
 1

Spread of Viruses on a Computer Network

New Mexico Supercomputing Challenge

Final Report

March 31, 2015

 Team Number: 63

Los Alamos Middle School

Team:
Christie Djidjev

Teacher:

Project Mentors:
Hristo Djidjev

Stephanie Djidjev

 2

Table of Contents

1.0 Executive Summary 3

2.0 Problem Statement 4

3.0 Background Information 4

4.0 Methodology 5

4.1 Hypothesis 5

4.2 Modeling the virus infection 6

4.3 Test networks 7

5.0 Results 11

6.0 Conclusions 17

7.0 Significant Original Achievement 18

8.0 Future Work 18

9 Works Cited 19

10.0 Appendix 21

9.1 Acknowledgements 21

9.3 Program Code 22

 3

1.0: Executive Summary

 Computer viruses are a major issue to government, business, and individual

people today. We have been trying to better understand how viruses infect computer

networks by simulating the spread of viruses in networks of different structure. We want

to determine how the structure of the network affects the time in which the virus

infection dies out. Specifically, we measure how the diameter and the spectral radius of

the network impacts the speed of infection spread and disappearance. We used

NetLogo for our simulations and one of models in its library as a basis for our codes. In

that model, computers and connections are represented by nodes and links. There are

3 types of nodes: infected, susceptible, and resistant, where the type of node can

change during the simulation based on the types of its neighbors and random variables.

We encoded four network types for our experiments: star, complete, random and power

law networks. For each network type, we ran the simulation for five sizes: 200, 400,

600, 800, and 1000 nodes. For each network type and size we ran 10 simulations and

recorded the time and the number of ticks. We then computed the average for each

network type and size and analyzed the results. We observed that when a network has

a larger diameter, it does not take longer for the virus to disappear. However, when the

spectral radius is larger, the speed in which the virus gets eliminated does increase.

Hence, the spectral radius can be used to determine which network structures are more

resistant to virus spread.

 4

2.0 Problem Statement

Viruses spread by moving from one infected node to another along links.Hence,

the pattern of the links of the network, also called the structure or the topology of the

network, determines how fast the viruses spread. If there are more links in a network,

then it seems more likely that the virus will spread quicker and take a longer time to

eliminate, but if there are fewer links it shouldn't take very long for the virus to die out.

The problem we are considering in this project is to study how different layouts for the

nodes and links in a computer network affect the speed in which viruses spread. We

want to model different network layouts for the nodes and links and simulate the spread

of viruses.

3.0 Background Information

 A computer virus is a small program that spreads from one computer to another

and causes malfunction or data loss. A virus is usually spread by email or when a user

downloads an infected file from the Internet. The virus replicates itself by automatically

sending itself to all of its neighbors. Studying computer viruses is important because

they cause billions of dollars of economic damage. So, tools were made to discover and

remove viruses from the computers [KEG]. Many people have worked on detecting and

removing viruses and there is a whole field of computer science dealing with viruses

and malware that is called cybersecurity [SF]. Some of the research includes detecting

viruses with anti-virus software. Other researchers study the traffic between computers

 5

on a network to discover anomalies that may indicate virus activity. We are going to

study viruses by using computer simulation.

4.0 Methodology

 We used NetLogo as a language to use for simulating the spread of viruses in a

network. We chose NetLogo because it is a convenient language for doing computer

simulations and it has a library of models that we can use while developing our codes.

We based our simulation code on one such existing model called Viruses on a Network

in the NetLogo library, which we updated with additional functionality. We modified the

model by allowing different network types as input. While the original code worked with

random geometric networks only, we modified it so that it can generate, display, and

simulate with different network types. With each network structure, we simulated the

spread of viruses in networks of different sizes and recorded the number of ticks and

the time it took for the virus to be extinguished. (Tick is a term used in NetLogo to

describe the current number of time-steps of the simulation.) We analyzed the data in

order to discover some relationship between the network structure and the number of

ticks until the virus is eliminated.

4.1 Our hypothesis

In this project, we want to find out how fast the virus is eliminated depending on

the graph’s structure. We conjecture that it depends on the diameter of the network

and/or the size of its spectral radius, namely, that greater the diameter/spectral radius,

the longer it will take for the virus to be extinguished. The diameter of the network is the

maximum distance between two nodes. It is relevant to know the diameter because the

 6

larger it is, the longer it takes for the virus to spread. The spectral radius of a graph is

the spectral radius of its adjacency matrix. The spectral radius of a matrix is the largest

eigenvalue by the absolute value. As with the diameter, we think that the larger the

spectral radius, the longer it will take for the virus to be eliminated, because the longer it

will take for information to go from one side of the network to the other. Moreover, in

[GMT], a condition for the speed of virus die-out was found that relates the spectral

radius and infection rate with whether the duration of the virus infection is “short” or

“long.” In that paper [GMT], “short” means logarithmic and “long” means exponential.

Hence, their result cannot be used to predict which of two network types is more

resistant to a virus spread, but suggests that the spectral radius might be a relevant

characteristic. We are going to check to see if that is true or not.

4.2 Modeling the virus infection

 To find out how the layout of the nodes and links affect the speed that the viruses

spread, we coded different models. We used Virus in A Network model from the

NetLogo library, which simulates the spread of viruses through a network. Each node

represents a computer, and we are modeling the progress of a computer virus through

this network. The links in the networks represent the connection between computers

and their neighbors. Each node may be one of these three states: susceptible, infected,

or resistant. Infected nodes are the ones that currently have the virus. They try to send it

to all their neighbors who are susceptible. Infected nodes have a recovery chance and

can either become susceptible again or resistant. A node can become resistant by a

resistance probability that is set in the model. The susceptible nodes are the nodes that

 7

are vulnerable to the virus. When a neighbor of a susceptible node is infected, it can get

infected too depending on the virus spread probability, which is a parameter specified in

the model. When an infected node becomes resistant, it stays resistant, and it is not

possible for the virus to spread through its links.

4.3 Test networks

We will be using four different network types in our project; star network,

complete network, random network, and power law network.

4.3.1 Star Network

 The first model we will use is the star network, which is a network that has one

node connected to every other node and there are no direct connections between the

other nodes. The node that is connected to all other nodes is called the central node.

We are interested in studying this network because it is one of the simplest kinds of

connected networks. It is simple because all the nodes except for the central node have

one neighbor. Star networks can help when analyzing more complex networks. For

instance, it is easier to understand the power law network because it is made up of

several star networks. Each one of these star networks consists of node a degree more

than one and all of its neighbors. Understanding the properties of each star network in

the power law network helps us understand it as a whole [GMT].

 8

Figure 1. A star network.

4.3.2 Complete Network

In the complete network each node is linked with every other node. Complete networks

are important because they are used in practice, For instance, large Border Gateway

Protocol (BGP) servers form a complete network [GMT]. BGP is a standard protocol for

exchanging information [EGC]. Also, complete networks are interesting to study

because they have the maximum possible number of links.

 9

Figure 2. A complete graph

4.3.3 Random Network

 In a random network, the nodes and links are randomly placed. There are

several ways to generate a random network. In the model that we used, we have

parameters n and m, number of nodes and links as input. We create n nodes without

links between them. We choose a random pair of vertices. If there is no link between

them, we create a link. If there is already a link, we don’t do anything. We repeat, until m

links are created. Random networks are interesting for our project because they are an

important class of networks that have been studied very often. Also, we want to

compare them with the power law networks that are important for the practice.

 10

Figure 3. Random graph.

4.3.4 Power Law Network

 Finally, we have a power law network, also known as scale free network [RPS].

These networks have degrees of the nodes that satisfy the power law. To be more

specific, in a power law network the fraction f(k) of nodes that have k neighbors is

𝑓 𝑘 = 𝑘!!

for some positive number 𝛾.

We find power law networks interesting to study because the Internet AS-level

graph is shown to be of this type [GMT]. Also, many real life networks such as social

networks are known to be power law networks. We generate the power law network by

using the preferential attachment model [BA]. In this model, we start with two nodes and

a link between them. We add a new node link it to one of the existing nodes with

 11

probabilities proportional to their degrees. We continue until the required number of

nodes are created.

Figure 4. Power law graph.

5.0 Results

 We performed several experiments in order to measure the time and the number

of ticks for each network type and size. For each network type we generated and did

simulations with network of size 200, 400, 600, 800, and 1,000 nodes since there is

randomness in how the virus will spread in a given network (because of the probabilities

used to determine if a node will get infected and when and whether it will become

resistant) and since some networks are random (the random and power law networks),

the simulation times may be quite different even for networks of the same size and type.

For that reason, we tested with each case 10 times. After getting the data from all

 12

experiment, we computed the averages for each network type and put them in a graph.

We also made a graph that includes averages of all network types. The results

presented in Figures 5-9.

Figure 5. Experimental results for the star network

Figure 5 shows the results for the star network. We observe that the running

times and the number of ticks are not correlated to each other, and they are not

correlated with the size of the network. Both of those results were unexpected for us.

 13

Figure 6. Experimental results for the complete network

 The results for the complete networks are given in Figure 6. We observe that

the time and ticks grow large as the network size gets bigger and they are much bigger

than the corresponding values for the star network.

 14

Figure 7. Experimental results for the random network

`

 Figure 8. Experimental results for the power law network

 15

 Figures 7 and 8 show the results for the random and the power law network. We

notice that the values are very similar. This is surprising because the networks are very

different from each other. The time and the ticks don’t seem to increase with the

network size. Surprisingly,, for both networks, the network size of 400 and 600 node

take much longer than any of the other sizes. We have also noticed that the 200

average is much smaller than the rest of the sizes. We suppose that this unexpected

behavior cannot be explained by the simulation model or the structure of the networks,

but by the NetLogo implementation.

Figure 9. Comparison of the number of ticks for all networks

Finally, Figure 9 compares the average number of ticks (number of time steps)

that it takes for the virus to die out for each network type. Clearly, the complete network

 16

takes longest, followed by the star network, and the random and power law network.

The values for the random and power law network look indistinguishable, but this is not

because of the logarithmic scale used; in fact they are extremely close to each other:

18.664 for the random and 18.656 for the power law.

In order to test our hypothesis, that the times for virus die out depend on the

diameter and the spectral radius of the graph of the corresponding network, we put the

relevant information about the four types of network in Table 1. The diameters of the

star and the complete graph we found by direct analysis of the networks, for the

diameter of the random graph we used [HI], and for the diameter of the power law graph

we used [BR]. This data does not support the our conjecture that smaller diameters

mean that the virus spread will take longer. So our first hypothesis is not confirmed.

To get the spectral radii of the star network, the complete network, and the random

network we used [GMT]. We notice that the spectral radius of the complete graph is

bigger than the spectral radius of the star network, which is bigger than the spectral

radius of the random graph. Comparing this with Figure 9, we observe the same

ordering: the largest number of ticks is recorded for the complete network, followed by

the star network, and the random network. For the power law network we did not find a

formula for the spectral radius, but we expect that it is similar as for the random

network. While we did not expect that the random and the power law network have so

similar virus die out times, this data is consistent with the data for the star network

(Figure 5). We can think of the random and the power law network as consisting of

stars, each star centered at a different node and containing also all neighbors of this

node. While in the random network all stars will be of sizes that are almost the same, in

 17

the power law network they will be different. But Figure 5 shows that the sizes of the

stars do not matter for the time for virus die out, so we can expect that the random and

the power law network will have similar behaviors.

 Star Complete Random Power Law

Diameter 𝟐 𝟏 𝒍𝒐𝒈 𝒏 𝒍𝒐𝒈 𝒏

Spectral radius 𝒏 𝒏 − 𝟏 𝒅 −

Table 1: Diameter and spectral radius of the 4 networks, where d is the average degree.

Our random networks have average degree of nodes 4.

6.0 Conclusion

 In conclusion, our experiment have shown that our hypothesis that the spectral

radius is a good indicator for the time it takes to extinguish a virus from the network,

with greater radius corresponding to longer times, while the diameter is not. We also

observed that the simulation codes are scalable for the star, random, and power law

networks, but not for the complete network, where a network of 1000 nodes takes

roughly an hour to simulate. NetLogo is very convenient language for such type of

simulations as it is very powerful and has nice tools that help running experiments, but

the drawback is that the code may not be very efficient.

 18

7.0 Original Achievements

Our original achievement was to determine whether the diameter and the

spectral radius affect the speed in which the virus dies out. In our best knowledge,

nobody has studied such model for virus spread as ours and on these network types.

We found that NetLogo is very convenient language for this type of simulations,

both because of the language features and tools, as well as the library of models that is

available. NetLogo was fast enough to let us check our hypothesis, although for running

simulations on very large networks it may not be fast enough.

During our work on this project we have learned many things that we did not

know before. One thing we have found is that each run is different, even if the network

is the same, and we have to ran the experiment for each network type and number of

nodes multiple times and then take the average of the results.

8.0 Future Work

 Although we have accomplished our achievements, much can still be done with

this project. Experimenting with various alternative network structures to see how the

behavior of the virus differs with other networks such as real-life network. Also, we can

extend this model by trying to model both the spread of viruses and countermeasures

by cyber defenders, like making certain nodes resistant.

 19

9.0 Work Cited

[AJN] Aycock, John (2006). Computer Viruses and Malware. Springer.

[BA] A. Barabasi, R. Albert, "Emergence of scaling in random networks". Science 286

(5439): 509–51.

[BBB] B. Bollobás. Random Graphs, 2nd Edition. Cambridge Univer-sity Press, 2001.

[BR] B. Bollobás and O. Riordan. The Diameter of a Scale-Free Random Graph.

Combinatorica 24, 1 (January 2004), 5-34.

 [BML] Brain, Marshall; Fenton, Wesley. How Computer Viruses Work, in

http://www.howstuffworks.com/virus.htm, accessed 12/10/2014.

 [EGC] E.G. Coffman Jr., Z. Ge, V. Misra and D. Towsley. "Network resilience: exploring

cascading failures within BGP", Proc. 40th Annual Allerton Conference on

Communications, Computing and Control, October 2002.

[FFF] M. Faloutsos, P. Faloutsos and C. Faloutsos. "On power-law relationships of the

Internet topology", Proc. ACM Sigcomm, 1999.

[GMT] Ganesh, A.; Massoulie, L.; Towsley, D., "The effect of network topology on the

spread of epidemics," INFOCOM 2005. 24th Annual Joint Conference of the IEEE

Computer and Communications Societies. Proceedings IEEE , vol.2, no.,

pp.1455,1466 vol. 2, 13-17 March 2005

[HI] J. Hartline and N. Immorlica, What is the diameter of a random graph, in

theory.eecs.northwestern.edu/courses/socialnetworks101/files/Social_Networks_L

ecture4.pptx, accessed on 3/31/2015.

[KEG] Kaspersky, Eugene (November 21, 2005). "The contemporary antivirus industry

and its problems". SecureLight.

[KRK] Kurose, James F.; Ross, Keith W., (2012). Computer Networking (6th ed.),

Pearson Education.

 20

[NHP] NetLogo home page, http://ccl.northwestern.edu/netlogo, accessed 12/10/2014.

[RPS] R. Pastor-Satorras and A. Vespignani. "Epidemic spreading in scale-free

networks," Physical Review Letters, 86 (2001), 3200– 3203.

[SF] P.W. Singer and A. Friedman. Cybersecurity and Cyberwar: What Everyone Needs to

Know, Oxford University Press; 1 edition (January 3, 2014).

 21

10.0 Appendix

10.1 Acknowledgements

 I would like to thank the organizers of the New Mexico Supercomputing

challenge for all their assistance. I would also like to thank my mentors and the NetLogo

models library for their codes and information.

 22

10.2 Program Code

;;===

;; Virus spread for Star networks in NetLogo

;; Adapted from Virus on a Network in the Models Library

;; Modified by Christie Djidjev

;; March 2015

;;===

turtles-own

[
 infected? ;; if true, the turtle is infectious

 resistant? ;; if true, the turtle can't be infected

 virus-check-timer ;; number of ticks since this turtle's last virus-check

]

to setup

 clear-all
 setup-nodes

 ; setup-spatially-clustered-network

 ask n-of initial-outbreak-size turtles

 [become-infected]
 ask links [set color white]
 layout-radial turtles links (turtle 0)
 reset-ticks

 reset-timer
end

to setup-nodes

 23

 set-default-shape turtles "circle"
 cro number-of-nodes

 [
 set label who

 set label-color black

 fd 15

 become-susceptible

 set virus-check-timer random virus-check-frequency
]
 make-star number-of-nodes

end

to make-star [num-nodes]
 let counter1 0

 let counter2 (counter1 + 1)
 while [counter2 < number-of-nodes]
 [
 ask (turtle counter1) [create-link-with (turtle counter2)]
 set counter2 (counter2 + 1)
]
 set counter1 (counter1 + 1)
end

to go

 if all? turtles [not infected?]
 [
 type count turtles type "," type ticks type "," print timer
 stop
]
 ask turtles

 [
 set virus-check-timer virus-check-timer + 1

 if virus-check-timer >= virus-check-frequency

 24

 [set virus-check-timer 0]
]
 spread-virus

 do-virus-checks

 tick

end

to become-infected ;; turtle procedure

 set infected? true

 set resistant? false

 set color red

end

to become-susceptible ;; turtle procedure

 set infected? false

 set resistant? false

 set color green

end

to become-resistant ;; turtle procedure

 set infected? false

 set resistant? true

 set color gray

 ask my-links [set color gray - 2]
end

to spread-virus

 ask turtles with [infected?]
 [ask link-neighbors with [not resistant?]
 [if random-float 100 < virus-spread-chance

 [become-infected]]]
end

 25

to do-virus-checks

 ask turtles with [infected? and virus-check-timer = 0]
 [
 if random 100 < recovery-chance

 [
 ifelse random 100 < gain-resistance-chance

 [become-resistant]
 [become-susceptible]
]
]
end

;;===

;; Virus spread for the complete networks

;; Adapted from Virus on a Network in the Models Library

;; Modified by Christie Djidjev

;; March 2015

;;===

turtles-own

[
 infected? ;; if true, the turtle is infectious

 resistant? ;; if true, the turtle can't be infected

 virus-check-timer ;; number of ticks since this turtle's last virus-check

]

to setup

 clear-all
 setup-nodes

 ; setup-spatially-clustered-network

 26

 ask n-of initial-outbreak-size turtles

 [become-infected]
 ask links [set color white]
 reset-ticks

 reset-timer
end

to setup-nodes

 set-default-shape turtles "circle"
 cro number-of-nodes

 [
 set label who

 set label-color black

 fd 15

 become-susceptible

 set virus-check-timer random virus-check-frequency
]
 make-mesh number-of-nodes

end

to make-mesh [num-nodes]
 let counter1 0

 while [counter1 < number-of-nodes]
 [
 let counter2 (counter1 + 1)
 while [counter2 < number-of-nodes]
 [
 ask (turtle counter1) [create-link-with (turtle counter2)]
 set counter2 (counter2 + 1)
]
 set counter1 (counter1 + 1)
]
end

 27

to go

 if all? turtles [not infected?]
 [
 type count turtles type "," type ticks type "," print timer
 stop
]
 ask turtles

 [
 set virus-check-timer virus-check-timer + 1

 if virus-check-timer >= virus-check-frequency

 [set virus-check-timer 0]
]
 spread-virus

 do-virus-checks

 tick

end

to become-infected ;; turtle procedure

 set infected? true

 set resistant? false

 set color red

end

to become-susceptible ;; turtle procedure

 set infected? false

 set resistant? false

 set color green

end

to become-resistant ;; turtle procedure

 set infected? false

 set resistant? true

 28

 set color gray

 ask my-links [set color gray - 2]
end

to spread-virus

 ask turtles with [infected?]
 [ask link-neighbors with [not resistant?]
 [if random-float 100 < virus-spread-chance

 [become-infected]]]
end

to do-virus-checks

 ask turtles with [infected? and virus-check-timer = 0]
 [
 if random 100 < recovery-chance

 [
 ifelse random 100 < gain-resistance-chance

 [become-resistant]
 [become-susceptible]
]
]
end

;;===

;; Virus spread for the random networks

;; Adapted from Virus on a Network in the Models Library

;; Modified by Christie Djidjev

;; March 2015

;;===

turtles-own

[

 29

 infected? ;; if true, the turtle is infectious

 resistant? ;; if true, the turtle can't be infected

 virus-check-timer ;; number of ticks since this turtle's last virus-check

]

to setup

 clear-all
 setup-nodes

 ; setup-spatially-clustered-network

 ask n-of initial-outbreak-size turtles

 [become-infected]
 ask links [set color white]
 repeat 50

 [
 layout-spring turtles links 0.7(world-width / (sqrt number-of-nodes)) 1

]
 reset-ticks

 reset-timer
end

to setup-nodes

 set-default-shape turtles "circle"
 cro number-of-nodes

 [
 set label who

 set label-color black

 fd 15

 become-susceptible

 set virus-check-timer random virus-check-frequency
]
 make-random number-of-nodes

 30

end

to make-random [num-nodes]
 repeat 3 * num-nodes
 [
 add-edge

]
end

to add-edge

 let node1 one-of turtles

 let node2 one-of turtles

 ask node1 [
 ifelse link-neighbor? node2 or node1 = node2

 ;; if there's already an edge there, then go back

 ;; and pick new turtles

 [add-edge]
 ;; else, go ahead and make it
 [create-link-with node2]
]
end

to go

 if all? turtles [not infected?]
 [
 type count turtles type "," type ticks type "," print timer
 stop
]
 ask turtles

 [
 set virus-check-timer virus-check-timer + 1

 if virus-check-timer >= virus-check-frequency

 [set virus-check-timer 0]

 31

]
 spread-virus

 do-virus-checks

 tick

end

to become-infected ;; turtle procedure

 set infected? true

 set resistant? false

 set color red

end

to become-susceptible ;; turtle procedure

 set infected? false

 set resistant? false

 set color green

end

to become-resistant ;; turtle procedure

 set infected? false

 set resistant? true

 set color gray

 ask my-links [set color gray - 2]
end

to spread-virus

 ask turtles with [infected?]
 [ask link-neighbors with [not resistant?]
 [if random-float 100 < virus-spread-chance

 [become-infected]]]
end

to do-virus-checks

 32

 ask turtles with [infected? and virus-check-timer = 0]
 [
 if random 100 < recovery-chance

 [
 ifelse random 100 < gain-resistance-chance

 [become-resistant]
 [become-susceptible]
]
]
end

;;===

;; Virus spread for the power law networks

;; Adapted from Virus on a Network in the Models Library

;; Modified by Christie Djidjev

;; March 2015

;;===

turtles-own

[
 infected? ;; if true, the turtle is infectious

 resistant? ;; if true, the turtle can't be infected

 virus-check-timer ;; number of ticks since this turtle's last virus-check

]

to setup

 clear-all
 setup-nodes

 ; setup-spatially-clustered-network

 ask n-of initial-outbreak-size turtles

 33

 [become-infected]
 ask links [set color white]
 repeat 50

 [
 layout-spring turtles links 0.3 (world-width / (sqrt number-of-nodes)) 1

]
 reset-ticks

 reset-timer
end

to setup-nodes

 set-default-shape turtles "circle"
 cro 1
 [
 set-attributes

]
 cro 1

 [
 set-attributes

 create-link-with turtle 0

]

 cro number-of-nodes - 2

 [
 set-attributes

 create-link-with find-partner
]
end

to set-attributes

 set label who

 set label-color black

 34

 fd 15

 become-susceptible

 set virus-check-timer random virus-check-frequency
end

to-report find-partner
 report [one-of both-ends] of one-of links

end

to go

 if all? turtles [not infected?]
 [
 type count turtles type "," type ticks type "," print timer
 stop
]
 ask turtles

 [
 set virus-check-timer virus-check-timer + 1

 if virus-check-timer >= virus-check-frequency

 [set virus-check-timer 0]
]
 spread-virus

 do-virus-checks

 tick

end

to become-infected ;; turtle procedure

 set infected? true

 set resistant? false

 set color red

end

to become-susceptible ;; turtle procedure

 35

 set infected? false

 set resistant? false

 set color green

end

to become-resistant ;; turtle procedure

 set infected? false

 set resistant? true

 set color gray

 ask my-links [set color gray - 2]
end

to spread-virus

 ask turtles with [infected?]
 [ask link-neighbors with [not resistant?]
 [if random-float 100 < virus-spread-chance

 [become-infected]]]
end

to do-virus-checks

 ask turtles with [infected? and virus-check-timer = 0]
 [
 if random 100 < recovery-chance

 [
 ifelse random 100 < gain-resistance-chance

 [become-resistant]
 [become-susceptible]
]
]
end

