
Computational
Hydrodynamic Analysis for

Speed Maximization
(CHASM)

2024 Supercomputing Challenge

Luke Rand, Greta Swanson, Nandita Ganesan

Final Report

Fluid Mechanics
Santa Fe Preparatory School

Santa Fe, NM, US
April 10 2023

Contents

Introduction 3

1 Executive Summary 3

2 Method Outline 3

3 The Problem 4

4 Current State of the Field 4

5 The Streamline Position 5

6 Importance of Individualization 6

Computational Analysis for Drag Optimization (CHASM) 6

7 Capturing and Isolating Frames for Analysis 6
7.1 The Lane Videography Unit . 6
7.2 Taking Individual Frames . 7

8 Constructing a Three-Dimensional Wireframe 7
8.1 Clarifying Terminology . 7
8.2 OpenCV Pose Recognition . 8

8.2.1 Code . 8
8.3 Combining Wireframes to add Depth 8

8.3.1 Code . 10

9 Determining Drag Associated with a Wireframe 11
9.1 Determining Flow Type . 11
9.2 Drag Approximation Model . 11

9.2.1 Approximating Skin Friction 11
9.2.2 Approximating Form Drag 12
9.2.3 Code . 13
9.2.4 Finalizing . 14

9.3 Tuning and Verifying the Drag Model 14
9.4 Applying the Drag Model to a Wireframe 15

9.4.1 Code . 16

10 Determining Optimal Position 18
10.1 Creating a Base Wireframe . 18
10.2 Tweaking the Wireframe . 20

10.2.1 Code . 20
10.3 Optimization Function . 21

10.3.1 The Optimization Loop 21
10.3.2 Error Accounting . 21

1

10.3.3 Code . 22

11 User Friendly Information Display 22
11.1 Wireframe Visualization . 22

Verifying the Efficacy of our Method 23

12 Criteria for an Optimal Streamline 23

13 Verification of the Model 24
13.0.1 Wireframe Optimization Inaccuracies 24
13.0.2 Ability of the Model to Account for Differences and Dis-

abilities . 25

Finalizing Thoughts 26

14 Data Collection Improvement Needs 26

15 Further Steps and Project Potential 26

16 Conclusion 27

17 Acknowledgements 27

18 Works Cited 28

2

Introduction

1 Executive Summary

With access to adequate coaching becoming an ever increasing issue, dispropor-
tionately affecting underprivileged groups and individuals, the need for techno-
logical coaching aids to cut expenses increases. Swimming faces this challenge,
and thus requires remedies. Our project, Computational Hydrodynamic Anal-
ysis for Speed Maximization (CHASM) achieves a method to provide coaching
at low expense for swimmers without access, as well as increase the efficacy of
pre-existing coaching programs for the sport of competitive swimming, poten-
tially allowing the growth and increased accessibility of aforementioned teams.
CHASM provides machine augmentation and replacement for human coaching
time through computational analysis of the movements of the swimmer. Our
model takes captured video footage of a swimmer, analyzes it using hydrody-
namic drag approximation, and outputs a simple visual to allow either the swim-
mer themselves or a coach to locate points of human error. Integration of the
hardware and model into swim teams and local pools can expand access to the
sport of competitive swimming and address inequality issues related to coach-
ing access. Additionally, with many people around the world facing injuries or
disabilities that limit their movement and change their bodies, individualized
coaching for swimming, a commonly prescribed recovery sport, is more impor-
tant than ever. CHASM addresses this as well, with direct individualization
providing the ability to account for such differences.

2 Method Outline

• First, an inexpensive PVC frame is attached to the lane line on either side
of a swimming lane. This is the Lane Videography Unit (LVU) and is
used to capture footage of the swimmer from specific angles using Apple
iPhones which are mounted in waterproof casings on the LVU. IPhones
are used to capture video footage due to being a device many coaches and
swimmers will already have, and thus do not need to buy.

• Next, a short script takes individual frames from the footage collected by
the LVU at an inputted time, and passes them to the model, CHASM, to
output data to reduce drag.

• First, CHASM uses a pretrained image model to develop two-dimensional
wireframes from the two images associated with each angle.

• CHASM then combines these two-dimensional wireframes into a single
three-dimensional wireframe.

• This wireframe is passed to a Swimmer object constructor.

3

• Included in the swimmer object is a function to calculate the approximate
drag on the body represented by the wireframe. An optimization function
uses the drag approximation function to determine the ideal wireframe for
the swimmer object to minimize drag for the exact proportions and sizes
of the swimmer.

• Now, both the original wireframe, derived from the swimmer’s position,
and the optimized wireframe, derived from drag calculations for the swim-
mer’s body attributes, are visually displayed to the user.

• Either the user or a coach of the user can use the outputted data to
correct errors and improve swimming performance. The CHASM model
can then be used to verify progress and determine further steps towards
improvement.

3 The Problem

Across the United States, access to swim coaching has been limited for a variety
of reasons, one of the most pertinent reasons being cost. A private lesson with
an instructor can cost on average one hundred to three hundred dollars per
hour (Dougherty, 201) and most competitive swimmers take private lessons,
on average, twice a week, with more dedicated swimmers taking well over two
(Koury, 2024). This means a significant amount of money is dedicated to the
sport from the swimmers family, and for many, the price is not worth the benefit
(Dougherty, 201).

The majority of swimmers will instead join a club or school swim team
instead as these have a much lesser price. However, a club team has, at least,
upward of thirty athletes on average, and highschool swim teams have upward
of forty plus on average, depending on the size of the highschool. Meanwhile,
the number of coaches for these teams leads to an approximate ratio of 1:10,
coaches to athletes respectively. This means that a coach’s attention has to be
split between several athletes and each athlete will not receive the attention of
a coach in the same way that an athlete taking privates could (Here).

Our program helps to bridge the gap between these two issues. By having
a program that is cost efficient and coaches students, it would allow students
who are in a high school or club team to have easier and cheaper access to
individualized coaching.

4 Current State of the Field

As the sport of swimming stands, technology plays a significant role. Electronic
timing machines are used to collect results for races and heart rate monitors are
used for training purposes (Wise, 2022). Existing companies provide side by side
comparison of video footage and method to review details, such as STREAM-
LINE. However, human error and labor remains as a key crutch point, as coaches

4

are still the ones analyzing and watching any collected data. Despite innova-
tions in technology such as glass sided pools for video recording and analysis,
CHASM remains unique in a computational approach to the analysis itself, and
provides quantitative corrections based purely on the laws of hydrodynamics,
which are immutable and infallible.

5 The Streamline Position

The streamline position significantly reduces the amount of drag acting on a
swimmer during the dive and push off state of a race or swim, occuring at the
beginning and all turns, respectively. This reduction in drag can be advanta-
geous to many swimmers, as reducing drag allows for the swimmer to reach faster
speeds (The Importance). For example, a swimmer can spend up to 20 percent
of breaststroke in a streamline position, and by having a quicker streamline,
a swimmer is able to drastically improve their times for competitions (Poirier,
2023). Beyond this, the streamline allows a swimmer to have a quicker break at
the start of the race and carry that momentum and speed throughout their race.
If a swimmer has a subpar streamline, they will lose speed at the beginning of
their race and have to regain that speed later on, wasting energy (Admin, 2021).
The streamline also occurs off the wall at every turn, and lost energy can add up
over longer races (Poirier, 2023). Many beginner swimmers are able to improve
their streamline and show drastic improvement in their streamline within the
first year, as a tight streamline does not require any additional energy or work
to generate (fig. 1).

Figure 1: Streamline position of swimmers (360swim).

Beyond the importance of streamlines in competitive swimming, we were
limited by our access to technology that would have allowed us to gain the data
needed for strokes such as freestyle. Swimming strokes which involve adding
energy to the system through movement are significantly harder computation-
ally, and were not approachable within a year time frame. However, a streamline
negated many of these concerns, facilitating ease of designing the apparatus and

5

simplification of computation, as a part of swimming that only involves energy
loss through drag and not energy gain and representing an important part of
the sport.

6 Importance of Individualization

An ideal swimming streamline consists of arms forward, hands overlapped, and
body pointed straight (Holmes, 2022). With clearly defined and well tested data
on optimal swimming position for a streamline, individualized calculated data
for an optimal position seems unnecessary. However, human bodies differ in
size and proportion, and while general technique may remain constant, exact
angles and position differ immensely from person to person, and can often only
be picked up visually. Furthermore, body types and abilities can differ even
more when injuries and disabilities are introduced. Our model is especially able
to address these issues, visually displaying data specific to a person’s body type
and proportions, providing accurate coaching for anyone, and accounting for
individuals with differences, whether temporary or permanent. Additionally, if
our model were to be expanded for use past just the streamline and into the
domain of other strokes such as freestyle, individual body type influences correct
swimming form multitudes more, and the technology we outline would become
even more pertinent.

Computational Analysis for Drag Optimization
(CHASM)

7 Capturing and Isolating Frames for Analysis

7.1 The Lane Videography Unit

The capture of video is performed using a custom built Lane Videography Unit
(LVU). The frame is PVC, certain fasteners are steel, and the iPhone holding
mounts are wooden. PVC is chosen for the main frame for its ease of construc-
tion, lightweight nature, and relatively low expense. The entire LVU contains
under fifty dollars of material. Figure 2a shows the design for the LVU. The
vertical axis contain two nested PVC pieces with holes drilled through both
pieces. A screw and washer are then able to go through a set of holes decided
by the user, creating adaptability for different depths of streamline. The black
lines, denoted by tape, demarcate the optimal height of the streamline, most di-
rectly in the center of the path of the cameras. The horizontal axis also contains
similar adaptability to account for different widths of the lane. The cameras
are mounted at 45 degree angles for ease of computation, using a square root of
two constant for conversion to a three dimensional wireframe as opposed to cal-
culated trigonometry values. The decision to put cameras on angles arose from
the understanding that the diagonal distance is longer than the perpendicular

6

and can more easily fit the entire person within the frame, given the constraints
of the minimum width of a swim lane.

(a) (b)

Figure 2: (a) The LVU’s blueprint (b) A completed frame of the LVU

7.2 Taking Individual Frames

Since video footage is taken, and not always started at the same time, a short
python script determines the beginning of each video, is given a specific time
from one of the videos, and adjusts a second time for the second video. A frame
from both videos is then returned from the same world time, regardless of video
start time.

8 Constructing a Three-Dimensional Wireframe

8.1 Clarifying Terminology

The CHASM model uses two two-dimensional wireframes of a human body to
construct a single three-dimensional wireframe. The body of the swimmer pass-
ing through the water is horizontal and positioned perpendicular to the bottom
of the pool. Between multiple wireframes and a body positioned horizontally,
the terminology in respect to coordinate axis can prove unintuitive. Thus, in
order to clearly describe position, it is necessary to clarify which axis each label
refers to. For the purposes of this report, the Y axis will be used to describe
the horizontal axis between a swimmer’s feet and head, with lower numbers at
the feet and higher numbers at the head. Similarly, the X axis runs from right
to left (from the swimmer’s perspective, meaning left to right from a viewer’s
perspective), and the Z axis runs from the swimmer’s chest to back. X1 and
Z1 are used to refer to the non-Y axis of the left and right two-dimensional
wireframes, respectively.

7

8.2 OpenCV Pose Recognition

We performed two-dimensional pose recognition for two-dimensional wireframes
from images using the OpenCV library and the MPII Human Pose Dataset (An-
driluka et al., 2014). We use a pretrained model (Gupta, 2018) which integrates
the MPII Dataset with the OpenCV image processing library to derive points
at specific locations, which we use to construct our wireframe. Usage of the
model consists of three parts. Initially, we load the model network to be used
on our images. Two model networks must be initialized, one for each of the two
angles in our image. Images are then rotated so the Y axis is vertical on the
image. The MPII Dataset primarily includes upright bodies, meaning vertical
rotation is important for accurate wireframe point location. Next, we deter-
mine the frames necessary for the model to find wireframe points. A frame is
essentially OpenCV’s interpretation of an image, and involves locating the im-
ages in a file structure and using a constructor to initialize each frame from the
corresponding image. Lastly, the frames are given to the model, which outputs
a two-dimensional wireframe for each frame (fig. 3).

In order to use the wireframes computationally, it is necessary to make a
few changes to each output wireframe. The location of the point correspond-
ing to the chest is determined and its corresponding vector is subtracted from
the vector of each wireframe point to “zero” the wireframe around the origin.
The result is a translation of the wireframe to the chest point as the origin.
This makes combination of wireframes significantly easier and improves com-
pute time by minimizing the need for vector subtraction later on. Additionally,
the wireframe is vertically inverted along the Y axis so that drag can later be
computed from bottom to top, low Y values to higher numbers.

8.2.1 Code

1 #Method to translate points for computability

2 def translate_points(points):

3 #determine chest point and initialize new points

4 chestpoint = points[14]

5 new_points = []

6 #adjust each point

7 for i in range(len(points)):

8 new_point = [0, 0]

9 #adjust each axis

10 for j in range(2):

11 new_point[j] = points[i][j] - chestpoint[j]

12 new_points.append(new_point)

13 return new_points

8.3 Combining Wireframes to add Depth

As previously stated, the two-dimensional wireframes from each angle of video
are taken from diagonals, this makes constructing a three-dimensional wireframe

8

Figure 3: A two-dimensional wireframe determined from a streamlined swim-
mer.

mathematically more complex, yet reduces the margin of error and mitigates
cost. Mathematical complexity results from converting the two diagonal coordi-
nate systems geometrically into a single three-dimensional standard Cartesian
coordinate system, but the diagonal approach is a better course than taking
horizontal and vertical two-dimensional wireframes for two main reasons. First,
diagonal perspectives on the 45 and 135 degrees ensure that all points are present
in both angles, reducing the need for a third camera. Second, on a square frame,
diagonals allow us to position the cameras further from the swimmer, mitigating
perspective distortion, an image distortion phenomenon that intensifies near the
edges of an image. Using the diagonals, we calculate the X, Y, and Z values
of each point in three-dimensional Cartesian space from their two-dimensional
counterparts using formulas determined geometrically. Due to the engineered 45
degree angle nature of the right triangles formed by the lines of view of the cam-
eras, consistent algebra using a constant value of the square root of two can be
used, significantly increasing performance times than what would be necessary
for trigonometric computations. Each pair of corresponding two-dimensional
points is used to calculate a single three-dimensional point, and each three-
dimensional point is then appended onto an array to create a three-dimensional
wireframe of the swimmer (fig. 4).

9

Figure 4: A three-dimensional wireframe generated from a two-dimensional
wireframes.

8.3.1 Code

1 #method to calculate point in 3d from 2d points. cam1 and cam2

are 2d points in [y,x,z] format↪→

2 def getPoint(cam1, cam2):

3 #argument parsing

4 #x1 and z1 refer to the 2d image while x and z refer to the

3d. Y is the same for both↪→

5 ys = [cam1[1], cam2[1]]

6 x1 = cam1[0]

7 z1 = cam2[0]

8 #initialize point to return

9 point = []

10 #average y values for y

11 point.append(sum(ys)/len(ys))

12 #converting diagonals to horizontal and vertical coordinate

system↪→

13 x = (z1+x1)/root2

14 z = (z1-x1)/root2

10

15 #append to point

16 point.append(x)

17 point.append(z)

18 return point

9 Determining Drag Associated with a Wire-
frame

9.1 Determining Flow Type

Flow over a body can be characterized as one of two types: turbulent and lam-
inar, with laminar flow characterized as separate layers with little interference,
generally seen in denser, slower moving fluids, and turbulent flow characterized
by high levels of interference, conversely with lighter and faster fluids. Drag
created by a body moving with laminar flow along its edges is generated pri-
marily by surface area drag, while turbulent flow creates form drag, produced
by interfering layers of fluids (”Laminar and Turbulent,” 1992). The distinction
between flow is based on a Reynolds number, calculated using the velocity of the
body, the “characteristic length” of the body, which is the head to toe Y-axis
length of the swimmer due to it’s relatively flat form, and the viscosity of the
fluid (Ungerechts, 1982). For a body moving through fluid, a Reynolds number
of below 1 indicates that flow is laminar, while a Reynolds number above roughly
106 indicates completely turbulent flow (OpenStax College, n.d.). The Reynolds
number of a competitive number is in the interval (2 ∗ 105, 2 ∗ 106), directly sit-
uated on the cusp of completely turbulent flow (Ungerechts, 1982). Therefore,
our model must take into account both surface area drag and the interference
of layers of fluid, commonly referred to as form drag. These two components
become increasingly important in the creation of a drag approximation model,
as it determines which forces contribute to total drag.

9.2 Drag Approximation Model

To determine drag, the force acting against the swimmer and the primary reason
for energy loss in the streamline, we first determined constituent parts contribut-
ing to the drag force. As we determined based on the Reynolds number of a
swimming body, drag acting on the swimmer will be frictional and form based,
both in significant proportions (What is Drag?, 2022).

9.2.1 Approximating Skin Friction

Skin friction is directly proportional to surface area in contact with the fluid,
in our case water, and can be calculated with the surface area equation for a
geometric shape, and more complicated surface area determination techniques
for more complex shapes. Since we do not yet know how much skin friction
influences drag under our circumstances, we multiply the surface area by an

11

arbitrary constant, A. This finalizes our skin friction calculation equation:

A ∗ SurfaceArea

9.2.2 Approximating Form Drag

Approximating form drag proves a more difficult challenge. Form drag is gen-
erated by the change in local pressures and flow around a body, resulting in
mixing of streams of airflow and areas of high and low pressure. This varying
pressure across the body generates a force which can be calculated by inte-
grating the pressure difference across the body’s surface area (What is Drag?,
2022). At a high level, differences in pressure are caused by deflection of fluid
against the surface of a body, which increases with the angle of impact. Thus,
a computationally simple approximation of form drag can be achieved by deter-
mining a metric associated with the angle between the surface of the body and
the direction of flow. It is important to note that while we refer to a direction
of flow, the water is relatively static, and the swimmer is moving through the
water. This can, however, be visualized as a direction of flow opposite to the
direction of movement of the body. We calculated such a metric and labeled
it as the body’s Pointiness Number, with a lower number representing higher
pointiness, somewhat counter intuitively. However, pointiness has two forms,
frontal and rear. Frontal pointiness represents the slope against the direction
of flow for fluid colliding with the object, and rear pointiness represents the
slope against the reverse direction of flow, representing how gradually fluid fills
the void behind the object. The drag on spheres and hemispheres definitively
shows this discretion (tab. 1). For a sphere, front facing hemisphere, and rear
facing hemisphere of the same maximum cross sectional area, their drag differs,
as evidenced by their corresponding drag coefficients, a dimensionless quantity
relating the frontal area of an object to the drag experienced by its form (Drag
Coefficient, 2023). The sphere has the lowest drag coefficient, presumably due

Sphere 0.20
Frontal Hemisphere 0.42
Rear Hemisphere 1.17

Table 1: Drag coefficients of spheres and hemisphere(”Table”, 2023)

to a fairly low frontal and rear pointiness. The frontal and rear hemispheres,
however, vary in drag coefficient, which led us to believe that frontal and rear
pointiness contribute to overall drag in different amounts. Thus, we ascribed
two coefficients to determine form drag, F for frontal pointiness, and B for rear
pointiness. We then determined our equation for form drag to be:

F ∗ FrontalPointiness+B ∗RearPointiness

To determine rear and frontal pointiness, we decided on a ”slice and square”
method. First, we take cross sectional slices of the body along the direction

12

of flow (fig. 5). The distance between slices is determined by a resolution
constant, and drastically changes compute time and slightly changes accuracy.
Very large resolution values create lost data, while resolution values too small
result in irrational compute times. We chose a resolution value of 1 unit, which
experimentally yielded the most accurate results for objects with known drag.
Initially, a frontalArea variable is initialized as a cross section of size 0, which
will come to represent the area water has already impacted. For each cross
section, moving along the direction of flow, the cross sectional area not covered
by the frontal area is squared and added to the FrontalPointiness value,
and cross sectional area that was removed from the previous cross section is
squared and added to RearPointiness. Squaring the additional value means
that larger added areas hold higher significance, causing more drag. This step
is what ensures that shallower angles create lower pointiness values, as they will
result in less additional area each time.

Figure 5: Cross sections taken from a cone.

9.2.3 Code

1 #algorithm to calculate pointiness numbers based on cross

sections. Height is the height of the object↪→

2 while(i <= height):

13

3 #determine the next cross section down from the direction of

flow↪→

4 crossSection2 = prism.getCrossSection(i)

5 #increment pointiness numbers appropriately

6 pointinessNumberF += (getNewAreaFront(frontalArea,

crossSection2)**power)↪→

7 pointinessNumberB += (getNewAreaBack(crossSection1,

crossSection2)**power)↪→

8 #save the current cross section to memory to compare against

next time↪→

9 crossSection1 = crossSection2

10 #add new frontal area to total frontal area

11 frontalArea =

union_all([frontalArea,crossSection2]).simplify(0.1)↪→

12 #increment i to calculate for the next cross section

13 i+=resolution

9.2.4 Finalizing

Once the algorithms and equations for both frictional and form drag were de-
termined, we amalgamated a finalized drag approximation equation.

A ∗ SurfaceArea+ F ∗ FrontalPointiness+B ∗RearPointiness

It then became necessary to determine the values of the coefficients and verify
the drag model using known values.

9.3 Tuning and Verifying the Drag Model

To verify the drag model and determine the coefficient to each subset of the drag
number, we determined a set of geometric shapes with known drag coefficients
(tab. 2) and tested the shapes with our model to determine the correct ra-
tios between the front pointiness factor, surface area factor, and rear pointiness
factor. Cones were chosen as a baseline for front pointiness, the angle corre-

Sphere 0.20
Cone (20 degrees) 0.39
Frontal Hemisphere 0.42
Cone (40 degrees) 0.61
Cone (60 degrees) 0.83
Rear Hemisphere 1.17
Cone (90 degrees) 1.17

Table 2: Known drag coefficients used to tune the drag model (”Table”, 2023)

sponding to one half of the vertex, the sphere was chosen to account for surface
area drag, and the two bidirectional hemispheres account for the ratio between

14

rear and front surface area drag. We then ran code to determine which rear
pointiness coefficient and surface area coefficient values, given a front surface
area coefficient of 1, yielded the same order as experimental data, and chose
the median as our coefficients for the project (fig. 6). Thus, complete with the
coefficients determined to yield the best approximation of drag, we determined
our equation to approximate drag for an object with reference area of 200 square
units:

1 ∗ FrontalPointiness+ 0.5 ∗RearPointiness+ 0.6 ∗ TotalSurfaceArea

Figure 6: Coefficient values. Those yielding the same results as experimental
data are shown in green. The X axis represents the S coefficient, and Y axis
the B. The F coefficient is fixed at 1.

9.4 Applying the Drag Model to a Wireframe

With a Swimmer object successfully created based on the wireframe associated
with an individual swimmer and a functional drag approximation model, the
final step of determining the drag associated with an instance of the swimmer is
extracting the necessary data from the Swimmer object to input into the drag
approximation model. Having already determined the ratios between lengths of
the swimmer’s body by creating a wireframe, only one length must be manually
measured. The left upper arm is thus measured from shoulder to elbow due
to that measurement’s ability to maximize comfort for the swimmer and mini-
mize ambiguity in measurement points. With all lengths measured, widths are
measured too for the limbs and torso of the swimmer. All wireframe lines are

15

assumed to have circular cross sections for ease of computing, with this being
relatively true for limbs, and accounted for by other factors for the torso, such
as the shoulders covering the frontal area of the chest. Measuring widths is
extremely important, as it individualizes the data to account for different body
types and proportions, a distinct advantage of a computational system. Most
widths are measured sideways along the X axis, from left to right relative to
the swimmer, with the exception of two. Chest is measured from front to back
along the Z axis due to the shoulders covering the front cross sectional X axis
width, and Z axis variation generally occurring most prominently in the center
of the torso. Shoulders are additionally measured along the Z axis due to their
position on the human body perpendicular to the torso. These measurements
are taken in addition to the wireframe to create a cylinder based exterior model
of the swimmer’s form (fig #). The entire swimmer’s wireframe and modeled
form are then adjusted to a frontal area of 200 for a more accurate output from
the drag approximation model.

To determine cross sections to calculate frontal and rear pointiness, each
cylinder associated with a wireframe line is assigned to one of three categories:
vertical along the Y axis, horizontal perpendicular to the Y axis, or angled along
both axes. For example, the chest cylinder is generally vertical, the shoulder
cylinders horizontal, and arm cylinders angled. When taking cross sections per-
pendicular to the Y axis to approximate drag, vertical cylinders will yield a
circle cross section, horizontal cylinders a rectangle, and angled cylinders an
ellipse (fig #). Vertical cylinders are defined as those corresponding to a wire-
frame line parallel to the Y axis. Horizontal cylinders are those whose difference
in the y values of the endpoints of their corresponding line do not exceed the
cylinder’s diameter. Angled cylinders fit neither category. The cross section
of vertical and angled cylinders is determined based on the wireframe initially
to optimize runtime, while the cross sections of horizontal cylinders are depen-
dent on the y value of the cross section, and thus must be calculated by the
drag approximation program. When the drag approximation program queries
a cross section, the Swimmer object’s getCrossSection() method first de-
termines horizontal cylinders that intersect the queried cross section and return
the corresponding rectangles, then returns the ellipsis and circles generated by
the intersection with vertical and angled cylinders, adjusted for the location in
the cross section they would appear. The method then returns the collection of
shapes making up the cross section as a Multishape in the Shapely polygon
handling library (fig. 7).

9.4.1 Code

1 #method to get cross section of swimmer object

2 def getCrossSection(self, height):

3 #initialize all shapes of crosssection

4 shapes = []

5 #adjust height to shape height

6 height = self.minheight + height

16

Figure 7: Cross sections taken from a wireframe of an improperly streamlined
swimmer.

7 #iterate through lines of wireframe

8 for i in range(len(POSE_PAIRS)):

9 #get shape of cross section. The midpoint for

horizontal cylinders, and the cross sectional

shape otherwise

↪→

↪→

10 shape = self.xsections[i]

11 #get points of the line of wireframe

12 pair = POSE_PAIRS[i]

13 pointA = self.wireframe[pair[0]]

14 pointB = self.wireframe[pair[1]]

15 #get the diameter of the cylinder

16 diameter = diameters[i]

17 #if horizontal cylinder

18 if (type(shape) is list):

19 #get distance of slice from midpoint

20 #if less than radius add to shapes as rectangle

21 xdistance = height - shape[0]

22 ydistance = np.sqrt((diameter/2)*(diameter/2) -

xdistance*xdistance)↪→

17

23 if(ydistance < diameter/2):

24 getPointsinRectangle(pointA, pointB)

25 shapes.append(Polygon(points))

26 #if greater than radius add to shapes as ellipse at

correct point↪→

27 else:

28 #determine top and bottom point

29 if(pointA[0] > pointB[0]):

30 bottom = pointB

31 top = pointA

32 else:

33 top=pointB

34 bottom=pointA

35 #insert ellipse if the cross section crosses the

line↪→

36 if(bottom[0] <= height <= top[0]):

37 #determine at what fraction along the line

the cross section lies↪→

38 fraction = (height - bottom[0])/(top[0] -

bottom[0])↪→

39 #adjust x and z values of ellipse accordingly

40 x = bottom[1]+(fraction*(top[1]-bottom[1]))

41 z = bottom[2]+(fraction*(top[2]-bottom[2]))

42 #move the ellipse to the determined center

and append↪→

43 shapetransformed = transform(shape, lambda a:

a + [x, z])↪→

44 shapes.append(shapetransformed)

45 #return shapes

46 return union_all(shapes)

To optimize computational runtime, all swimmer objects are assumed to have
the same surface area, as lost surface area to adjacent touching limbs is minimal,
and thus the arbitrary surface area value of 1 is returned.

10 Determining Optimal Position

10.1 Creating a Base Wireframe

Initially, a base wireframe is constructed using the lengths between points on the
wireframe. The entire body is positioned flat on the XY plane, and the distance
between points is used to construct an initial starting point for the wireframe
with legs directly backwards along the Y axis and arms directly forwards (fig
#) (fig. 8). The purpose of this is twofold. First, constructing a base wireframe
ensures that the optimization algorithm does not encounter any ”valleys” of
optimization. For example, despite pointed and slanted arms above the head

18

being a more hydrodynamic position, to achieve that position from arms at
the side, a swimmer would need to pass their arms through a position with
each arm extended to the side, less hydrodynamic than both the start and end
positions. By starting with a base wireframe, we allow the use of an optimization
algorithm that makes tweaks towards a final product, as opposed to testing
every possible configuration of points, an incredibly computationally intensive
task. Second, a tweak-based algorithm is incredibly susceptible to initial errors,
which are not only unavoidable but exactly what we are seeking to address
with our model. For example, a slightly upwards rotated left leg may influence
a left arm to move upwards to address this error, especially if the left arm is
tweaked before the leg. Consequently, the right arm may move downward to
address left arm movement. Such an effect can quickly create undesired results,
and a base wireframe addresses this. Within the Swimmer class, we define a
constructBaseWireframe() method that returns a base wireframe based
on the lengths taken from the original wireframe. This is done recursively by
starting at the chest point, calculating distances, adjusting points accordingly,
and performing a similar operation for each adjacent point, and each adjacent
point after that.

Figure 8: An example base wireframe.

19

10.2 Tweaking the Wireframe

Wireframe tweaking is accomplished using quaternions, mathematical operators
for rotating vectors (Hughes, 2017). In general, they are a set of operations and
specific rules based on the multiplication of hyper-complex numbers analogous
to the i value that yield rotations of vectors. We use the PyQuaternion library
to perform rotations of points due to the simplicity and ease of computation
of quaternions. Within our Swimmer class, we define a rotateWireframe()
method that takes the Swimmer object and rotates one point around another,
subsequently rotating all connected points to maintain distance and allow ro-
tation of entire limbs or sections. We wrote a constant DEPENDANTS tree that
is used to determine the points that must be rotated with a point, and access
those points recursively through a function.

10.2.1 Code

1 #method to rotate a section of wireframe. Basepoint is the point

to rotate around, point2rotate the point to rotate, and y,x,

and z the degrees of rotation

↪→

↪→

2 def rotateWireframe(self, basepoint, point2rotate, y,x,z):

3 #retreive wireframe

4 wireframe = self.wireframe.copy()

5 #define axis for the quaternion

6 yaxis = [1,0,0]

7 xaxis = [0,1,0]

8 zaxis = [0,0,1]

9 #multiplication of quaternions results in a single

quaternion with the same result as performing each

rotation seperately

↪→

↪→

10 quaternion = q.Quaternion(axis=yaxis,angle=np.deg2rad(y))

*q.Quaternion(axis=xaxis,angle=np.deg2rad(x)) *

q.Quaternion(axis=zaxis,angle=np.deg2rad(z))

↪→

↪→

11 #determine the points in the subsection that must be

rotated along with point2rotate↪→

12 subsection = getSubsection(point2rotate)

13 pointsInSubsection = getPointsInSubsection(subsection)

14 #rotate both shoulder points together, and likewise with

hips↪→

15 if(point2rotate == 2):

16

pointsInSubsection.extend(getPointsInSubsection(getSubsection(5)))↪→

17 elif(point2rotate == 8):

18

pointsInSubsection.extend(getPointsInSubsection(getSubsection(11)))↪→

20

19 #rotate all points, first zeroing them around the

basepoint, and then returning them to their original

coordinates

↪→

↪→

20 for point in pointsInSubsection:

21 zeroedPoint = np.subtract(wireframe[point],

wireframe[basepoint])↪→

22 rotatedZeroedPoint = quaternion.rotate(zeroedPoint)

23 rotatedPoint = np.add(rotatedZeroedPoint,

wireframe[basepoint])↪→

24 wireframe[point] = rotatedPoint.tolist()

25 return wireframe

10.3 Optimization Function

To optimize a wireframe generated through computer vision into the hydrody-
namically optimal wireframe, we include recursive iterations of the previously
illustrated functions. Initially, we use the constructBaseWireframe()
method and set the wireframe of the Swimmer object to the method’s return
value. Next, the optimization loop begins and is repeated until no change in
wireframe is detected.

10.3.1 The Optimization Loop

One iteration of the optimization loop initially begins with the rotation of the
sections connected to the chest point of the swimmer. First, each point con-
nected directly to the chest point is rotated five degrees in either direction
around the X axis and the magnitude of the calculated approximate drag is col-
lected. The drag values are compared against each other and the initial value,
and the most optimal result, yielding the lowest drag, is used. This process is
repeated for rotation around the Z axis. Only two axis are chosen because any
rotation of a line from an endpoint around the Y axis can be replicated by two
turns around the X and Z axes. For each point rotated, the same process is
recursively applied to each of their connected points, and so forth. In effect, the
upper body and lower body are each rotated to their optimal position by five
degrees, followed by the shoulders and hips, which are followed by the arms,
legs, and head. Five degrees is chosen as the minimum value visible and cor-
rectable by a human swimmer, and is maximized to improve compute times.
The optimization loop is then repeated.

10.3.2 Error Accounting

A few amends to the optimization function were made to account for common
errors.

• The chest and shoulders are not rotated on the first pass through of the
optimization loop. To create slant in the arms, a quality which is desir-
able through arm rotation, the algorithm would rotate the upper body an

21

arbitrary direction on the first pass through. Allowing the arms to rotate
before the chest and shoulders ensures that arm slant is created through
arm rotation, and preserves the ability to use a tweak-based optimization
algorithm.

• The head is not optimized until after the rest of the body. As the arms
rotated in towards a middle ground, the head was attempting to fill the
space of the arms not yet rotated to cover the head, and was tilting dras-
tically to the side.

10.3.3 Code

1 #function to optimize the wireframe

2 def minimizeDragNumber(swimmer : SC.Swimmer):

3 #set the swimmer's wireframe to its base wireframe

4 swimmer.setWireframe(swimmer.constructBaseWireframe())

5 #initialize old wireframe and new wireframe to compare

between iterations↪→

6 wireframeold = []

7 wireframenew = swimmer.getWireframe()

8 #conduct an initial improvement of the wireframe, excluding

chest and shoulders. Each call of the improveWireframe

method decrements the second argument by one. Due to the

recursive nature of the function, the shoulders and chest

are not optimized the first time through due to the

positive second argument value

↪→

↪→

↪→

↪→

↪→

9 improveWireframe(swimmer,2)

10 #repeat iterations until no change is detected

11 while(wireframenew != wireframeold):

12 #print statement to see progress of optimization

13 print(dN.getDragNumber(swimmer))

14 wireframeold = wireframenew.copy()

15 #the improve wireframe method tweaks each joint 5 degrees

in the most optimal direction↪→

16 improveWireframe(swimmer,0)

17 wireframenew = swimmer.getWireframe()

18 return wireframenew

11 User Friendly Information Display

11.1 Wireframe Visualization

Lastly, we implemented a visualizer to relay the information to the user in a
visually intelligible form. Both the three-dimensional wireframe taken from the
swimmer’s position and the hydrodynamically optimized wireframe are graphed,
including the constituent points and the lines connecting them. The original

22

wireframe is graphed in red, and the optimized wireframe is graphed in green
(fig. 9).

Figure 9: An example output.

Verifying the Efficacy of our Method

12 Criteria for an Optimal Streamline

As previously outlined, an optimal streamline consists of arms above head, hands
together and legs straight behind, the body forming a shape reminiscent of a
torpedo or dolphin, a shape backed up by both engineering concepts and a mul-
titude of years of evolution. Thus, we define criteria for an effective streamline
accordingly. To determine the efficacy of our model, we compare results to the
following set of criteria.

• The arms of the swimmer are outstretched above the head, and angled
inwards towards the body’s center line.

• The hands of the swimmer are connected or near connected, and the ends
of the forearms are overlapping.

23

• The legs of the swimmer are stretched behind the swimmer, minimizing
total frontal area within possible constraints of the human body.

• Frontal area appears to be minimized in all ways possible within the con-
straints of human form.

13 Verification of the Model

To verify the model, we provided 3 sets of images to the model and analyzed
the outputs. To create a variety of test cases, we used two streamlines most
commonly created due to errors, and one that was attempted to be correct (fig.
10). Both optimized wireframe (a) and (b) fit the criteria above. Optimized

(a) (b)
(c)

Figure 10: (a) A test case for a correct streamline (b) A test case for an incorrect
streamline (c) A test case for an incorrect streamline with issues that will be
discussed in the next section

wireframe (c), however, fails many of the criteria, but yet surprisingly still
represents a successful algorithm, albeit highlighting errors in data collection.

13.0.1 Wireframe Optimization Inaccuracies

It is visible that optimized wireframe (c) does not fit the criteria of hands
connected or near connected, and this issue mainly arises from data collection
accuracy issues, further discussed in Section 14. The arms in this figure are
collected as shorter than the other figures, while the shoulders are collected as
wider. The main difference however, is that the shoulders were relaxed down, as
opposed to hunched upwards as in wireframe (a) and (b). The image recognition
software is unable to recognized hunched upwards shoulders as a change in the
angle between shoulder center and the end of each shoulder, and just represents
these intricacies as wider or skinnier shoulders, incorrectly ascribed intrinsic
to the person. Therefore, the model neglects the ability to hunch shoulders
upwards as a consequence of data collection limitations. The drag model, thus,
determines that due to the short nature of the arms without shoulder movement
coupled with wide shoulders, the drag minimization derived from moving arms

24

towards a center line is actually sub optimal. Shoulders have a natural slope
to them, and moving the arms towards the center line would increase the drag
on the arms by causing a flatter surface. The drag model has determined that
by covering some percentage of the shoulders by a slope in the arms while
leaving some shoulder exposed to the flow, drag is actually optimized (fig. 11).
Improvements to data collection as well as improvements to defining the shape
and limitations of the human body would improve such an issue. Additionally,
this highlights an interesting specific use case for the model.

Figure 11: Cross sections of optimized wireframe (c). Note the slope of the
shoulders and slope of the arms.

13.0.2 Ability of the Model to Account for Differences and Disabil-
ities

Take a swimmer who had mobility issues due to a prior injury or surgery. Ad-
ditionally, take a swimmer who had birth differences leading to decreased mo-
bility and different body proportions. Scenarios such as these could easily be
accounted for by our model. Wireframe (c) inadvertently could represent a per-
son with an injured latissimus dorsi, the main muscle along a person’s back,
or rotatory cuff, the area of tendons around the shoulder, who is unable to lift
their shoulders. Aforementioned fixes to the model could increase its ability to

25

accurately assist individuals without movement issues, but the reintroduction
of restrictions could even further individualize the model for individuals with
limitations. Wireframe (c) demonstrates that drastically different results are
optimal for individuals with differences. Shoulder rotation limitations could be
introduced to account for injuries. Differences in body proportions will be picked
up by the computer vision algorithm. Individuals who could have previously
struggled with coaching individualized to their needs would receive personalized
results computationally by CHASM.

Finalizing Thoughts

14 Data Collection Improvement Needs

As previously stated, the CHASM model is incredibly susceptible to irregular-
ities in position and wireframe. This is a desired quality, as such irregularities
influence the position of an optimal hydrodynamic wireframe, and enforce the
need for individualized computation as opposed to comparing to a universal
baseline. This sensitivity, however, leaves the model highly sensitive to data
collection inaccuracies. In our physical LVU, imperfections in measurement
could extrapolate to noticeable inaccuracies. A better production method for
the LVU than what was accessible to us using household power tools would
improve data collection and address many of these inaccuracies, which included
egregious differentiation between widths of right and left shoulders, and inaccu-
racies in point location due to improperly angled cameras.

15 Further Steps and Project Potential

With the production of a more reliable LVU, data collection accuracy would
drastically improve. Further steps in improving computational accuracy could
be taken by upgrading the wireframe model to a surface based model of the
swimmer’s form. This would allow the computation of more accurate drag, as
well as determining forces added to the water, opening the doors to aspects
of the sport of swimming other than the streamline. Freestyle optimization
would be a logical, yet difficult, next step, and would likely require the use of
more complicated hardware and software in order to collect accurate data for
a body in relative motion to itself and account for forces added against the
water. Additionally, introduction of restrictions to movement could specialize
the model towards individuals with injuries or disabilities. With improvements,
the steps and algorithms outlined above could provide coaching augmentation
and replacement for almost all aspects of swimming, increasing accessibility and
productivity of the sport.

26

16 Conclusion

As the project currently stands, CHASM provides visual feedback on the stream-
line portion of swimming. It can improve the ability of coaches to give meaning-
ful feedback to their swimmers, and increase accessibility to a sport that involves
paywalls due to coaching access. CHASM uses computer vision, mathematical
coordinate operations, a drag approximation model, optimization functions, and
visual output to accurately and effectively communicate feedback on a swim-
mer’s streamline position. With improvement, CHASM could be expanded to
provide feedback on all aspects of swimming, providing an invaluable coaching
aid to augment the needs of competitive and recreational lap swimmers of all
levels, and completely replace a coach for those who do not have the means
to have one. Additionally, access to personalized coaching for individuals with
disabilities or injuries that effect their body or abilities could exponentially
increase. Adoption of CHASM, as it stands or as it could be, by swimming
pools, coaching teams, individuals, and schools could prove an asset to creating
greater depth of field and accessibility in the sport, all the while improving the
form of preexisting participants. CHASM is a means to accessibility and inclu-
sion for underprivileged, injured, and disabled individuals, effective coaching for
swimmers of all levels, and speed maximization for the sport of competitive lap
swimming.

17 Acknowledgements

Invaluable in our coding, building and development process were our wonderful
sponsors Ms. Masoni and Ms. Comstock. Without their assistance, not only
would we not have a designated time during the school day to work on our
project, but we would not have the guidance and experience they bring to the
table. Additionally, we would like to acknowledge Marlow Lichty, a prior team
member from earlier in the year who elected to leave our team to invest his time
elsewhere, but nonetheless contributed important work in the implementation
of the image processing software.

27

18 Works Cited

References

[1] 360swim.com, C. @. (n.d.). Streamline explained (how do drag forces influence
my body in swimming?). 360swim. https://360swim.com/blog/streamline-
explained-how-forces-influence-swimming#google vignette

[2] Admin, F. S. (2021, December 13). Why streamline po-
sition is so important. Precision Swim Training.
https://www.precisionswimtraining.com/blogs/kicking-with-kaitlin/why-
streamline-is-so-important

[3] Andriluka, M., Pishchulin, L., Gehler, P., & Bernt, S. (2014). 2D Human
Pose Estimation: New Benchmark and State of the Art Analysis. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

[4] Dougherty, A. (2017, June 14). A cost benefit analysis
of a lifelong swimming career. Swimming World News.
https://www.swimmingworldmagazine.com/news/a-cost-benefit-analysis-
of-a-lifelong-swimming-career/

[5] Drag coefficient. (2023). Retrieved from https://www1.grc.nasa.gov/beginners-
guide-to-aeronautics/drag-coefficient-2/

[6] Gupta, V. (2018, May 29). Deep Learning based Human Pose Estima-
tion using OpenCV. LearnOpenCV. Retrieved April 2, 2024, from
https://learnopencv.com/deep-learning-based-human-pose-estimation-
using-opencv-cpp-python/

[7] Here is how swimmers of all levels train (according to coaches).
A3 Performance. (n.d.). https://www.a3performance.com/blogs/a3-
performance/here-is-how-swimmers-of-all-levels-train-according-to-coaches

[8] Holmes, T. (2022). How to have perfect streamline in swimming.
Retrieved from https://blog.myswimpro.com/2022/02/08/how-to-have-
perfect-streamline-in-swimming/

[9] Hughes, M. (2017). Don’t get lost in Deep space: Under-
standing quaternions - technical articles. Retrieved from
https://www.allaboutcircuits.com/technical-articles/dont-get-lost-in-
deep-space-understanding-quaternions/

[10] Koury, J. M. (2024, March 25). Individual coaching for competitive swimmers
- swim technique coaching Lehigh Valley - swim articles. Swim Technique
Coaching Lehigh Valley. https://www.swimtechniquecoaching.com/swim-
articles/2023110private-coaching-for-competitive-swimming-athletes

28

[11] Laminar and turbulent flow. (1992). In (Ed.), DOE Fundamentals Hand-
book: Thermodynamics, Heat Transfer, and Fluid Flow. U.S. Department
of Energy. https://engineeringlibrary.org/reference/laminar-and-turbulent-
fluid-flow-doe-handbook

[12] OpenStax College. (n.d.). Motion of an Object in a Vis-
cous Fluid. Lumen Learning. Retrieved April 2, 2024, from
https://courses.lumenlearning.com/suny-physics/chapter/12-6-motion-
of-an-object-in-a-viscous-fluid/

[13] Poirier-Leroy, O. (2023, December 19). How to streamline in swim-
ming like a pro (swim faster and glide farther). SwimSwam.
https://swimswam.com/streamline-in-swimming/

[14] Table 10.5 presents the drag coefficient, CD for numerous... (1 answer).
(2022). Retrieved from https://www.transtutors.com/questions/10-23bg-
table-10-5-presents-the-drag-coefficient-cd-for-numerous-geometric-shapes-
at-6923663.html

[15] The importance of a good streamline. SAN. (n.d.).
https://www.swimacademynetwork.com.au/resources/the-importance-
of-a-good-streamline

[16] Ungerechts, Bodo. (1982). The Validity of the Reynolds Number for Swimming
Bodies Which Change Form Periodically.

[17] What is drag? (2022). Retrieved from https://www1.grc.nasa.gov/beginners-
guide-to-aeronautics/what-is-drag/

[18] Wise, J. (2022). Role of technology in swimming: The good and bad. Retrieved
from https://www.swimmingworldmagazine.com/news/role-of-technology-
in-swimming-the-good-and-bad/

[19] Wynn, K. (n.d.). Welcome. Retrieved from
https://kieranwynn.github.io/pyquaternion/

29

