
import gym

import numpy as np

import random

from stable_baselines3 import PPO

import matplotlib

matplotlib.use("TkAgg")

import matplotlib.pyplot as plt

import torch

import torch.nn as nn

episode_durations = [] #only used for plotting how long the games are

episode_rewards = [] #only used for finding the final rewards of the game

is_ipython = 'inline' in matplotlib.get_backend()

if is_ipython:

from IPython import display

plt.ion()

class BSGameEnv(gym.Env):

def plot_rewards(show_result=False): #plots the rewards

plt.figure(1)

rewards = torch.tensor(episode_rewards, dtype=torch.float)

if show_result:

plt.title('Result')

else:

plt.clf()

plt.title('Training...')

plt.xlabel('Episode')

plt.ylabel('Episodic Reward')

plt.plot(rewards.numpy())

Take 100 episode averages and plot them too

if len(rewards) >= 5:

means = rewards.unfold(0, 100, 1).mean(1).view(-1)

means = torch.cat((torch.zeros(99), means))

plt.plot(means.numpy())

plt.pause(0.001) # pause a bit so that plots are updated

if is_ipython:

if not show_result:

display.display(plt.gcf())

display.clear_output(wait=True)

else:

display.display(plt.gcf())

def plot_durations(show_result=False): #plots how long the games are

plt.figure(2)

durations_t = torch.tensor(episode_durations, dtype=torch.float)

if show_result:

plt.title('Result')

else:

plt.clf()

plt.title('Training...')

plt.xlabel('Episode')

plt.ylabel('Duration')

plt.plot(durations_t.numpy())

Take 100 episode averages and plot them too

if len(durations_t) >= 5:

means = durations_t.unfold(0, 100, 1).mean(1).view(-1)

means = torch.cat((torch.zeros(99), means))

plt.plot(means.numpy())

plt.pause(0.001) # pause a bit so that plots are updated

if is_ipython:

if not show_result:

display.display(plt.gcf())

display.clear_output(wait=True)

else:

display.display(plt.gcf())

def addCards(self, player, gamecards): #adds two card piles together

in order, so [1,2,3]+[2,3,4] = [3,5,7]

newState = [a + b for a, b in zip(player, gamecards)] #adds the

two pairs of cards together

return newState

def findTheStateOfTheGame(self, playerCards):

print("player cards", playerCards)

stateOfTheGame = [0] * 13 # makes a blank list with 0's

for card in playerCards:

stateOfTheGame[card] += 1 # adds a value for the cards (0-12

anlso 0 -12)

return stateOfTheGame

def resetDuplicate(self):

self.cardsInTheGame = []

self.pastPutdown = [1,0,0] #just sets the past put down to nothing

self.numberOfCards = random.randint(30, 45) #finds a random amount

of cards to put down

self.cards_in_game = [2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5,

5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9,

10,10,10,10,11,11,11,11,12,12,12,12,0,0,0,0,1,1,1,1]

self.cardsInTheGame = random.sample(self.cards_in_game,

self.numberOfCards) #samples the numbers 30-45

#print("cards in the game:", self.cardsInTheGame)

if len(self.cardsInTheGame) % 2: #so that there is an even number

of cards

self.cardsInTheGame.pop()

#print(len(self.cardsInTheGame)) #prints how many cards in the

game

self.stateOfPlayer1 = random.sample(self.cardsInTheGame,

len(self.cardsInTheGame) // 2) #finds player 1 state by sampling half the

cards

self.stateOfPlayer1 =

self.findTheStateOfTheGame(self.stateOfPlayer1) #reorganizes teh list

#print("player 1:", self.stateOfPlayer1)

#could do more than 13 cards but idk

self.cardsInTheGame =

self.findTheStateOfTheGame(self.cardsInTheGame) #reorganizes the total

list

self.stateOfPlayer2 = [abs(a - b) for a, b in

zip(self.cardsInTheGame, self.stateOfPlayer1)] #subtracts player 1 from

the total list

#print("player 2:", self.stateOfPlayer2)

self.stateOfTheGame = np.zeros(13, dtype=np.int32) #makes the

original state of the game 0's, nothing has been put down yet

self.number_for_player1 = self.numberOfCards // 2 #assigns the

initial numbers so the agent knos how much it has

self.number_for_player2 = self.numberOfCards // 2

self.action_space = gym.spaces.MultiDiscrete((3, 13, 4, 3, 14, 4,

3, 13, 4, 3, 13, 4)) #assigns the action space, 3(bs, nothing, action)

13(ace, 2, 3 etc..) 4[1,2,3,4 cards to put down]

#the agent will see how much it has, how much player 2 has, how

much is in the stack, and the current cars it's on

self.fixednumber_for_player1 = [self.number_for_player1] #

Initialize as a list of 13 zeros

self.observation_space = gym.spaces.Dict({

'player1_count': gym.spaces.Box(low=0,

high=self.numberOfCards, shape=(13,), dtype=np.int32),

'player1_cards': gym.spaces.Box(low=0,

high=self.numberOfCards, shape=(1,), dtype=np.int32),

'player2_count': gym.spaces.Box(low=0,

high=self.numberOfCards, shape=(1,), dtype=np.int32),

'stack_count': gym.spaces.Box(low=0, high=self.numberOfCards,

shape=(1,), dtype=np.int32),

'current_card': gym.spaces.Box(low=0, high=13, shape=(1,),

dtype=np.int32) #the position of the current card

})

self.stepsDone = 0 #sets the steps done to 0

self.reward = 0 #makes the reward 0

self.pastBSTrue = False #makes a global variable to check if bs

has been put down before

return

def __init__(self):

super(BSGameEnv, self).__init__()

self.resetDuplicate()

def bs(self, player_state, current_card, past_put_down):

bs_true = False # Assume BS is true until proven otherwise

index_value = (current_card - 1) % 13 #card to be looked at

for i in range(len(past_put_down) - 1): #looks at what was put

down

if past_put_down[i] %3 == 2: #if it's an action card

if past_put_down[i % 3 + 1] != index_value: # If any

put-down does not match the current card index

bs_true = True # Set BS to false

break # Exit the loop since BS is already false

player_state = self.addCards(player_state, self.stateOfTheGame)

if bs_true:

return True, player_state

else:

return False, player_state

def step(self, action):

#print("state of player 1:", self.stateOfPlayer1)

#print("state of player 2:", self.stateOfPlayer2)

self.stepsDone += 1

BS_DECISION = False

#bs_call = False

bs_call, action_string = self.translate_actions_to_string(action)

#finds if the action has a "bs" and also gets a LIST(not string)

#print(bs_call, "1. bs call", "action string:", action_string)

if (bs_call):

number_cards_put_down = 0 #no cards are put down since the

agent said "bs"

addCards = sum(self.stateOfTheGame) #find the total amount of

cards

#print("past put down!", self.pastPutdown) #should be scripted

#print("card it's on!", (self.stepsDone-2)%13)

#print("player 1 state!", self.stateOfPlayer1)

BS_DECISION, playerState = self.bs(self.stateOfPlayer1,

(self.stepsDone -1) % 13, self.pastPutdown) #finds out who told the truth

#print("2. is it a bs?", BS_DECISION, "the card it's on: ",

(self.stepsDone-2)%13, "past put down", self.pastPutdown) #subs 1 bc

everything

#print('game state', self.stateOfTheGame)

#print('expected game state', playerState)

if not(BS_DECISION): #if it was nottt bs

#print("3. the agent takes the cards :((")

self.reward -=0.03

self.stateOfPlayer1 = playerState #the agent takes the

cards

self.number_for_player1 += addCards #the agent get's all

the cards

self.stateOfTheGame = [0,0,0,0,0,0,0,0,0,0,0,0,0] #the

game is set to 0s

order_card = np.zeros(13, dtype=np.int32)

order_card[self.stepsDone % 13] = 1 # Set the current

card position to 1

order_card = [self.stepsDone %13 -1]

observation = {

'player1_count': self.stateOfPlayer1.copy(),

'player1_cards': [self.number_for_player1].copy(),

'player2_count': [self.number_for_player2].copy(),

'stack_count': [len(self.stateOfTheGame)].copy(),

'current_card': order_card.copy() # Use an array to

represent the current card

}

done = (self.number_for_player1 <= 0) or

(self.number_for_player2 <= 0) or self.stepsDone > 1000

reward = self.get_reward(done)

self.stateOfTheGame = [0,0,0,0,0,0,0,0,0,0,0,0,0]

return observation, reward, done, {} #restarts, since obvv

the agent messed up

else:

#print("3. the scripted player takes the cards :)) ")

self.reward +=0.03

self.stateOfPlayer2 = self.addCards(self.stateOfPlayer2,

self.stateOfTheGame) #player 2 takes the cards

self.number_for_player2 += addCards #player 2 gets more

cards

self.stateOfTheGame = [0,0,0,0,0,0,0,0,0,0,0,0,0]

else: # if there is no BS

actual_action_string = []

number_cards_put_down = 0

for i in range(len(action_string)-2): # Loop through the

action string with step size 3

if i%3 == 2: # If action is to put down cards

type_of_card = action_string[i + 1] #everything

shifted back

number_of_card = action_string[i + 2]

if self.stateOfPlayer1[type_of_card-1] >=

number_of_card: # Check if player has enough cards

self.stateOfPlayer1[type_of_card-1] -=

number_of_card #if it does subtract

self.stateOfTheGame[type_of_card-1] +=

number_of_card #add to the card stack

#print(self.stateOfTheGame) #print the new state

self.number_for_player1 -= number_of_card

#subtracts from player 1's cards

number_cards_put_down += number_of_card #records

how many cards were put down

if(number_cards_put_down>4):

break

actual_action_string.append(2) #ritten out that it

says what was done previouslyyy

actual_action_string.append(type_of_card)

actual_action_string.append(number_of_card)

self.stepsDone +=1 #the agent has taken it's turn!!

BS_DECISION = False

#SCRIPTED AGENT MOVE!! THE AI AGENT HAS JUST MOVED AND NOW IT"S

THE SCRIPTED ONE"S TURN!!

bs_random = random.randint(1, 5)

if (number_cards_put_down >4): #if it's greater than 4 then

automatically bs !

self.reward -=0.3 #negative reward for automatically getting

a bs :((

bs_random = 3

if (bs_call == True) or (number_cards_put_down ==0):

bs_random = 2 #can't do bs if the past card had bs also

if bs_random == 3:

BS_DECISION, stateOfPlayer = self.bs(self.stateOfPlayer2,

(self.stepsDone - 1) % 13, actual_action_string) #figures out if the agent

lied

#print("2. is it a bs?", BS_DECISION, "the card it's on: ",

(self.stepsDone-2)%13, "past put down", actual_action_string) #what the

agent actually put down

addCards = sum(self.stateOfTheGame)

if BS_DECISION:

#print("the agent lied and takes the cards!! :((")

self.reward -=0.03 #if the agent lied :((

self.stateOfPlayer1 = self.addCards(self.stateOfPlayer1,

self.stateOfTheGame) #player 1 takes the cards

self.number_for_player1 += addCards

self.stateOfTheGame = np.zeros(13, dtype=np.int32)

else: #the agent told the truth

#print("the scripted agent and takes the cards!! :))")

self.reward +=0.03

self.stateOfPlayer2 = stateOfPlayer

self.number_for_player2 += addCards

self.stateOfTheGame = np.zeros(13, dtype=np.int32)

self.pastPutdown = [0,0,0] #0 = bs, and 0 cards and 0 amount

else: #if there is no bs

positions_of_i = (self.stepsDone-1) % 13

number_of_cards = self.stateOfPlayer2[positions_of_i] #finds

out if the scripted player has cards in the desired spot (like it's 2's to

put down)

randomNumber = 0

if number_of_cards > 0:

randomNumber = random.randint(1, number_of_cards)

#just puts down a random amount of cards possible

else:

number_of_cards = 0 #sets it to 0 and finds a spot that

does nottt have 0 cards

while number_of_cards<=0: #hile something has 0 cards

positions_of_i = (positions_of_i +1)% 13

number_of_cards = self.stateOfPlayer2[positions_of_i]

#finds how many cards are at that position

if number_of_cards >0: #once it breaks the past loop

randomNumber = random.randint(1, number_of_cards)

else:

randomNumber = 0

self.stateOfPlayer2[positions_of_i]-= randomNumber #subtracts

the cards

self.stateOfTheGame[positions_of_i] += randomNumber

self.number_for_player2 -= randomNumber

self.pastPutdown = [2, positions_of_i, randomNumber] #writes

down the move it took

order_card = np.zeros(13, dtype=np.int32)

order_card = [self.stepsDone % 13-1] # Set the current card

position to 1

observation = {

'player1_count': self.stateOfPlayer1.copy(),

'player1_cards': [self.number_for_player1].copy(),

'player2_count': [self.number_for_player2].copy(),

'stack_count': [len(self.stateOfTheGame)].copy(),

'current_card': order_card.copy() # Use an array to represent

the current card

}

done = (self.number_for_player1 <= 0) or (self.number_for_player2

<= 0) or self.stepsDone > 1000

if done:

print("number for player 1:", self.number_for_player1)

print("number for player 2:", self.number_for_player2)

print("steps done:", self.stepsDone)

reward = self.get_reward(done)

return observation, reward, done, {}

def get_reward(self, done):

if done:

print("player 1 state:", self.stateOfPlayer1)

print("player 2 state:", self.stateOfPlayer2)

print("state of the game:", self.stateOfTheGame)

if self.number_for_player1 <= 0:

self.reward += 5

elif self.number_for_player2 <= 0:

self.reward-= 5

else:

if (self.number_for_player1+3)<self.number_for_player2:

self.reward += 1.0

else:

self.reward-= 1.0

episode_durations.append(self.stepsDone)

episode_rewards.append(self.reward)

print("player 1 number", self.number_for_player1, "player 2

number", self.number_for_player2)

return self.reward

else:

return 0

def reset(self): #same thing as the initialize method!!

self.resetDuplicate()

order_card = np.zeros(13, dtype=np.int32)

order_card[self.stepsDone % 13] = 1 # Set the current card

position to 1

order_card = [self.stepsDone%13 -1]

observation = {

'player1_count': self.stateOfPlayer1.copy(),

'player1_cards': [self.number_for_player1].copy(),

'player2_count': [self.number_for_player2].copy(),

'stack_count': [len(self.stateOfTheGame)].copy(),

'current_card': order_card.copy() # Use an array to represent

the current card

}

return observation

def render(self, mode='human'): #doesn't matter just prints if wanted

print("Number of cards for player 1:", self.number_for_player1)

print("Number of cards for player 2:", self.number_for_player2)

def close(self): #sorta needed for the structure

pass

def translate_actions_to_string(self, action):

bs_call = False

order = [0,1,2,3,4,5,6,7,8,9,10,11,12]

action_string = []

positions_of_bs = self.pastBSTrue #if there was a bs previously

one can't be put down now

if (positions_of_bs == True): #the agent can't put down bs

#print("no bs available :((")

bs_call = False

for i in range(len(action)):

if i % 3 == 0: #if it's a multiple of 3

if action[i] == 0: #0 means it's bs

#action_string.append([0])

i+=3 #excludes the bs if it's impossible to put

down bs

#action_string = "bs"

break

elif action[i] == 1: #1 means no action

action_string.append(1)

elif action[i] == 2: #2 means to take an action

action_string.append(2)

elif i % 3 == 1:

action_string.append(action[i]) # appends the number

elif i % 3 == 2:

action_string.append(action[i]) #appends the number

of cardds

else: #does the same thing except doesn't exclude bs

for i in range(len(action)):

if i % 3 == 0:

if action[i] == 0:

bs_call = True #shows bs call as true

action_string.append(0)

#break

elif action[i] == 1:

action_string.append(1)

elif action[i] == 2:

action_string.append(2)

elif i % 3 == 1:

action_string.append(action[i])

elif i % 3 == 2:

action_string.append(action[i])

return bs_call, action_string

Training loop

env = BSGameEnv()

model = PPO('MultiInputPolicy', env, verbose=1)

model.load("Final_Test5")

model.learn(total_timesteps=int(2e6))

model.save("Final_Test7") # Saves the final policy

loop that actually plays the game

for i in range(1):

obs = env.reset()

term = False

score = 0

ep_len_mean = []

while not term:

action, _ = model.predict(obs)

obs, rew, term, _ = env.step(action)

#print("action taken:", action)

score += rew

if term:a

ep_len_mean.append(env.stepsDone)

print("IT IS DONE!!!!")

env.plot_durations()

env.plot_rewards()

plt.ioff()

plt.show() #shows the average rewards and durations

env.close()

