
Using Clustered Random Samples to Find

Spurious Correlations in Neural Networks

Henry Tischler, Jenifer Hooten (Sponsoring Teacher)

The Academy for Technology and the Classics

April 10, 2024

Abstract

Neural networks are known to frequently learn from spurious correla-

tions within their training dataset, a property known as shortcut learning.

I propose a novel algorithm that tests a neural network-based classifier on

a large number of samples seemingly unrelated to the data on which it was

originally trained and then attempts to find groupings in the latent space

amongst the samples classified into any given group. Through this, the

network’s spurious correlations could, in theory, be quantified as regions

within this latent space, and ultimately become known.

On an experimental dataset of EMNIST digits colored by class used to

train a neural network classifier, and a dataset of solid colored images to

find this spurious correlation, the proposed algorithm was able to achieve

an average 68.8% probability of belonging for each sample in the clusters

it creates (as determined by the classifier network). Although this aver-

age probability is likely not significant enough for the proposed algorithm

to be practically useful in its present form, the significance of its clus-

tering suggests that the proposed algorithm and its potential variations

have strong potential as tools for finding spurious correlations in neural

networks.

1



1 Introduction

A neural network can be conceptualized as a ”black box”. While the neural net-

work can learn complex and cognitively intense tasks, their complex architecture

obscures the exact nature of how they make their decisions [5].

Additionally, those training neural networks are often faced with a problem

known as ”shortcut learning”. Essentially, if your training dataset has a hidden

pattern within it - which correlates given input samples with given outputs -

the neural network may learn this pattern, which is often a ”shortcut” towards

the true reasoning one wants a neural network to learn [2] [6].

Shortcut learning can often be difficult to identify because of the impracti-

cality of ascertaining the characteristics of the input data your model is making

decisions based on. In this paper, I propose a novel approach to identifying and

classifying the criteria that a neural network uses to make its decisions, based on

feeding the neural network large amounts of theoretically uncorrelated data and

then analyzing the similarities between each individual item predicted - theoret-

ically arbitrarily - into any given group. Additionally, this novel algorithm uses

a VAE (Variational Autoencoder), to reduce each item to a lower dimensional

space, from which different high-dimensional items can be compared - and thus

clustered - geometrically.

1.1 Past Approaches to Understanding Neural Network

Behavior

Of course, many techniques have been used in the past to identify how neural

networks make decisions.

Adversarial learning techniques, which aim to learn a pattern within a neural

network that can then be used to manipulate the neural network into making

false decisions, have been used in the past to find spurious correlations in neural

networks [7]. However, because these networks are based on finding highly

complex correlations that can be abused, these approaches often struggle when

being tasked to find more fundamental correlations.

2



Additionally, for spatial data, activation heatmaps can indicate where in an

image a network most strongly weights when making its decisions [3]. However,

for correlations that aren’t constrained to a single spatial region, activation

heatmaps can often struggle to generalize the correlation.

2 Novel Algorithm Architecture

The novel algorithm described in this paper consists of the following ”steps”:

1. Find a ”test dataset” of items which - theoretically - aren’t related to your

training data, though still contain the hidden pattern within your training

data.

2. Train a VAE (Variational Autoencoder) on this test dataset.

3. Run each item in the test dataset through the original neural network.

4. Cluster the test dataset - after being reduced by the VAE - though weight

these clusters towards each group that needs to be classified. These clus-

ters represent the correlations of the network.

2.1 The Test Dataset

The first part of this algorithm - finding a ”test dataset” - is a highly subjective

task and can change depending on the type of dataset being analyzed, and the

suspected correlations to inspect.

The fundamental requirement of the test dataset is that it - at some level -

contains the correlations that you hope to capture.

2.2 The VAE

The VAE [4] is a deep learning model that uses two neural networks trained

together - an encoder and a decoder - to reduce the dimensionality of data

given to it while still preserving the meaning of these images within the lower

dimensional space.

3



Because of this property, the algorithm is particularly useful for this project.

For items as high-dimensional as an image, it would be very difficult to try to

find similarities between different groups of these images.

However, after reducing these images to a lower-dimensional latent space,

valuable conclusions about the similarities of images can be drawn simply from

their geometric distance.

Additionally, while not used directly in this project, the VAE is also a gen-

erative tool - from these lower dimensionality embeddings, you can generate

accurate reconstructions of the item itself - which makes the VAE a particularly

useful tool if trying to identify what exactly the spurious correlations identified

by this algorithm qualitatively mean.

2.3 Applying the test dataset to the neural network

To find patterns between the samples of the test dataset classified into their

different groups I, of course, need to run each item through the neural network,

and classify each image.

The main consideration with this step is that by using the sigmoid activation

function, I am able to get the results of the neural network as probabilities -

which allows the importance of each sample to be attenuated by the significance

the model attaches to it’s own predictions.

2.4 Clustering

The final output of this algorithm is several clusters across the latent space.

These clusters are - ideally - representations of the latent criteria that a neural

network uses to make its decisions.

To form these clusters, I took a simple K-means cluster across the whole

dataset for each class but weighted it to the square of each probability that an

item belongs to that given class, according to the neural network.

4



3 Novel Algorithm Testing

3.1 Simulated Spurious Correlation

To test this novel algorithm, I, of course, need to simulate some kind of spurious

correlation within our neural network.

To achieve this, I trained a neural network to classify images from the

EMNINST dataset [1] as either 0 or 1, though colored each 0 green and each

1 blue. An example of two images from this dataset can be seen in Figure 1.

Because of this correlation between color and the class of the digit, the neural

network only learned how to classify these digits by analyzing their color.

The spurious correlation of the model was validated experimentally, with a

neural network trained with this dataset achieving a 100% rate of accuracy on

the colored dataset after only one epoch, though only a 53% rate of accuracy

between the digits in a monochrome dataset. 1

Figure 1: Two examples from this dataset. Each zero was colored green, and

each one was colored blue.

1Both accuracy metrics were taken from a validation dataset.

5



Figure 2: Two randomly colored images, like the ones put in the actual test

dataset used during experimentation.

3.2 The Test Dataset

For the simulated correlation to be identified, I needed a test dataset that con-

tained the spurious correlation I hoped to identify. To achieve this - and as a

minimum viable example to test this model architecture on - I used a dataset

of solid-colored images. Examples of these can be seen in Figure 2.

3.3 Average Cluster Probability

The final output of this algorithm is several clusters, each of which is supposed

to represent an area within the latent space that represents the characteristics

that will result in an image being classified into a certain class by the neural

network.

The success of the algorithm proposed in this paper is ultimately a result

of how homogeneous the clusters within the latent space are, regarding their

belonging to a certain class, according to the neural network.

For instance, if you imagine the algorithm working perfectly on the neural

network used for testing, you would have two clusters within the latent space,

each of which only contains samples that the neural network strongly believes

belong to a certain class.

6



Conversely, if the algorithm didn’t work at all, you would have two clusters

within the latent space that have no homogeneity between the neural network’s

classifications, with the assignments being entirely random.

To measure this effect quantitatively, the final success of the algorithm pro-

posed in this paper is ”average cluster probability”, which is the average prob-

ability, across both clusters, that the neural network gives each item belonging

to the cluster it lies within.

3.4 Plots Within Latent Space

Figure 3: A scatterplot of the embeddings given to the test dataset of colored

squares, and their classification probabilities.

From this experimental task, I was able to create the following scatterplots,

visually representing the test dataset of solid-colored images mapped onto a 2d

latent space.

In both Figures 3 and 4, each point represents an image from the test dataset

mapped onto two dimensions. However, in Figure 3 each point is colored based

on the classification given by the neural network, while in Figure 4, each point

is colored based on the assigned cluster.

From these plots, it can be seen that while the methods of clustering used are

7



Figure 4: A scatterplot of the clustering done from the former set of embeddings

and classifications.

far from perfect, there is a definite distinction in the latent space between sam-

ples classified into each group - a spatial distinction necessary for this algorithm

to work.

4 Performance of Novel Algorithm

For each dimensionality level (of the VAE’s encoded data) tested, the steps

described in section 3 were repeated 5 times. The results of this across 4 different

levels of dimensionality can be seen in Table 1.

Table 1: The final ”average cluster accuracies” across several levels of dimen-

sionality

2 Dimensions 3 Dimensions 5 Dimensions 10 Dimensions

Average Cluster Probability 52.7% 68.8% 63.4% 63.4%

Standard Deviation 14.7% 5.46% 5.52% 9.63%

8



4.1 Conclusions

Based on the relative success achieved by the proposed algorithm, it’s shown that

the approach proposed in this paper does - to a significant degree - work, and

our algorithm can find areas in the latent space the neural network is classifying

from.

However, the relatively low level of average cluster probability, especially

given the very simple test case, suggests that the proposed algorithm needs

further refinement to be practically useful.

In particular, the drastic difference in accuracy between the number of la-

tent dimensions suggests that the variational autoencoder - and its inherent

stochasticity - may be a limiting factor for this algorithm.

References

[1] Gregory Cohen et al. EMNIST: an extension of MNIST to handwritten

letters. 2017. arXiv: 1702.05373 [cs.CV].

[2] Robert Geirhos et al. “Shortcut learning in deep neural networks”. In:

Nature Machine Intelligence 2.11 (Nov. 2020), pp. 665–673. issn: 2522-

5839. doi: 10.1038/s42256-020-00257-z. url: http://dx.doi.org/10.

1038/s42256-020-00257-z.

[3] Ramprasaath R. Selvaraju et al. “Grad-CAM: Visual Explanations from

Deep Networks via Gradient-Based Localization”. In: International Journal

of Computer Vision 128.2 (Oct. 2019), pp. 336–359. issn: 1573-1405. doi:

10.1007/s11263-019-01228-7. url: http://dx.doi.org/10.1007/

s11263-019-01228-7.

[4] Ava Soleimany. ”MIT 6.S191: Deep Generative Modeling”. Massachusetts

Institute of Technology. url: https://www.youtube.com/watch?v=

QcLlc9lj2hk&list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI&index=6.

9



[5] Hamed Taherdoost. “Deep Learning and Neural Networks: Decision-Making

Implications”. In: Symmetry 15.9 (2023). issn: 2073-8994. doi: 10.3390/

sym15091723. url: https://www.mdpi.com/2073-8994/15/9/1723.

[6] John R. Zech et al. “Variable generalization performance of a deep learning

model to detect pneumonia in chest radiographs: A cross-sectional study”.

In: PLOS Medicine 15.11 (Nov. 2018), pp. 1–17. doi: 10.1371/journal.

pmed.1002683. url: https://doi.org/10.1371/journal.pmed.1002683.

[7] Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell. Mitigating Un-

wanted Biases with Adversarial Learning. 2018. arXiv: 1801.07593 [cs.LG].

A Software, Materials, and Resources Used

All code for this project was run via Google Colaboratory, on a T4 GPU in-

stance. All deep learning code was implemented via TensorFlow, and the EM-

NIST dataset was used to provide a minimal viable test case for the proposed

algorithm.

B Experiment Code

There are two versions of the experiment code for this project. The first version

- which was only used to produce Figures 3 and 4 - implements the algorithm de-

scribed in this paper and tests it once, with a single level of dimensionality. This

code can be viewed in the following Google Colab notebook: https://colab.

research.google.com/drive/1FTGRs-3IvW9vlPSZanOKO1IUsV3U1veA?usp=sharing

The second version was used to produce the final data for the project, and,

while far less organized, represents the true code used for the final data of the

experiment, across multiple trials and levels of dimensionality. The code can

be viewed in the following Google Colab notebook: https://colab.research.

google.com/drive/1fuzwOF32Cu7S0ivjZAi98YmLBc3i8Qk4?usp=sharing

10



C Acknowledgment of Assistance

I’m deeply grateful to the supercomputing challenge and my sponsoring teacher

for both the facilitation of the challenge itself and of my project, along with the

feedback, criticism, and ideas - technical and otherwise - I was able to use to

improve my project.

11


