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1 Executive Summary

There are about 25,800 man-made objects in space, with 5,400 of these ob-
jects being functional satellites, and more being added every year. With so many
artificial items up in space, how do we keep track of it all and make sure there
are no collisions? Even the slightest collision can damage the fragile equipment
on board these satellites and lead to the satellite becoming useless. We have pro-
grams, such as the SGP4 and SDP4, which predict the orbital paths of satellites
but they have their flaws. In this model, we address these issues and create a
machine learning that can more accurately predict the orbital paths of payloads.

SCRAM (Satellite Collision Reduction and Avoidance Model) is an Al-based
on the K-Nearest Neighbors (Peterson) model. It is trained off of Two-Line El-
ement data sourced from spacetrack.org.

Current accepted physics-based models have issues that make them problem-
atic to use. The main issue is that none of these models use more than one past
data point in its prediction. To improve the prediction technique and provide
a more accurate orbital path, we created a model that considers multiple past
data points and uses them in the prediction generation.

We found that SCRAM can predict the orbital path of a Low Earth Satellite
(LEO) with an average accuracy of 92
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2 Motivation and Plan of the Work

The goal of this project is to more accurately predict the orbital patterns of
Low Earth satellites using past points of data in comparison to the SGP4 model.
We hope this will help better avoid collisions in space.

3 Background Research

3.1 Orbits

Space collisions are likely to occur at any time and can happen in any of the
orbit paths that are located in the Earth’s atmosphere. There are different orbits
that occur around Earth that vary on how close or far away they are. Low Earth
orbit or LEO is in the lower end of possible orbits around the Earth, which can
be around 1,200 miles. Then there is Middle Earth Orbits and the difference
between all of these orbits is how close they are to the earth and how long it
takes an object like a satellite to complete its orbit. Objects in LEO orbits go
around the Earth in roughly 90 minutes. An object in MEO can take about ...,
while an object in GEO takes 24 hours.

3.2 Collisions

Most satellites are in a LEO orbit path causing this area of space travel to be
highly congested. Which in itself poses a significant threat of debris-generating
collisions that can have high impacts on surrounding satellites in LEO orbits.
Any collision that occurs has the potential to create thousands of shards of
debris that create an uncontrollable mass of floating debris and make the already
congested orbits more congested ultimately leading to more congestions.

3.3 Kessler Syndrome

Kessler syndrome( Adilov) is the theoretical scenario that predicts that a
single satellite collision would cause a chain reaction that would cause all satel-
lites in orbit to collide with each other. This mass destruction would lead to the
downfall of human technology. Not only this but, it would cause thousands of
pounds of space debris to either be launched into the universe or come crashing
down to Earth’s surface.

3.4 Current Solutions

None of this would be great, which is why it is regulated that any satellite
that is launched into orbit must have a booster system to correct its orbit if there
is a chance of there being a collision. This is great however, many older satellites
that are still in commission don’;t have these technological systems posing more
problems which is why we have created this model to aid in this process.
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4 Models and Methods

4.1 Introduction to Recurrent Neural Networks and Convolutional
Neural Networks

Both Recurrent Neural Networks (RNN) and Convolutional neural networks
(CNN) models have the capabilities to return many inputs to many outputs.
They are commonly used models and often considered fundamental models in
machine learning. This leads them to both be flexible and powerful models with
different strengths and weaknesses.

Convolutional Neural Networks are most commonly used for language pro-
cessing. They are typically faster than other model types and use a feed forward
network. This means that information never flows backwards and impacts previ-
ous nodes. CNN models excel at processing data that is grid like. This refers to
data like audio and images that have to be broken up into matrices to account
for color and pixel size or wavelength and frequency.

image patch hidden layer 1 hidden layer 2 final layer
1 layer 4 feature maps 8 feature maps 4 class units
36x36 28x28 14x14 10x10 5x5

! \

convolution max convolution max convalution
(kernel: 9x9x1) pooling (kernel: 5x5x4) pooling  (kernel: 5x5x8)

Fig. 1. An example of the data flow in a CNN model
Image borrowed from:

Recurrent Neural Networks however use a bi-directional network so infor-
mation flows forward and backwards. RNN models also have long short term
memory so they can learn and identify trends in large data sets. This makes
RNN’S better for pattern recognition and numerical predictions. RNN models
are most commonly used with large packets of data and through data processing.
The most well known application of RNN is its use in handwriting recognition.
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Recurrent Neural Network

Recurrence

Fig. 2. An example of the data flow in a RNN model
Image borrowed from:

4.2 Implementation of our Model

We decided to use an RNN model because of the sheer size of our satellite
data. We feed in different columns with information about the location, speed
and orbit of the satellite. SCRAM takes in a total of 13 columns and 181,936
rows. This information is all fed into the model from Peewee queries and then
turned into numpy arrays with a 32 float value so they can be turned into tensors
and processed.

The data is queried out by odd and even rows. The odd rows are the current
location of the satellite and the even rows are where SCRAM should predict
them ending. Once this data is sorted into the input sequences and output se-
quences they are fed into the model class.

The model class establishes the hidden layer of zeros then starts to process
the input sequences and output sequences. It sees the input row and then out-
puts what it guesses it should have been and compares it to the true output and
then learns from there. After iterating through all the rows it reports its final
loss as a percentage before beginning another iteration. It does a total of ten
iterations.

5 Results

The results change drastically with different sizes of data. This is due to the
fact that the model applies its own weights accordingly and the hyperparameters
work better at different levels of data. We tried running the model at different
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levels of data, we tried this on different TLE files, and then the full 181,936 rows.

To analzyze the accuracy of our model, we found the mean of error and
compared it to the SGP4 model. We calculate the mean of error value using
Predicted values - the Actual values / by the Actual Values. This was done
using a numpy array so that every predicted value correctly aligns with the actual
value. When the data is run on, AGENA-TARGET_1966-065A, EXPLORER-
4.1958-005A, and LEMUR-2-ONREFLECTION_2023-054E CSV files we get an
average error of 31%. This means that almost 70% of the time SCRAM predicts
accurately. Considering this is the results ran on only around 100 - 200 hundred
lines this is an impressive feat.

When iterated over the full data set we collected SCRAM has an accuracy
of 92%. This makes us confident that SCRAM not only works but also isn’t over
trained because it still has a bit of room for error.

Data Type|Mean of Error
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6 Conclusions

6.1 Takeaways

In conclusion, we were able to create an AI Model that is able to predict satel-
lite positioning with an average accuracy of 70%. This project once we increase
it’s accuracy has the potential to replace current SGP4 models in predicting
satellite positions and detecting the likelihood of collisions.

6.2 Limitations and Errors

With our current model due to the size of the data sets that we are using our
model takes four and a half hours to process all the data. Given that our data
set is 181,936 rows it is understandable why it would tak ea long time to process.
However in satellite orbits in this same amount of time any given satellite in a
LEO could have completed three orbits, which dramatically changes things. This
is something that has held us back and we would like to improve the performance
time so we can have our project predictions running on real time.
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6.3 Future Work

Further refinements that we would like to make to our model include making
it more user friendly, making it closer to a SGP4, and making our model more
efficient. We would like to include to our program a user interface close to an
SGP4 where users can input a few lines of data and our model is able to give
the user quick results on the positioning of the satellites they inputed.
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