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ABSTRACT:

Games either have complete information such as chess, where all resources and actions are

visible, or incomplete information such as poker and the real world, where not all information is available

to make a decision. Training artificial intelligence (AI) agents on games with incomplete information has

been less successful than with complete information. One of the recent big breakthroughs in games with

incomplete information was poker. From the MIT Technology Review, AI capable of playing poker relied

on incomplete information, which made it impressive (Knight 2017). In my project I explore another

incomplete information game – two player BS – to provide insight into how AI can use information to fill

in gaps and learn without knowing the entire picture.

LITERATURE REVIEW AND BACKGROUND:

More and more games can be solved with AI, and there are open source games people can test

and train their AI agents with sources such as The Arcade games in Open AI Gym (an open source library

with many games available (Ravichandiran 2018). New algorithms to solve games have been made, and

there has been a rise in people’s interest in reinforcement learning (RL) (Brockman, 2016). With RL, an

agent does not know the rules of the game, but rather takes actions, saves experiences, and collects values

relating to states and rewards encountered. Many agents use a Markov Decision space, in which the idea



that an action leads to a reward and a new state is saved. Over time, the rewards or favoritism to saving

new favorable states decrease, leading to an agent with a policy. For example, an agent can start solving a

maze randomly, and as it learns over time how to get through the maze, it is more likely to choose the

same path or the same decision rules over and over in the end (since it has learned the behavior over time)

(Pettit 2023).

Algorithms and ideas have been introduced for games to be solved more efficiently, so that AI

can learn to solve problems in the real world with strategies it used to play games. For example, making

an agent go through unique mazes with coins in training runs (instead of being trained repeatedly on the

same maze) helps the agent adapt to new mazes and be able to experience new situations (Cobbe, 2019).

Ideas such as “sticky actions” in Gotta Learn Fast have a similar goal - helping an agent continue learning

over time by adding a bit of randomness by randomly repeating certain actions (Nichol et al, 2018).

Many games are tested in RL with all actions visible such as Cartpole and Pong and algorithms

such as Deep Q-Network (DQN) have been developed to help agents learn (Mnih et al.). Research and

fascinating science with complete information has been done, such as how neuronlike elements can be

used with Cartpole – a game where a pole is balanced (Barto et al.). From playing professional chess to

beating the world champion of Go, AI has been able to play complete information games professionally

(Haridy, 2017). On the other hand, there has not been as much research with incomplete information, and



Poker was a big game which was a breakthrough to solve - because it uses incomplete information

(Knight 2017).

There is less implementation relating to addressing games with incomplete information although

research has been done. There have been models and theories addressing partial observability even going

back to 1992, such as using multiple hierarchical systems. For example, to solve a maze, instead of the

maze being done all the way through by one agent, different agents can be assigned different parts, and

then combine their efforts. This makes it more efficient, although more energy for each run might be spent

by the agents, when the agents' efforts are combined, as a whole it is faster and saves energy (Dayan,

1992). Different approaches for multi-agents to learn reinforcement learning in partially observed

environments have been introduced such as RAIL and DIAL (Reinforced Inter-Agent Learning and

Differentiable Inter-Agent Learning) which use multiple agents to complete a task. Games have been

made such as MNIST, a game in which two agents communicate with each other to figure out a color. The

game uses incomplete information, and with RIAL or DIAL the agents try to figure out the hidden

message. (Foerster et al. 2016).

There have been successes with partial observability, but it requires more research. In a unified

game-theoretic approach to multiagent reinforcement learning, it was explained that poker is one of the

only main games in which success in partial observability was achieved (Lanctot et al. 2017). It was a big

breakthrough, because it was unique, and many games could not have the same principles applied to



them. Games with incomplete information, while can be played and understood by humans, often require

much more computation and different strategies than games with all actions available (Burch 2018). Thus,

fewer games with incomplete information are tested than those with complete information.

I trained an AI on a simple incomplete action game – two player BS (game explained in

methodology). Using Open AI Gym, I learned more about training games with incomplete information.

METHODOLOGY:

General Steps in the Method:

My methodology is based on a methodology similar to the one used in Coin Run - create a game

environment, add variation into the game, test the game with an AI agent with an algorithm, and graph the

result. I used the graphing code from a tutorial which I thought had great graphs and I added an extension

seaborne to make them more visually aesthetic (Stable Baselines 3 Contributors, 2024). I referenced

similar methodologies from other articles as well - learning what types of games were made and how AI

was used and tested.(Putten R 2018 , Train a Deep Q Network with TF-Agents ). The methodology also

incorporates: Deep reinforcement learning at the edge of the statistical precipice in order to gather

reliable data from the AI agent, and try to reduce bias by using ideas such as considering all the runs of a

specific algorithm - not only successful runs (Agarwal et al. 2021).



Setting-Up the BS Game

In order to test a game with incomplete actions I coded a two player BS game in Python. Two

player BS was chosen because it is simpler than games such as Poker or UNO, and can be understood and

coded more easily.

I first made the game in Python, and made sure that the user could play against a scripted

opponent. The game only uses part of a standard 52 card deck so that players don’t know each other’s

cards. In each game, 30-45 possible cards can be used. A standard variation of BS was chosen. Players

are dealt a certain amount of cards, and then they put down the cards in an order starting from ace, two,

three, and so on. Players show what amount of cards they put down, and if someone calls “bs” then the

cards that were put down are revealed. If the person putting down cards was truthful then the person

calling “bs” takes the stack, and if the player putting down cards lied then they take the stack. The goal is

to put down all the cards. (Tichvon, 2023).

The user types in the cards they want to put down in a certain format, and the scripted agent also

plays. The scripted player was made to test the Python game itself, and to be used in the future to play

with an AI agent. The scripted player says “bs” one out of four times (unless “bs” was called previously),

and tries to always be truthful. If it can put the correct card in the correct order it will do so, otherwise it

will put a card in the next possible order available. For example, if the scripted agent has to put down an



“ace” and it has no “ace” then it can put down a 2, 3, 4, etc.. The scripted agent is simple, and the goal of

having it is to see if the AI can win against it.

The players start out with a random amount of cards (between 30 and 45 cards) so that the games

have more randomness and so that the agent does not memorize putting down the same cards. Similarly to

Coin Run, I want my agent to be able to generalize. Each player has between 15 to 20 cards and both

players start out with the same amount of cards. The card deck is shuffled to a random order at the

beginning of the game and then it is split between two players. The cards are then assigned randomly to

the players. Each player gets a “hand”, and the cards they get are put into order.

order = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

The code above shows an example order, in which 0 is king, 1 is ace, 11 is jack, and 12 is queen,

and all the other cards are their numerical card values. As the card deck declines, the uncertainty of what

cards the opponent has increases. With 30-45 cards, it can be guessed what cards the opponent has, but

not with certainty.

Such as: [k]:1, [a]: 4, [2]: 2, [3]: 0, [4]: 1, [5]: 2, [6]: 0, [7]: 2, [8]: 1, [9]: 1, [10]: 1, [j]: 1, [q]: 3

(There is one king, four aces, two twos, zero threes, one fours, etc….)

I checked if certain parts of my game worked as I intended them to, by testing the game in certain

cases. I made sure it would function as intended when the user, and when the scripted player said “bs” in



certain situations. Moves the scripted player took were recorded by printing them out for the user to see,

and when it said a lie and “bs” was entered by the user, the cards went back to the scripted player.

Once the game itself was done, I put it into the Open AI Gym Framework - a framework for users

to test agents on games they have made themselves (Brockman 2016).

Putting the Game into an Open AI Gym Framework:

The BS game was put into specific functions such as “step” (make the game go one timestep),

“initialize” (set up the game environment) and “reset” (restart and set up a game when it is done). I use

"episode" to describe a single game. It is assumed that the game is always played until a player wins.

Therefore the episode generically consists of multiple timesteps. ‘Episode’ is an instance or length of a

game, in which the amount of individual timesteps within vary. The Open AI framework is a commonly

used framework for AI games, and my method uses it since it is openly available, useful and convenient

for training an agent (Brockman et al. 2016).

For the framework to be used, an ‘observation space’ must be made for the AI agent - this is

everything that the AI agent can see. With reinforcement learning, the agent does not know the rules of

the game, it takes actions and considers their outcomes (Pettit J 2019). The observation space I intended



was: the cards the agent has, the amount of cards the agent has, the amount of cards the opponent has, the

current card is supposed to place down - like an ‘ace’, and the amount of cards in the stack. I wanted the

agent to consider this information when deciding what move to make, similarly to how when I play a

game of bs I know the cards I have, the amount of cards I have, the amount my opponent has (although

not as exact as the real number), the card the game is on, and the amount of cards in the stack.

The action space also had to be specified, and the action space was made to be (3, 13, 4, 3, 13, 4,

3, 13, 4, 3, 13, 4) to make any action available to the agent - even if the agent is not always able to take

any possible action. The possible actions are ([“bs”, action, no action] (the three), [ace, two, three, four,

five, six, seven,eight, nine 10, j, 1, k] (the 13), [1 card, 2 card, 3 card, 4 card]) (the 4) repeating 4 times for

to create an action space with all actions available. The agent can say [0,7,4] which is “bs” and it does not

put down a 7 and 4, while it can say [2,7,4] which says to take an action and put down a seven four times.

I wanted the agent to be able to put down four individual cards, but still be able to say bs, and take any

possible action. The action space is large, but it allows for all actions to be explored even if it might take

more time training the AI

Choosing an Algorithm:

In order to train an agent an algorithm must be used. A common algorithm is proximal policy

optimization (PPO). It was used because it worked in the framework and it allowed for the type of action

space I specified. Not all algorithms allow certain shapes in the action spaces, such as “boxes” which I



used, there were discrete values in the action space. I imported it with Stable Baselines 3 and used it to

train my agent.

Modify the Framework and the Imported Algorithm/Algorithms over time:

After the agent is tested, parts of the framework may be modified in order for the correct action

space and observation space to be used. A big part of the method is debugging, and finding how certain

changes impact how the agent learns. Parts of the code must be modified and corrected in order to find

bugs that slow an agent down, or discrepancies in game logic. Also there should be certain reward

considerations - different rewards can be given to help the agent learn certain behaviors.

Graph the Results of the Agents Wins - Once the Algorithm and Certain Parameters are specified:

I’m using graphs of reward over episodes (games the agent played) (how the wins of the agent change

over time) and duration over episodes (how the lengths of the games change over time). The graph shows

the individual outcomes of the games, but also the mean outcomes, to see how the mean changes.

RESULTS:

I graphed an agent’s reward and game durations after training, modifying my code several times to

account for different variations. The blue lines show the actual outcome of an episode, while the orange

line shows the mean of the past 5 or 100 episodes (different graphs used different averages). For example,



even if the blue reward lines vary, the mean line can be used to see how the agent does over time on

average.

Originally, I accidentally left out part of the scripted player, and the agent would just play itself -

it would put down its own cards until the agent ran out of cards, which turned out to be around 8-10

moves according to Figure 1. I had certain variations in my code, which I trained on and graphed certain

situations. I also realized that I accidentally showed the scripted player the opponents cards, and the actual

cards in the deck. To me, this seems like more information given to the agent than I had intended, even

though the numbers were excluded, so I decided to have results from two observation spaces,

observation space 1 was accidental while observation space 2 was intended. An observation space is the

values the agent sees, and the agent is only able to make decisions and load weights into the neural

network from the observation space it sees.

Observation space 1: [cards of player 1, cards of player 2, cards in the stack, current card the game says

to put down]

Observation space 2: [cards of player 1, number for player 1, number for player 2, current card the game

says to put down, number of cards in the deck].



Figure 1: No Scripted Player

Caption 1:Using 3e5 Timesteps and graphing 100 episodes with the scripted player not fully included and a maximum of 500
timesteps in observation space 1.

I used PPO (Proximal Policy Optimization), a common algorithm that I could upload from Stable

Baselines 3, an open source library with algorithms. I used it for 3e5 (x*10y form or 3*105) timesteps to

learn (it would learn for 300,000 timesteps ), afterwards it would learn and graph results for 1000

episodes (full games that the agent would play). According to the graph the initial training took around

3000 episodes, and playing the game 1000 times showed that the agent on average got a mean of around

0.85 points based on the results from the final 1000 games in the end. The reward given for placing down

all the cards was 1 point, and 0 points for not being able to place all the cards down.

For the second attempt, after realizing that the scripted player was not fully included, I made sure

it could call “bs”, but I decided not to have it put cards down. The maximum length of time for a game

was 500 steps for the second attempt (turns in an individual game), but I saw that the agent would play all



500. Then I set the max amount of steps to 1000, and even though the agent would play all 1000 timesteps

I decided to keep it because 1000 is a very high number of turns for a bs game.

I also gave the agent rewards for calling “bs” correctly, and penalties for calling “bs” incorrectly:

0.05 points for correctly, and 0.05 points for incorrectly. The agent would receive a reward of 1 for

putting all its cards down, and a reward of 0.5 for having more cards than the player who only called bs

(which I later realized did not make sense, since the agent would have more cards than the scripted agent

who only called “bs” because the scripted player could not put its half of the game deck down).

I debugged several scenarios in which the game logic did not function correctly. The average

reward stayed between 8-10 points (the reward was inflated because of penalties and rewards for calling

“bs” correctly or incorrectly), and the average episode length would always reach 1000 episodes.The code

had a bug where if “bs” was called incorrectly the agent would still get a reward, thus inflating the

rewards. The image below does not show an agent who learns, because the reward and duration stay

almost constant over time.

Image 1: An agent who does not learn



After I saw that “bs” was called incorrectly for the agent and I fixed that bug, I ran the code and

got an agent who learned to lose:

Image 2: An agent who learns to lose

The agent would not put down all its cards, and it got “bs” called on it or it called “bs” incorrectly

many times. I saw that there was still something wrong with how the agent played “bs”. I found parts of

the code that needed to be changed, such as how bs was called, and how the players cards were counted.

Figure 2 debugged parts of Figure 1 and it shows the agent learning over time and learning good

behaviors leading to more rewards part of the time, and bad behaviors leading to less rewards as well.

Figure 2: Adding the working Scripted Player



Caption 2:Using 3e6 Timesteps and graphing 1000 episodes with a scripted player only calling “bs” and a maximum of 1000
timesteps in a game in observation space 1

Figure 3 shows the code with one more bug fix - there was a line of code that would check if the agent

could put down cards and it would say that if the amount of cards was less than the available amount the

agent could put the cards down. It should have checked if it was less or equal to the number of cards so

that the agent could reach 0 - before the agent was not able to do so. Figure 5 shows the change and it is

also trained on games of maximum duration of 1000 timesteps instead of 500 steps as seen in Figure 4.

Figure 3: Allowing the Agent to Reach 0 Cards

Caption 3:Using 3e6 Timesteps in observation space 1 and graphing 1000 episodes with a scripted player only calling “bs” and
a maximum of 1000 timesteps in a game with a code fix from Figure 2

I made sure the agent lost and gained cards correctly, “bs'' was called correctly, and that the cards

in the end were counted correctly as well. I got Figure 4, as the final result for playing against a scripted

player who only said “bs”. I trained the agent on 3e6 and 3e5 timesteps, and the first part of figure 4

shows how the game play normalized over time (it’s hard to see what happened because the long time

span shows changes less clearly) while the second part is more detailed and shows fewer episodes but

more of how the duration of the game went down and how the episode result originally rose and then fell.



Figure 4: Debugged BS Game Pt.1

Figure 4: Debugged BS Game Pt.2

Caption 4:Using 3e6 and 3e7 Timesteps in observation space 1 and graphing 1000 episodes with a scripted player only calling
“bs” and a maximum of 1000 timesteps in a game

While Figure 4 shows an agent that learns, it does not show an agent who would win against a

scripted player. As I was training my agent, I realized that it is worth saving the weights for the learned

neural network, because those can be used later, for example as a starting point.

For Figure 5 I combined weights I saved before, so after training the weights would be saved to a

model. I used those weights to retrain the agent, playing against the real scripted agent (the one who puts

down cards and says “bs”). I got an agent who did worse, but was more consistent.

Weights from this training the code in Figure 4 were used in Figure 5.



(Observation Space 1) Figure 5: Combined weights

Caption 5:Using 3e6 Timesteps in observation space 1 and graphing 1000 episodes with full a scripted player maximum of 1000
timesteps in a game

I modified how long the program would run, and the reward structure, and I found an interesting pattern.

The agent would decrease the rewards it accumulated in games, but it would reach an equal amount of

cards with the opponent. I saved images from training that would show that the agent would learn and

decrease the rewards it received, while at the same time learning to put down cards and match with the

opponent.



Image 3: Screenshots of some game statistics while running

Even though the agent learned to put down cards and win against a scripted agent who said “bs”, it did not

win against a full scripted agent who would put down cards. Even though the rewards would decrease

over time, the agent would tie by the amount of cards it had with the opponent.

For observation space 2, I rewrote my code to use number and list comparisons instead of string

comparisons in order for it to function faster. I also modified the observation space to how I initially

desired it to be - the opponents cards are not able to be seen, and the agent can see the number of cards in

the stack and not the stack itself.

I ran my code with initial rewards for 1e6 episodes, to get Figure 6 for observation space 2. The agent

increased the duration, and reward over time, although the reward always stayed negative.



Figure 6 - Using Observation Space 2 with a full Scripted Player

Caption 6:Using 1e6 Timesteps in observation space 2 and graphing a full scripted player

For figure 7, I saved the weights from figure 6, changed the reward function to not reward “bs” for 1e6

timesteps. The episodic reward decreased over time, and the duration increased over time. The

agent would still put down cards, but it would do it less frequently.

Figure 7: Training with Figure 6 Weights

Caption 7:Using 1e6 Timesteps in observation space 2 with a full scripted player with weights from Figure 6 and a maximum of
1000 timesteps in a game.



Image 4: Image of some game statistics while running

For Figure 8 I added the weights from figure 7 (which had added weights from figure 6), and I trained the

result on 1e7 and 2e6 timesteps, because I found it interesting how on part one (1e7) the rewards

increased and then rapidly decreased, so I wanted to find out if it was something random and

zoom in.

Figure 8 Pt. 1



Figure 8 Pt. 2

Caption 8:Using 1e7 and 1e6 Timesteps in observation space 2 using weights from Figure 7 to train an agent with a maximum of
1000 timesteps per game.

Image 5: Image of agame statistics while running

The agent would often put down the same amount of cards as it initially had, which I found surprising that

it chose this as the logical move in both observation spaces.

The AI agent was able to learn from a game of BS. In observation space 1 the AI agent was able

to improve and learn over time with the agent who only called “bs” in observation space 1, it learned to

tie with the scripted player as well. The figure 4 in observation space 1 is the only figure that shows an AI



agent trying to maximize the rewards and lowering timesteps in successive episodes. The agent also

learned to do certain behaviors as seen by rewards rising and falling over significant periods of time. In

observation space 2, the agent also learned to put down cards, and it learned to tie with the scripted player

as well. It’s important to see how AI learns with incomplete information, in order to learn what

information is really needed to give AI and how AI can use incomplete information to play games and do

tasks.

DISCUSSION AND ANALYSIS:

The agent is able to adapt to changing code, and learn certain behaviors, improve and put down

cards. This is significant, because it shows that the game itself is just the problem the user wants to be

solved, but the agent can learn to solve another problem if the code actually addresses a different task. For

example, if the code does not function as intended, the agent learns and tries to succeed at the unintended

task. Also, putting down all the cards is a challenge for the AI agent, because the way my reward is

structured, having 16 cards vs. 6 cards in the end leads to the same reward. While the reward of having

put all cards down is significantly more, it might be difficult for the agent to realize that, and it was not

incentivized enough to find that reward. The AI does not have the same goals as the user, and maximizing

rewards does not always mean learning the best behaviors. Also, I found it interesting how different

weights of a model could be combined - I did not think of it initially, but then I realized that saving past



experiences would be useful to change the reward structure and see how an already trained agent would

adapt to that change.

As I kept modifying the code and finding certain parts that I had not considered before, such as

making sure that the agent could not call bs right after the scripted player called “bs”. If there are 0 cards

in the stack (since in BS someone has to take the cards after “bs” is called) and the agent has to put a card

down, then there is no reason for “bs” to be considered. I made it so that the agent and scripted player

disregarded actions with “bs'' if “bs” had been called in the previous turn. While there is a small chance

the agent would use “bs” as its 4 actions (shown in method), the chances of that were unlikely, and if the

agent did so then it would be detrimental since the agent would not be able to get rid of any of its cards.

Changing the reward structure changed what the agent would focus on, such as giving a bigger reward for

calling bs or losing bs could change how the agent called bs and how it tried to avoid it being called on

the agent. By changing parts of the code and considering certain limitations of how the code worked at the

moment, the results the agent gave varied significantly. Just because the game with the user (when a

human could type the cards in) vs. the scripted player worked correctly, did not mean that as the

environment was reset and the agent and scripted players played each other automatically there would not

be other difficulties. With further modifications, Figure 4 showed an agent who appeared to be learning

against just an agent who could say “bs”. The rewards would increase and decrease over certain time

intervals, although the durations would stay at 500 or 1000 because the code would not let the agent put



all its cards down . Figure 5 was similar to Figure 4, but Figure 5 had more variety in how the agent

learned, and it included an important fix - making sure the agent could reach 0 cards. While this fix seems

influential, the difference between Figure 5 and Figure 4 is not apparent. After getting results from figure

5 I double checked if the cards were counted correctly in the end, and I found that they were not. Figure 6

includes the fix of having the cards counted correctly. Part of the reason the past figures showed the agent

reaching the max amount of timesteps was because the agent’s cards did not add to 0 when they should

have, leading it to be impossible to end the game without reaching the full amount of timesteps (either

500 or 1000 depending on the figure). Figure 6 has two parts, one with the agent training 3e6 timesteps,

and 3e5 timesteps. The 3e6 graph shows the agent stabilizing the reward and duration of the game it

plays, but the figure also shows too long of a time interval. Then I trained the agent on 3e5 timesteps, and

the graph shows how rewards increase and the duration of the game decreases, with some of the rewards

decreasing as the durations of the games reach a lower number. Figure 6 shows the agent learning,

because over time the agent adapts and tries to get more rewards while decreasing the length of the

games.

I am not aware of another BS game that someone else has made and trained an AI with that I

could compare my results to, which poses as a limitation to comparing if Figure 4 (observation space 1)

and Figure 7 and 8 (observation space 2) shows an agent who plays the game well, or just an agent that

learned to improve its initial and put down cards. While I don’t know how well the agent actually played,



the results do show that the agent’s performance got better over time and that it learned positive actions in

Figure 4, and it was able to keep a constant amount of cards in Figure 6. I decided to keep Figures from

code that would later be modified to show how AI learns on tasks regardless of logic issues in the game.

The different observation spaces also show how an agent is able to adapt to seeing different parts of the

game, and how that changes how the agent plays and learns over time.

CONCLUSION AND FUTURE DIRECTION:

Games such as BS are important because they show incomplete actions, there are not a lot of

games with partial observability that have been trained before. There are people working to solve

problems with incomplete actions, or learning with multiple agents to solve complex tasks or games(

Canese Lorenzo et al 2021, Gmytrasiewicz, P. J., & Doshi, P. 2005). While two player BS is not a

complex game, it provides insight to how an agent can use partial observability and learn even when not

all actions are visible. I hope that my bs game can help others use incomplete actions and train an agent to

learn as well. I used approaches such as adding weights, changing reward network weights, and

described how I coded, tested, and chose my game. I hope those approaches can be useful to someone else

wanting to train an incomplete information game. While Poker was a breakthrough, its principles were

not necessarily able to be directly applied to other games, and similarly, parts of BS might not be

applicable to other situations. Since each game is unique, BS might be an outlier. Also the results do not



show that the agent learns well, rather that the agent learns to put down cards, and can learn to match and

put down the same amount of cards as the scripted player.

The results show that an agent can learn and improve on a game with incomplete actions or

observability. Even though observation space 1 offered a lot of information, it did not provide how many

cards the agent itself, the game, or the opponent had, leading to some lack of information as well.

Observation space 2 does not show the individual cards the opponent has, or the individual cards in the

stack, leading the agent to learn from more missing information than observation space one. The results

show that an agent can even improve if the code is not functioning as desired, and how tests over time and

improvements over time can lead to different outcomes and graphs. Future work would include changing

the reward function more to see if the agent learns better when given other rewards, visualizing the game

to see what the agent does step by step (to make a model and run through the agent's logic). I would like

to try combining different weights, and reward structures, to make an agent who puts down all its cards

against the scripted agent and one who plays “bs'” efficiently. It would be desirable to develop

mathematical models of how a BS game should be optimally solved. This would allow comparing results

of a specific learning algorithm to what is known from theoretical analysis of the game. Also, it would be

good to develop models of how different playing styles will be affected by an agent's observation space.

Also, different algorithms can be compared and researched similarly to how (Samsuden et. al 2019) used



and graphed different algorithms to see how well they performed. Overall, I’m really happy to have made

a BS game that I can use an AI agent to learn and improve in.

SIGNIFICANT ACHIEVEMENT:

When I saw that the agent would have the same amount of cards as the scripted player, I thought

that my code had a mistake. Maybe it was printing out the initial start states? I’m still not fully sure why

the agent was matching the amount of cards it had, but it is logical - having 21 cards vs. 21 cards gets the

same end reward as 1 card vs. 40, so maybe it learned to just match the amount of cards the opponent has

(maybe that was easiest). Through my approach I was able to see interesting situations in which the agent

learned logical behaviors that I had not previously considered.
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