
Facial Recognition with Deep
Face Library

-
Ensuring Campus Security

New Mexico

SuperComputing Challenge

Final Report

April 10, 2024

Team

Los Alamos High School

Team member:
Hyunoo (Hayden) Kim

Project Mentor:
Michela Ombelli



Executive Summary
In light of increasing concerns about campus security and rising school shooting

incidents, my project aims to leverage live face recognition technology to solve this

current problem. From taking inspiration from recent advancements in facial recognition

systems making them more accessible to the public, my project’s purpose is to enhance

safety measures on campuses by implementing real-time identification and monitoring

capabilities. By utilizing live video feeds from strategically placed cameras across the

campus, my program can identify faces in real time within its field of view. This enables

instant identification of individuals against a predefined database of authorized

personnel, visitors, and potential threats.

At the current stage of development, my system can detect faces, establishing an

ROI (region of interest) for every frame. It then pulls from the ROI and analyzes the face

using a library called Deepface. Due to the lack of time caused by many different time

commitments this year, the project was only able to progress to detecting multiple faces

at the same time, but only being able to recognize one at a time. Despite this, there is a

clear path to solving this issue in the future since I have been able to draw from a folder

containing multiple images, proving that multiple-image analysis is possible given my

current hardware.

The aim is to make my program work in tandem with other security measures in

place and, in terms of implication, I placed a heavy emphasis on privacy by making the

system optimized to work with pictures of students and faculty being limited to

professional ones — such as school pictures.



Background
In just 2023, there have been 82 school shootings in the United States. This is slightly

more than one school shooting every school week — Monday through Friday.

Additionally, the rise of campus threats has had a general upward trend over the past

decade (with an exception in 2020 when virtual school was largely used and the number

of school shootings dropped), making it of utmost importance to find effective measures

of preventing casualties and ensuring the safety of school students and faculty.

Methodology and Validation
My approach to creating a face recognition system was a slightly roundabout way,

however, it allowed me to gain a deeper understanding of AI and how machine learning

works (see Figure 1). Instead of jumping straight into recognition—which is easily

possible due to advancements made by AI companies—I built a detection module using

OpenCV (Computer Vision) to understand how detection works, then built up from the

detection module and integrated Deepface to accomplish face recognition (see Figure

2).

To validate that my model was working properly, I tested it against some of my family’s

faces to see if the model could identify my face properly inside a semi-crowded

environment.



Figure 1. My approach for facial detection and recognition method using various

Python-based computer vision modules (OpenCV, Deepface [1,2,3])

Since the project’s purpose is to achieve campus security, I ran one additional test to

determine the library’s capability with my program to predict values on a gradient such

as age and emotion. This was to test for further information gathering such as weapon

detection or observations about an identified suspect that the system may have been

able to use to understand a situation better. Unfortunately, the library didn’t prove so

useful.



Figure 2. (Top) Traditional neural networks used in Deepface, and (Bottom) streamlined

modern detection using machine learning algorithm used in OpenCV [4,5,6]



Results and Conclusion
In conclusion, this project has been pieced together from free, open-source libraries and

shows that enhancing campus security with algorithms is not at all implausible for

school districts. The current model can pull from a folder containing multiple people

(with the limit that it is only able to analyze one face per recognition loop) where each

person may have multiple reference photos to help the system better recognize the face

(see Figures 3,4 and 5).

Figure 3. Face detection coding for boxes detected faces using OpenCV.



Figure 4. Face recognition using TensorFlow in Deepface python module.

Figure 5. Challenges of facial recognition in Deepface (Examples: inaccurate age

estimation, incorrect emotion sensing)



Throughout the project, I have obtained a broader understanding of how machine

learning works to establish complex neural networks. With a focus on my future career

path, I see this as a massive milestone in progressing in computer science—one of the

majors that I am considering. This newfound knowledge of neural networks is

something that I value as the most significant achievement that I have made in this

project.

Acknowledgments
I would like to acknowledge Daniel Gray, a scientist at LANL who was able to help me

understand the complexities of face recognition libraries. He has allowed me to gain a

much deeper understanding and appreciation for machine learning.

I would like to acknowledge my father, Jun Kim, a scientist at LANL who encouraged me

to continue with my project when things were not going right. He is also experienced in

coding and I was able to seek help from him when I did not know how to do something.

Both of these individuals played crucial roles in getting my project up to where it is now

despite time challenges this year.



References
1. Rasmussen, S.H.R., Ludeke, S.G. & Klemmensen, R. Using deep learning to predict

ideology from facial photographs: expressions, beauty, and extra-facial

information. Sci Rep 13, 5257 (2023).

https://doi.org/10.1038/s41598-023-31796-1

2. Tutorials for OpenCV: https://docs.opencv.org/4.x/d9/df8/tutorial_root.html

3. Tutorials for Deepface: https://viso.ai/computer-vision/deepface/

4. Neural network: https://en.wikipedia.org/wiki/Neural_network_(machine_learning)

5. Hivalila Hangaragi, Tripty Singh, Neelima N, Face Detection and Recognition

Using Face Mesh and Deep Neural Network, Procedia Computer Science,

Volume 218, 2023, Pages 741-749, https://doi.org/10.1016/j.procs.2023.01.054.

6. Face recognition with Python using OpenCV:

https://www.datacamp.com/tutorial/face-detection-python-opencv

https://doi.org/10.1038/s41598-023-31796-1
https://docs.opencv.org/4.x/d9/df8/tutorial_root.html
https://viso.ai/computer-vision/deepface/
https://en.wikipedia.org/wiki/Neural_network_(machine_learning)
https://doi.org/10.1016/j.procs.2023.01.054
https://www.datacamp.com/tutorial/face-detection-python-opencv


Products (Appendix)
My first model (face detection):

import pathlib
import cv2

cascade_path = pathlib.Path(cv2.__file__).parent.absolute() /
"data/haarcascade_frontalface_default.xml"
clf = cv2.CascadeClassifier(str(cascade_path))

camera = cv2.VideoCapture(0)

while True:
_, frame = camera.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = clf.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30),

flags=cv2.CASCADE_SCALE_IMAGE)

for (x, y, width, height) in faces:
cv2.rectangle(frame, (x, y), (x + width, y + height), (255, 255, 0), 2)

cv2.imshow("Face", frame)

key = cv2.waitKey(1)
if key == ord("q") or key == 27: # 27 is the ASCII code for the ESC key
break

camera.release()
cv2.destroyAllWindows()
cv2.waitKey(1)
print("done")

My second model (face recognition):

#pip install deepface
import threading
import cv2
from deepface import DeepFace

cap = cv2.VideoCapture(0)



counter = 0

face_match = False
#print("check 1")

reference_img = cv2.imread("reference.jpg")
#print("check 2")

def check_face(frame):
global face_match
try:
if DeepFace.verify(frame, reference_img.copy())['verified']:
face_match = True

else:
face_match = False

except ValueError:
face_match = False

while True:
ret, frame = cap.read()

if ret:
if counter % 30 == 0:
try:
threading.Thread(target = check_face(frame), args = (frame.copy(),)).start()

except ValueError:
pass

counter += 1

if face_match:
cv2.putText(frame, "MATCH", (20, 450), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255,

50), 3)
else:
cv2.putText(frame, "NO MATCH", (20, 450), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0,

255), 3)

cv2.imshow("video", frame)
key = cv2.waitKey(1)
if key == ord("q"):
break

cap.release()
cv2.destroyAllWindows()
cv2.waitKey(1)


