Los Alamos High School

Team Members:
Tabitha Welch

Teacher:
Adam Drew

Project Mentor:
Paul Welch

Abstract

The purpose of this project was to determine if there may be some correlation between a work

of literature's syntax complexity and its success or popularity. Syntax complexity measures that were

studied included author vocabulary size, usage of various parts of speech, frequency of various

conjunctions in the text, and frequency of various punctuation marks in the text. Over the course of the

year, investigations expanded to incorporate potential correlations between these metrics themselves.

Analysis tools included but were not limited to basic frequency analysis, parts of speech tagging,

principal component analysis, and the creation of two-dimensional histograms. All of these analyses

were carried out in the R, Perl, or Java programming languages. Ultimately, results indicated that there

is no correlation between syntax complexity and book popularity. However, there are several

correlations between complexity metrics. These include linear relationships between total word count

and numbers of different parts of speech, as well as a definitive decaying exponential relationship

between author vocabulary size and book length. This project will very likely be continued in the

future, but subsequent research will not focus on literature's popularity. It may instead revolve around

further parts of speech analysis and comparison of English literature to literature in foreign languages.

Problem

The original goal of this project was to discover possible correlations between a work of

literature's syntactical complexity and its popularity. I hypothesized that in general, a higher syntactical

complexity would result in higher popularity. Usually, a book with varied word use and sentence

structure is more engaging than a book with limited vocabulary and repetitive sentence structure.

However, I also hypothesized that there was a limit to this trend; an extremely complex book would be

difficult to understand and therefore less popular. Naturally, characterization and plot elements play a

large role in literature's popularity as well. This year, I studied four major syntax complexity metrics.

2

These were the frequency of conjunctions in the text, the frequency of various other parts of speech in

the text, the frequency of various punctuation marks in the text, and the size of the author's vocabulary,

i.e. how varied their word usage was. I also examined the potential exponential relationship between

the author's vocabulary size and the number of sentences in a work. This year's data set consisted of

199 fiction works which were downloaded from Project Gutenberg, an online source of literature in the

public domain. The samples equally represented all genres, including short stories as well as novels.

Gutenberg also provided the number of times each sample had been downloaded in the past month; this

served as my popularity metric throughout the project.

Methods

Frequency Analysis

The first analysis I performed this year was an extremely simple frequency analysis on

punctuation and conjunctions. I created a class in Java that had methods intended to count various

punctuation marks or conjunctions in a given text (see Appendix 1). The conjunction frequency method

searched for 25 specific conjunctions; the full list can be viewed in Appendix 1. Of those conjunctions,

the words “and”, “but”, “or”, and “because” were specifically counted, and the rest were grouped in a

category called “other.” A total conjunction count based on these categories was also calculated and

returned. Importantly, a word could only be considered a conjunction if it occurred directly after a

comma. Therefore, the “and” in “he danced, and he sang” would be counted as a conjunction, but the

“and” in “bread and butter” would not. The punctuation frequency method functioned on a similar

algorithm, but it read each file character-by-character instead of word-by-word. The goal of this

method was not to count all punctuation marks in a text, but rather to obtain the frequencies of specific

ones. In particular, the code searched for periods, exclamation points, question marks, commas,

semicolons, and colons. It was also capable of adding the number of periods, exclamation points, and

3

question marks to determine the total number of sentences in a work. This sentence count was later

useful in determining average sentence length in a given sample.

Dictionary Generator

For each book in the data set, I generated a “dictionary” file consisting of a list of all words that

were used in the text. Each dictionary was accompanied by a list of frequencies, each frequency being

the number of times the corresponding dictionary word appeared. Generating these files required two

different codes, both written in Perl (see Appendices 2 and 3). First, the sample in question passed

through a punctuation remover code. This ensured that the same words with different punctuation

would not be counted as different words in the dictionary. The code read the sample one word at a time,

searching for all common punctuation marks. When such a punctuation mark was found, it was split

from the word. The word was then added to a new file. Words that did not contain punctuation were

immediately added to this file. The process was repeated until the code produced a file with no

punctuation at all. Then, this punctuation-free text could be passed to the dictionary generator itself.

The generator made use of a hash table; it read the parsed text one word at a time, compared that word

to words already in the hash table, and added it to the table if no match was found. The code also kept

count of how many times each word appeared, and this was used to generate each dictionary's

frequency file. Dictionaries and word frequencies were used to calculate author vocabulary size, total

number of words, and average sentence length.

Stanford Parts of Speech Tagger

Stanford University's Natural Language Processing Group offers several parts of speech tagging

models to the general public. Each model reads through a text file and assigns every word in that file a

specific part of speech; for instance, the word “my” would be tagged as a possessive pronoun and the

word “completes” would be tagged as a present-tense verb in third person singular (Atwell). The

4

English left3words model was used for this project. After tagging my data set, I wrote my own code in

Java that counted the number of various tags. I obtained counts for all verbs, nouns, pronouns,

adjectives, and adverbs. These counts were later used in basic scatter plots, principal component

analysis, and two-dimensional histograms.

Principal Component Analysis

I used the R Principal Component Analysis tool on a group of nine metrics (average sentence

length, normalized vocabulary size, normalized conjunction frequency, total number of words, and the

normalized frequencies of the following parts of speech: adjectives, adverbs, verbs, nouns, and

pronouns) in order to search for a less obvious correlation to popularity. Principal component analysis

allowed me to determine if some combination of these nine metrics would result in a successful book,

instead of a single metric holding the key. The main idea behind PCA is that each metric is like a

separate dimension in a coordinate system, but these dimensions do not allow one to easily see patterns.

PCA uses matrices to rotate the coordinate system and create new dimensions or metrics (called

principal components), which are combinations of the old ones and which might reveal patterns more

easily. I eventually plotted each of my nine principal components with the books' popularities.

Two-Dimensional Histogram Analysis

Finally, I used R's hexbin library to create two-dimensional histograms of my data. A two-

dimensional histogram follows the same basic principle as a one-dimensional histogram, but it

compares two variables rather than merely displaying the frequencies of one. Hexbin divides the graph

into equal hexagonal areas and determines how many data points fall within each. Darker shades of

gray on the resulting histogram indicate a greater number of data points. Two-dimensional histograms

were primarily used for popularity analysis this year. I compared various ratios of parts of speech to

book popularity (e.g., the ratio of nouns to adjectives vs. popularity), and I also made use of these

5

histograms to compare various other metrics to popularity.

Model Verification

All validation of my codes was accomplished via test passages; I manually analyzed these and

compared my analysis to the computer's during the debugging process. For an example of such a test

passage, see Appendix 5. This passage is the slightly modified first paragraph of Pride and Prejudice. It

is reasonably short, so I can easily perform a manual text analysis on it. This paragraph has 89 words,

and enough punctuation that I can be confident that the punctuation remover and dictionary generator

codes are functioning properly. As additional verification of the parts of speech tagger, I could also

examine the tagged text produced from running the tagger model on this passage. This would allow me

to readily observe that all tags were fitting for their corresponding words.

Results

Relationship Between Number of Conjunctions and Book Popularity

A basic scatter plot of normalized conjunction count vs. popularity reveals a potential parabolic

relationship between these two metrics (see Figures 1, 2, and 3). This relationship is by no means

definitive, and this type of plot may not be the best for confirming or refuting it. Naturally, a popular

book depends on much more than the perfect ratio of conjunctions to other words. Nonetheless, a curve

can be seen on three different levels of popularity, suggesting an ideal number of compound or

compound-complex sentences (those with conjunctions). Conjunction frequency for each sample was

normalized by dividing the number of conjunctions found by the total number of words in the text.

6

7

0 0.01 0.01 0.02 0.02 0.03 0.03 0.04 0.04 0.05 0.05
0

2000

4000

6000

8000

10000

Total Conjunctions vs. Popularity

Normalized

Number Conjunctions / Number Words

P
o

p
u

la
ri

ty

0 0.01 0.01 0.02 0.02 0.03 0.03 0.04 0.04 0.05 0.05
0

1000

2000

3000

4000

Total Conjunctions vs. Popularity

Normalized

Number Conjunctions / Number Words

P
o

p
u

la
ri

ty

Figure 1. Scatter plot of normalized conjunction count vs. popularity. Max. y value = 10000.

Figure 2. Scatter plot of normalized conjunction count vs. popularity. Max. y value = 4000.

Relationship Between Other Metrics and Book Popularity

Figures 4 and 5 depict two selected scatter plots of other complexity metrics vs. popularity. To

all appearances, there are no relationships revealed; the plots are random. This suggests that there is no

correlation between very simple metrics like book length or comma frequency and popularity. If there

are any relationships at all, they are likely to only be revealed through more thorough or complex

analyses.

8

0 0.01 0.01 0.02 0.02 0.03 0.03 0.04 0.04 0.05 0.05
0

200

400

600

800

1000

Total Conjunctions vs. Popularity

Normalized

Number Conjunctions / Number Words

P
o

p
u

la
ri

ty

0 5000 10000 15000 20000 25000 30000
0

5000

10000

15000

20000

25000

30000

Book Length vs. Popularity

Number of Sentences

P
o

p
u

la
ri

ty

Figure 3. Scatter plot of normalized conjunction count vs. popularity. Max. y value = 1000.

Figure 4. Scatter plot of book length (measured in sentences) vs. popularity.

Principal Component Analysis and Book Popularity

The nine scatter plots in Appendix 6 depict the results of the principal component analysis when

compared to popularity. Note that for scaling reasons, the y-axis is actually the logarithm of book

popularity. All of these plots look extremely similar; all data points fall within a single PCA score

range, whether they are very popular or practically unknown. This range is always centered around x =

0.0. The only exception to this pattern is the plot concerning principal component #2, but it is entirely

random, with points scattered almost evenly across the graph. These plots show very clearly that no

combination of the nine metrics on which PCA was performed will produce a successful book. In this

case, principal component analysis failed to detect more subtle patterns and correlations between my

metrics and popularity.

Relationship Between Vocabulary Size and Book Length

9

0 10000 20000 30000 40000 50000 60000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Number of Commas vs. Popularity

Number of Commas

P
o

p
u

la
ri

ty

Figure 5. Scatter plot of comma frequency vs. popularity.

As seen in Figure 6, there is a pronounced decaying exponential relationship between author

vocabulary size and the number of sentences in a work. This correlation was originally revealed in my

project last year; the larger data set that I used this year supports that conclusion despite a change in my

calculation of sentence count. Last year, I only considered periods as end-of-sentence indicators, but

this year I modified my algorithm to count exclamation points and question marks as well. The result

was a more accurate calculation. Note that author vocabulary size was normalized by dividing the

number of unique words used by the total number of words used. The exponential curve shows that

typically, an author's normalized vocabulary decreases drastically as the book's length increases; a book

that contains many more words does not necessarily contain many more unique words. Stated

differently, an author will not constantly introduce new words into his or her text but will continue to

work with the same vocabulary throughout. For the exact equation of the curve, refer also to Figure 6.

10

0 5000 10000 15000 20000 25000 30000 35000 40000
0

0.1

0.2

0.3

0.4

0.5

f(x) = 2.74 x^-0.4
R² = 0.78

Vocabulary Size vs. Number of Sentences

(Normalized Vocabulary)

Number of Sentences

N
o

rm
a

liz
e

d
 V

o
ca

b
u

la
ry

Figure 6. Scatter plot of book length (measured in sentences) vs. normalized vocabulary size.
Equation describes exponential decay curve.

Two-Dimensional Histogram Analysis With Respect to Popularity

I created two-dimensional histograms comparing book popularity with a wide variety of data

metrics, particularly those involving different parts of speech. To view these histograms, see Appendix

7 at the end of the report. Also with respect to popularity, the ratios of nouns to adjectives, adjectives to

nouns, nouns to verbs, and verbs to nouns were plotted as two-dimensional histograms. Somewhat

surprisingly, no correlation is visible between any of these ratios and book popularity. The data is

randomly scattered across each histogram. This may be due to insufficient data; however, it appears

that popularity is not remotely connected to the number of descriptors per noun, etc. I also generated

histograms that directly compared popularity to frequencies of conjunctions, frequencies of various

punctuation marks, and average sentence length (see Appendix 7). Again, no correlations are readily

visible. The most popular books on the histograms always fall within the same range vertically as the

least popular books. Clearly, none of these metrics are strongly related to book popularity, despite the

basic scatter plots of conjunction frequency and popularity discussed above.

Scatter Plots With Respect to Parts of Speech

I also created scatter plots to compare frequencies of various parts of speech to a sample's total

word count. The plots for nouns, pronouns, verbs, adjectives, and adverbs all revealed strong linear

correlations to word count. This shows that for all types of books, the ratio of a particular part of

speech to other words will remain fairly constant. I performed a linear regression on each of my plots

for these parts of speech, and in this way I was able to determine the exact ratio. For an example, see

Figure 7. According to this regression, approximately one in every 4 words will be a noun. Equations

for the remaining regressions can be seen in Table 1. About one in every 5 words will be a verb, one in

every 8 will be a pronoun, one in every 15 will be an adjective, and about one in every 14 words will be

an adverb. For the remaining part of speech scatter plots, see Appendix 7. Note also that all linear

11

models fit these plots very well; the average R2 value is 0.97.

Table 1. Regression lines for total words vs. various parts of speech.

Part of Speech Regression Line

Noun f(x) = 4.47x + 3927.59

Verb f(x) = 5.30x – 1391.36

Pronoun f(x) = 7.80x + 326.70

Adjective f(x) = 14.80x + 1144.12

Adverb f(x) = 14.30x -1798.84

12

Figure 7. Scatter plot depicting the ratio of noun count to total word count.

0 50000 100000 150000
0

100000

200000

300000

400000

500000

600000
f(x) = 4.47x + 3927.59
R² = 0.98

Number of Nouns

To
ta

l N
u

m
b

e
r

o
f W

o
rd

s

Conclusions

Overall, most of my metrics showed no correlation to book popularity, with the potential

exception of conjunction frequency. My results provide very strong evidence that a good book is

determined not by a single “magic formula” but by the content itself; creating a good story is a matter

of art, and readers will pay more attention to the author's message than how many different words he or

she used.

On the other hand, I did discover correlations between different syntactical components of a

book, namely the relationship between vocabulary size and book length and the nearly constant ratios

of different parts of speech. The latter were certainly unexpected and intriguing results. Writers who

differ vastly in matters of style and quality of production use nearly the same ratios of descriptors,

action words, nouns, and so on. According to these results, someone who spends entire paragraphs

describing a single scene actually utilizes about as many adjectives on average as someone who barely

lays out a setting at all.

As always, there is ample room for improvement and expansion on this project. Perhaps new

correlations would emerge if I used Stanford's part of speech tagger to classify words more specifically.

For instance, rather than identifying the word “completes” merely as a verb, I might treat it as a

present-tense verb in third person singular. Future work on the project may also include analysis of

foreign languages and the comparison of usage of those languages to the usage of English. However, I

will likely not continue to search for a relationship between syntax and popularity.

Significant Achievements

 Many of my significant achievements this year involved my process more than they did my

results. Some of the most important components of the project included understanding and using

analysis tools such as principal component analysis. Particularly significant results included the

13

discovery of set ratios for use of different parts of speech and the conclusion that truly exceptional

literature is about much, much more than the most appealing syntax.

Software

I used Java and Perl for all codes this year. The dictionary and punctuation remover codes were

written in Perl; all other codes were written in Java. Stanford's POS Tagger was implemented in Java as

well. I used R and LibreOffice Calc for my final plots and for the principal component analysis.

My selection of coding languages was largely a matter of personal preference. The Perl codes

were both codes that I originally wrote for last year's project. However, this year I have become

increasingly familiar with Java and prefer it for working with text files, text scanning, and other text

analysis.

References

Atwell, Eric. "The University of Pennsylvania (Penn) Treebank Tag-set." The University of

Pennsylvania (Penn) Treebank Tag-set. Leeds University, n.d. Web. 18 Mar. 2015.

Conway, Drew, and John Myles White. Machine Learning for Hackers. Beijing: O'Reilly, 2012. Print.

Kristina Toutanova, Dan Klein, Christopher Manning, and Yoram Singer. 2003. Feature-Rich Part-of-

Speech Tagging with a Cyclic Dependency Network. In Proceedings of HLT-NAACL 2003, pp.

252-259.

Lewis, John, and William Loftus. Java Software Solutions: Foundations of Program Design. Boston:

Addison-Wesley, 2012. Print.

"Project Gutenberg." Project Gutenberg. N.p., 11 Oct. 2014. Web. 06 Dec. 2014.

"The Stanford NLP (Natural Language Processing) Group." The Stanford NLP (Natural Language

Processing) Group. Stanford University, 29 Jan. 2015. Web. 09 Mar. 2015.

14

http://nlp.stanford.edu/~manning/papers/tagging.pdf
http://nlp.stanford.edu/~manning/papers/tagging.pdf

Acknowledgements

The Stanford University Natural Language Processing Group's website provided the parts of

speech tagger download (the English left3words model) that was used for this project. I would like to

thank the Supercomputing Challenge judges and other staff for their support and advice throughout this

year.

15

Additional Plots, Tables, and Codes

Table 2. List of All Data Books

A Houseful of Girls
A Love Episode

A Mountain Woman
A Red Wallflower

A Tale of Two Cities
Alarm Clock

Alive In The Jungle
An Open - Eyed Conspiracy: An Idyl of Saratoga

Bred in the Bone
Buffalo Bill's Spy Trailer

Cast Adrift
Chanticleer

Crome Yellow
David Dunne

Dora Deane, Or, The East India Uncle
Elsie at Home

Expediter
Fame and Fortune

Flames
Gabriel and the Hour Book

How It All Came Round
Huckleberry Finn
In Her Own Right

In The Brooding Wild
Instinct

Judith of the Plains
King Spruce

Les Miserables
Little Lost Sister

Little Mittens for the Little Darlings
Love and Mr. Lewisham

Mary Gray
My Fair Planet

Ned Garth
Old Man Curry: Race Track Stories

Operation Earthworm
Peveril of the Peak

Polly Oliver's Problem
Poor Jack

Precaution: A Novel
Pride and Prejudice
Rewards and Fairies

16

Squinty the Comical Pig
Sunny Boy in the Country

Sustained Honor
Swiss Family Robinson
That Affair Next Door

The Adventure Club Afloat
The Adventures of Harry Revel

The Adventures of Sherlock Holmes
The Black Bag
The Captives

The Chums of Scranton High
The Dope on Mars

The Dragon of Wantley
The Efficiency Expert
The Eye of Zeitoon

The Goat and Her Kid
The Good Neighbors

The Grizzly King
The Home in the Valley

The Hunters
The Inhabited

The Inner Sisterhood
The Invader

The Iron Woman
The Island of Faith
The King in Yellow

The Lost City
The Mayor of Casterbridge

The Mystery of the Four Fingers
The Old Folks' Party

The Patchwork Girl of Oz
The Prince and the Page: A Story of the Last Crusade

The Puppet Crown
The Radio Boys on the Mexican Border

The Red House Mystery
The Rover Boys At College

The Severed Hand
The Silver Butterfly
The Slave of Silence

The Spinners
The Spinster

The Splendid Folly
The Story of Red Feather: A Tale of the American Frontier

The Sword Maker
The Tragedy of the Chain Pier

The Turmoil: A Novel

17

The Valley of Decision
The Witness

The Young Lieutenant
Wanted - 7 Fearless Engineers!

Wayside Courtships
We Didn't Do Anything Wrong, Hardly

Wessex Tales
With Airship and Submarine

With Wolfe in Canada
Wolves of the Sea

Woman Triumphant
Wood Magic: A Fable

Bones
Hunter Quatermain's Story

Tarzan of the Apes
The Scarlet Pimpernel
The Prisoner of Zenda
The Thirty-Nine Steps

The Black Arrow: A Tale of Two Roses
The Return of Dr. Fu-Manchu

Mr. Justice Raffles
The Extraordinary Adventures of Arsene Lupin, Gentleman-Burglar

The Golden Scorpion
An African Millionare: Episodes in the Life of the Illustrious Colonel Clay

Crime and Punishment
Murder in the Gunroom
Within an Inch of His Life

The Moon Rock
The Ashiel Mystery: A Detective Story

The Mysterious Affair at Styles
Dead Men's Money

The Moonstone
In the Fog

The Merry Adventures of Robin Hood
The Book of Wonder

The Crock of Gold
Gulliver of Mars

The Wood Beyond the World
The Legends of King Arthur and His Knights

The Night Land
The Yellow Wallpaper

The Phantom of the Opera
The History of Caliph Vathek

Wuthering Heights
The Vampyre; A Tale

The Mysteries of Udolpho

18

The Picture of Dorian Gray
A Thane of Wessex

Grisly Grisell; Or, the Laidly Lady of Whitburn: A Tale of the Wars of the Roses
By Pike and Dyke: a Tale of the Rise of the Dutch Republic

The Pilot: A Tale of the Sea
Treasure Island
The Virginians

A Gentleman of France: Being the Memoirs of Gaston de Bonne Sieur de Marsac
A Thin Ghost and Others

Four Weird Tales
Dracula's Guest

An Occurrence at Owl Creek Bridge
The House of Souls

Varney the Vampire; Or, the Feast of Blood
The Shunned House

The Diary of a Nobody
My Man Jeeves

Samantha at Saratoga
A Prefect's Uncle

Miss Mapp
Comic History of England

In Brief Authority
The Age of Innocence

The Auction Block
A Journey to the Centre of the Earth

The Scarlet Letter
The First Men in the Moon

Moonfleet
"Captains Courageous": A Story of the Grand Banks

The Secret Agent: A Simple Tale
The Woman in White
The Beetle: A Mystery

Greenmantle
Dracula

The Mystery of Edwin Drood
The Last Man

A Connecticut Yankee in King Arthur's Court
The Dominion in 1983

Trips to the Moon
A Crystal Age

The Strange Case of Dr. Jekyll and Mr. Hyde
The Diamond Lens

The Boys of Bellwood School; Or, Frank Jordan's Triumph
For the Sake of the School

Daddy-Long-Legs
A Little Princess

19

The White Feather
Glyn Severn's Schooldays
What Katy Did At School

The Sensitive Man
Under Arctic Ice

Pandemic
The Lost Continent

Badge of Infamy
The Barbarians

The Revolt of the Star Men
Bucky O'Connor: A Tale of the Unfenced Border

Black Jack
The Barrier

The Hidden Children
Rebel Spurs
Betty Zane

Cow-Country

20

Appendix 1. The TextObject Class (Java Code).

//This is a class that will have various methods to analyze the text.

import java.io.File;
import java.util.Scanner;
import java.io.BufferedReader;
import java.io.FileReader;

public class TextObject{

//basic constructor
public TextObject(){

}

//This code counts: that, as, if, when, than, and, or, but, because, while, where,
//after,so, though, since, until, whether, before, although, nor, like, once,
//unless, now, except

public int JavaConjunctions(File textfile) throws Exception{

File file = textfile;
Scanner fileScan = new Scanner(file);
int andcount = 0, butcount = 0, orcount = 0, bccount = 0, othercount = 0;

while(fileScan.hasNext()){

String wordbefore = fileScan.next();
char lastchar = wordbefore.charAt(wordbefore.length() - 1);
if(lastchar == 44){ //44 = ASCII for ,

String aword = fileScan.next();

if(aword.equals("and") || aword.equals("\"and") ||
 aword.equals("and,")){

andcount++;
} else {

if(aword.equals("but") || aword.equals("\"but") ||
 aword.equals("but,")){

butcount++;
} else {

 if(aword.equals("or") || aword.equals("\"or") ||
 aword.equals("or,")){

orcount++;
} else {

 if(aword.equals("because") ||
aword.equals("\"because") ||

 aword.equals("because,")){
bccount++;

}
}

}
}

if(aword.equals("that") || aword.equals("\"that") ||
 aword.equals("that,")){

21

 othercount++;
}
if(aword.equals("as") || aword.equals("\"as") ||
 aword.equals("as,")){
 othercount++;
}
if(aword.equals("if") || aword.equals("\"if") ||
 aword.equals("if,")){
 othercount++;
}
if(aword.equals("when") || aword.equals("\"when") ||
 aword.equals("when,")){
 othercount++;
}
if(aword.equals("than") || aword.equals("\"than") ||
 aword.equals("than,")){
 othercount++;
}
if(aword.equals("while") || aword.equals("\"while") ||
 aword.equals("while,")){
 othercount++;
}
if(aword.equals("where") || aword.equals("\"where") ||
 aword.equals("where,")){
 othercount++;
}
if(aword.equals("after") || aword.equals("\"after") ||
 aword.equals("after,")){
 othercount++;
}
if(aword.equals("so") || aword.equals("\"so") ||
 aword.equals("so,")){
 othercount++;
}

 if(aword.equals("though") || aword.equals("\"though") ||
 aword.equals("though,")){

 othercount++;
}
if(aword.equals("since") || aword.equals("\"since") ||
 aword.equals("since,")){
 othercount++;
}
if(aword.equals("until") || aword.equals("\"until") ||
 aword.equals("until,")){
 othercount++;
}

 if(aword.equals("whether") || aword.equals("\"whether") ||
 aword.equals("whether,")){
 othercount++;
}
if(aword.equals("before") || aword.equals("\"before") ||
 aword.equals("before,")){
 othercount++;
}
if(aword.equals("although") || aword.equals("\"although") ||
 aword.equals("although,")){
 othercount++;

22

}
if(aword.equals("nor") || aword.equals("\"nor") ||
 aword.equals("nor,")){
 othercount++;
}
if(aword.equals("like") || aword.equals("\"like") ||
 aword.equals("like,")){
 othercount++;
}
if(aword.equals("once") || aword.equals("\"once") ||
 aword.equals("once,")){
 othercount++;
}
if(aword.equals("unless") || aword.equals("\"unless") ||
 aword.equals("unless,")){
 othercount++;
}
if(aword.equals("now") || aword.equals("\"now") ||
 aword.equals("now,")){
 othercount++;
}

 if(aword.equals("except") || aword.equals("\"except") ||
 aword.equals("except,")){
 othercount++;
}

 }
}

int totalcount = andcount + butcount + orcount + bccount + othercount;

return andcount;
//return butcount;
//return orcount;
//return bccount;
//return totalcount;

}

//Counts numbers of various punctuation and then calculates the number of
sentences.
public int JavaPunctuationCounter(File textfile) throws Exception{

BufferedReader textfileReader = new BufferedReader(new FileReader(textfile));
int asciichar = textfileReader.read();
int periodcount = 0, exclamationcount = 0, questioncount = 0, commacount = 0;
int semicoloncount = 0, coloncount = 0, doublequotecount = 0;

while(asciichar != -1){
char thischar = (char)asciichar;

if(thischar == '.'){
periodcount++;

}
if(thischar == '?'){

questioncount++;
}
if(thischar == '!'){

23

exclamationcount++;
}
if(thischar == ','){

commacount++;
}
if(thischar == ';'){

semicoloncount++;
}
if(thischar == ':'){

coloncount++;
}
if(thischar == '"'){

doublequotecount++;
}

asciichar = textfileReader.read();
}

int numbersentences = periodcount + exclamationcount + questioncount;

return periodcount;
//return questioncount;
//return exclamationcount;
//return commacount;
//return semicoloncount;
//return numbersentences;

 }
}

24

Appendix 2. Punctuation Remover (Perl Code).

#!/usr/bin/perl

open(ifile,$ARGV[0]);
$fname = "$ARGV[0]".".parsed";
open(ofile, ">$fname");

$pcount = 0;
$commacount = 0;
$exclamationcount = 0;
$semicoloncount = 0;
$questioncount = 0;
$coloncount = 0;
$i = 0;
$w = 0;

$somepunk = 0;
while(<ifile>){
 chomp();
 @m = split(" ", $_);
 $n = @m;
 $w = $n + $w;

 #Each if statement is responsible for removing one kind of punctuation. Some

#punctuation marks also have counters associated with them.
 for($i=0; $i<$n; $i++){
 $tagged =0;
 if($m[$i] =~ "\\."){
 $pcount++;
 @tword=split("\\.", $m[$i]);
 print "$m[$i] => $tword[0]\n";
 $tagged = 1;
 print ofile "$tword[0]\n";
 }
 if(($m[$i] =~ "\\,")&&(!$tagged)){
 $commacount++;
 @tcomma=split("\\,", $m[$i]);
 print "$m[$i] => $tcomma[0]\n";
 $tagged = 1;
 print ofile "$tcomma[0]\n";
 }
 if(($m[$i] =~ "\\!")&&(!$tagged)){
 $exclamationcount++;
 @texclamation=split("\\!", $m[$i]);
 print "$m[$i] => $texclamation[0]\n";
 $tagged = 1;
 print ofile "$texclamation[0]\n";
 }
 if(($m[$i] =~ "\/")&&(!$tagged)){
 @texclamation=split("\/", $m[$i]);
 print "$m[$i] => $texclamation[0]\n";
 $tagged = 1;
 print ofile "$texclamation[0]\n";
 }
 if(($m[$i] =~ /\\/)&&(!$tagged)){

25

 @tbslash=split(/\\/, $m[$i]);
 print "$m[$i] => $tbslash[0]\n";
 $tagged = 1;
 print ofile "$tbslash[0]\n";
 }
 if(($m[$i] =~ "\\;")&&(!$tagged)){
 $semicoloncount++;
 @tsemicolon=split("\\;", $m[$i]);
 print "$m[$i] => $tsemicolon[0]\n";
 $tagged = 1;
 print ofile "$tsemicolon[0]\n";
 }
 if(($m[$i] =~ "\\:")&&(!$tagged)){
 $coloncount++;
 @tcolon=split("\\:", $m[$i]);
 print "$m[$i] => $tcolon[0]\n";
 $tagged = 1;
 print ofile "$tcolon[0]\n";
 }
 if(($m[$i] =~ "_")&&(!$tagged)){
 @tsquote=split("_", $m[$i]);
 if(@tsquote >1){
 print "$m[$i] => $tsquote[1]\n";
 print ofile "$tsquote[1]\n";
 }else{print "$m[$i] => $tsquote[0]\n";
 print ofile "$tsquote[0]\n";}
 $tagged = 1;
 }
 if(($m[$i] =~ "*")&&(!$tagged)){
 @tsquote=split("*", $m[$i]);
 if(@tsquote >1){
 print "$m[$i] => $tsquote[1]\n";
 print ofile "$tsquote[1]\n";
 }else{print "$m[$i] => $tsquote[0]\n";
 print ofile "$tsquote[0]\n";}
 $tagged = 1;
 }
 if(($m[$i] =~ "\\?")&&(!$tagged)){
 $questioncount++;
 @tquestion=split("\\?", $m[$i]);
 print "$m[$i] => $tquestion[0]\n";
 $tagged = 1;
 print ofile "$tquestion[0]\n";
 }
 if(($m[$i] =~ /"/)&&(!$tagged)){
 @tsquote=split(/"/, $m[$i]);
 if(@tsquote >1){
 print "$m[$i] => $tsquote[1]\n";
 print ofile "$tsquote[1]\n";
 }else{print "$m[$i] => $tsquote[0]\n";
 print ofile "$tsquote[0]\n";}
 $tagged = 1;
 }
 if(($m[$i] =~ "\\[")&&(!$tagged)){
 @tobracket=split("\\[", $m[$i]);
 print "$m[$i] => $tobracket[1]\n";
 $tagged = 1;

26

 print ofile "$tobracket[1]\n";
 }
 if(($m[$i] =~ "\\<")&&(!$tagged)){
 @tobracket=split("<", $m[$i]);
 print "$m[$i] => $tobracket[1]\n";
 $tagged = 1;
 print ofile "$tobracket[1]\n";
 }
 if(($m[$i] =~ "\\(")&&(!$tagged)){
 @tobracket=split("\\(", $m[$i]);
 print "$m[$i] => $tobracket[1]\n";
 $tagged = 1;
 print ofile "$tobracket[1]\n";
 }
 if(($m[$i] =~ "\\{")&&(!$tagged)){
 @tobracket=split("\\{", $m[$i]);
 print "$m[$i] => $tobracket[1]\n";
 $tagged = 1;
 print ofile "$tobracket[1]\n";
 }
 if(($m[$i] =~ "\\]")&&(!$tagged)){
 @tobracket=split("\\]", $m[$i]);
 print "$m[$i] => $tobracket[0]\n";
 $tagged = 1;
 print ofile "$tobracket[0]\n";
 }
 if(($m[$i] =~ "\\>")&&(!$tagged)){
 @tobracket=split(">", $m[$i]);
 print "$m[$i] => $tobracket[0]\n";
 $tagged = 1;
 print ofile "$tobracket[0]\n";
 }
 if(($m[$i] =~ "\\)")&&(!$tagged)){
 @tobracket=split("\\)", $m[$i]);
 print "$m[$i] => $tobracket[0]\n";
 $tagged = 1;
 print ofile "$tobracket[0]\n";
 }
 if(($m[$i] =~ "\\}")&&(!$tagged)){
 @tobracket=split("\\}", $m[$i]);
 print "$m[$i] => $tobracket[0]\n";
 $tagged = 1;
 print ofile "$tobracket[0]\n";
 }
 if(($m[$i] =~ "\\~")&&(!$tagged)){
 @tobracket=split("\\~", $m[$i]);
 print "$m[$i] => $tobracket[0]\n";
 $tagged = 1;
 print ofile "$tobracket[0]\n";
 }
 if(($m[$i] =~ "\\`")&&(!$tagged)){
 @tobracket=split("\\`", $m[$i]);
 print "$m[$i] => $tobracket[0]\n";
 $tagged = 1;
 print ofile "$tobracket[0]\n";
 }
 if(($m[$i] =~ "\\&")&&(!$tagged)){

27

 @tobracket=split("\\&", $m[$i]);
 print "$m[$i] => $tobracket[0]\n";
 $tagged = 1;
 print ofile "$tobracket[0]\n";
 }
 if(($m[$i] =~ "\\%")&&(!$tagged)){
 @tobracket=split("\\%", $m[$i]);
 print "$m[$i] => $tobracket[0]\n";
 $tagged = 1;
 print ofile "$tobracket[0]\n";
 }
 if(($m[$i] =~ "\\+")&&(!$tagged)){
 @tobracket=split("\\+", $m[$i]);
 print "$m[$i] => $tobracket[0]\n";
 $tagged = 1;
 print ofile "$tobracket[0]\n";
 }
 if(($m[$i] =~ "\\-")&&(!$tagged)){
 @tobracket=split("\\-", $m[$i]);
 print "$m[$i] => $tobracket[0]\n";
 $tagged = 1;
 print ofile "$tobracket[0]\n";
 print ofile "$tobracket[1]\n";
 }
 if(($m[$i] =~ "\\=")&&(!$tagged)){
 @tobracket=split("\\=", $m[$i]);
 print "$m[$i] => $tobracket[0]\n";
 $tagged = 1;
 print ofile "$tobracket[0]\n";
 }
 if(($m[$i] =~ "\\@")&&(!$tagged)){
 @tsquote=split("@", $m[$i]);
 if(@tsquote >1){
 print "$m[$i] => $tsquote[1]\n";
 print ofile "$tsquote[1]\n";
 }else{print "$m[$i] => $tsquote[0]\n";
 print ofile "$tsquote[0]\n";}
 $tagged = 1;
 }
 if(($m[$i] =~ "\\^")&&(!$tagged)){
 @tsquote=split("\\^", $m[$i]);
 if(@tsquote >1){
 print "$m[$i] => $tsquote[1]\n";
 print ofile "$tsquote[1]\n";
 }else{print "$m[$i] => $tsquote[0]\n";
 print ofile "$tsquote[0]\n";}
 $tagged = 1;
 }
 if(($m[$i] =~ "\\|")&&(!$tagged)){
 @tsquote=split("\\|", $m[$i]);
 if(@tsquote >1){
 print "$m[$i] => $tsquote[1]\n";
 print ofile "$tsquote[1]\n";
 }else{print "$m[$i] => $tsquote[0]\n";
 print ofile "$tsquote[0]\n";}
 $tagged = 1;
 }

28

 if(!$tagged){
 print ofile "$m[$i]\n";
 print "$m[$i]\n";
 }
 if($tagged) {$somepunk = 1;}
 }
}
close(ifile);
close(ofile);

print "SomePunk = $somepunk\n";
print "Number of Periods = $pcount\n";
print "Number of Commas = $commacount\n";
print "Number of Exclamation Points = $exclamationcount\n";
print "Number of Semicolons = $semicoloncount\n";
print "Number of Colons = $coloncount\n";
print "Number of Question Marks = $questioncount\n";

29

Appendix 3. Dictionary Generator (Perl Code).

#!/usr/bin/perl

$keys = 0;
open(ifile, "$ARGV[0]");

#Code creates a hash table of unique words found in a text. First makes all text
#lowercase to avoid confusion caused by capitals.

while(<ifile>){
chomp;

 $thisword = lc($_);
 $words{$thisword}++;
 if($words{$thisword}<2){$mykey[$keys] = "$thisword"; $keys++}
}
close(ifile);

open(ofile, ">dictionary.out");
open(afile, ">frequency.out");
print ofile "I got $keys different words\n";

for($w=0; $w<$keys; $w++){
print ofile "$mykey[$w]\n";

 print afile "$words{$mykey[$w]}\n";
}

close ofile;
close afile;

30

Appendix 4. Performing Principal Component Analysis (R Code).

bookdata <- read.csv('/home/tabitha/Supercomputing/PCAData6.csv')
mydat=matrix(nrow=199,ncol=9)
j = 1

#Shifts and normalizes the data.
shift1=min(bookdata[,1])
scale1=max(bookdata[,1])-shift1
shift2=min(bookdata[,2])
scale2=max(bookdata[,2])-shift2
shift3=min(bookdata[,3])
scale3=max(bookdata[,3])-shift3
shift4=min(bookdata[,4])
scale4=max(bookdata[,4])-shift4
shift5=min((bookdata[,5]/bookdata[,4]))
scale5=max((bookdata[,5]/bookdata[,4]))-shift5
shift6=min((bookdata[,6]/bookdata[,4]))
scale6=max((bookdata[,6]/bookdata[,4]))-shift6
shift7=min((bookdata[,7]/bookdata[,4]))
scale7=max((bookdata[,7]/bookdata[,4]))-shift7
shift8=min((bookdata[,8]/bookdata[,4]))
scale8=max((bookdata[,8]/bookdata[,4]))-shift8
shift9=min((bookdata[,9]/bookdata[,4]))
scale9=max((bookdata[,9]/bookdata[,4]))-shift9

#Transferring data into a data matrix.
for(i in 1:199){
 mydat[j,1] = (bookdata[i,1]-shift1)/scale1
 mydat[j,2] = (bookdata[i,2]-shift2)/scale2
 mydat[j,3] = (bookdata[i,3]-shift3)/scale3
 mydat[j,4] = (bookdata[i,4]-shift4)/scale4
 mydat[j,5] = ((bookdata[i,5]/bookdata[i,4])-shift5)/scale5
 mydat[j,6] = ((bookdata[i,6]/bookdata[i,4])-shift6)/scale6
 mydat[j,7] = ((bookdata[i,7]/bookdata[i,4])-shift7)/scale7
 mydat[j,8] = ((bookdata[i,8]/bookdata[i,4])-shift8)/scale8
 mydat[j,9] = ((bookdata[i,9]/bookdata[i,4])-shift9)/scale9
 j=j+1
}

#PCA itself.
mypca=princomp(mydat)

ranks <- read.csv('/home/tabitha/Supercomputing/Ranks.csv')

plot(mypca$scores[,1],ranks[,1])

31

Appendix 5. Test Passage For Model Verification.

{PRIDE AND` PREJUDICE}

By Jane} Austen]

Chapter% 1)

It_. it is a truth universally~ acknowledged, that^ a ^single man in possession
of a |good| fortune, must be in want of a wife.

"However". little = known the feelings or views of - such a man may be on his
@first entering@ a neighbourhood, this truth is-so well fixed in <the minds
of* the *surrounding families, that he is considered the rightful> <property>
of some one + or other of; their & daughters.

Bob.

[testing]
(just: in case)

? ?

32

Appendix 6. Principal Component Analysis Results. See Also Appendix 4.

33

34

35

36

37

Appendix 7. Additional Plots and Histograms.

38

39

40

41

42

0 5000 10000 15000 20000 25000 30000 35000 40000
0

100000

200000

300000

400000

500000

600000
f(x) = 14.80x + 1144.12
R² = 0.97

Number of Adjectives

To
ta

l N
u

m
b

e
r

o
f W

o
rd

s

0 5000 10000 15000 20000 25000 30000 35000
0

100000

200000

300000

400000

500000

600000
f(x) = 14.30x - 1798.84
R² = 0.94

Number of Adverbs

To
ta

l N
u

m
b

e
r

o
f W

o
rd

s

43

0 20000 40000 60000 80000 100000 120000
0

100000

200000

300000

400000

500000

600000
f(x) = 5.30x - 1391.36
R² = 0.99

Number of Verbs

To
ta

l N
u

m
b

e
r

o
f W

o
rd

s

0 10000 20000 30000 40000 50000 60000
0

100000

200000

300000

400000

500000

600000
f(x) = 7.80x + 326.70
R² = 0.95

Number of Pronouns

To
ta

l N
u

m
b

e
r

o
f W

o
rd

s

44

0 50000 100000 150000
0

100000

200000

300000

400000

500000

600000
f(x) = 4.47x + 3927.59
R² = 0.98

Number of Nouns

To
ta

l N
u

m
b

e
r

o
f W

o
rd

s

45

