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 Abstract 

The efficient and versatile reconstruction of the surface of point clouds remains a notable 

problem throughout computer science, physics, robotics, engineering, and other related 

fields. Many current methods struggle with noisy data, uneven density distribution, and 

discontinuities. This paper proposes a solution that uses a level-set-based method 

integrated with a linearized sparse octree, neighboring node caching, a min-heap binary 

tree, and surface tension simulation to parse large datasets to reconstruct point clouds as 

watertight meshes. A basic prototype in Python 3 validated the utility of this approach 

and provided a foundation on which to construct optimizations. Translations into C++ 17 

and Rust implemented these additional concepts and demonstrated notable performance 

improvements over previous iterations. 

 

1. Introduction 

Point clouds are essential tools for countless fields and applications, including medicine, protein 

synthesis, robotics, computer graphics, video games, geology, lidar, 3D scans, and more. They 

provide a versatile and unique way to store many types of data and allow for novel algorithms. 

However, due to their unstructured nature, they have limited direct utility. Many applications 

require well-defined discrete surface topology, often as polygonal meshes, which point clouds 

cannot provide. Extracting the isosurface offers a solution and bridges this gap, extending its 

utility. 

Many existing solutions utilize a wide range of methods and techniques. However, many 

of these have limitations, such as difficulty extracting the isosurface from noisy, incomplete, and 
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discontinuous data sets. Point clouds are often structureless and highly variable, making it 

challenging to form generalizations and find easy solutions. Additionally, specific applications 

require quick processing of point cloud data for real-time applications. 

Point clouds can range from a few hundred points to sometimes over a billion, further 

complicating the matter. Creating a versatile algorithm to handle this extensive range of data and 

inconsistent and missing information proves challenging. Any solution has to balance 

performance and memory consumption, as these data sets can reach many gigabytes in size. 

This paper proposes an optimized hybrid level-set-based method to help combat these 

problems. The method takes in an arbitrary point cloud and returns a watertight discrete mesh. 

Additionally, it is relatively versatile and can handle any number of points, from one to millions. 

Unless cited otherwise, all of the work and code created in this project was done by Andrew 

Morgan for the 2025 NM Supercomputing Challenge. 

Section 2 discusses   multiple approaches to this problem. Section 3 follows, breaking 

down the steps in the pipeline of the proposed solution. Then, Section 4 explores data structure 

optimizations, specifically a sparse, linearized, adaptive octree. Section 5 discusses the program's 

results and validates this approach's effectiveness. Section 6 summarizes the findings for the 

proposed method. 

 

1.1 Background Information 

A quick summary of some background information regarding a few topics mentioned may help 

in understanding some of the content of this paper. 

 1. A tree data structure is a structure that starts with a root node. Then, successively, each 

node starting at that root has a set number of children which may be filled, slowly branching 

outwards like how the branches of a tree start as one, and over time branch outwards with each 

branch having its own branches. 
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 2. A perfect binary tree structure is a tree data structure where all branches get fully filled 

out and progress to the same depth. An imperfect tree would have branches that terminate early 

or don’t have all their children. See [1] from GeeksforGeeks for further information. 

 3. Point clouds are an arbitrarily sized collection of unordered points; they often 

collectively represent a larger object or structure. 

 4. Hashes or hash codes refer to a unique index or value resulting from a given input. 

Some hashes are random, and others are structured. Hashes are fixed-size and often satisfy 

certain conditions that the former data couldn’t. For example, converting a string into an 

unsigned integer using a hashing algorithm would allow the value to act as an index within an 

array. 

 5. Data structures refer to varying methods of storing memory as well as the associations 

one piece of memory has to another within the collection. Grids are single or multi-dimensional 

arrays representing a rectangular area in the form of evenly sized and spaced boxes. 

Two-dimensional grids are also called matrices. 

 7. Vectors are a continuous array with a dynamic size that never has holes in the middle 

(often called lists). Removing and adding items to the center or start does reduce performance, 

though; any values beyond it get shifted in memory to make room or fill in a void, resulting in a 

large amount of memory movement. 

 

2. Related Work 

Many solutions exist for surface reconstruction, with varying strengths and weaknesses. Some 

more traditional methods, like marching cubes, require a structured scalar field. However, the 

marching cubes algorithm is still practical as an intermediate step in a more extensive process; 

marching cubes standing alone is valuable in many other contexts involving more structured 

data. Other traditional algorithms, such as Delaunay triangulation, require structured data and 

can be very slow on large data sets. Requiring structured data presents a complication, as many 
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point clouds don’t have an explicit structuring or order. However, this doesn’t mean these 

methods don’t have utility, as they’re still widely used and play a key role in many areas. 

 Some newer approaches leverage artificial intelligence (AI) based methods, although 

they, too, have their strengths and weaknesses. High frequency, fine-tuned details, and more 

complex topology are intricate to capture with AIs. AIs often excel in a specific area, although 

they struggle in others. Additionally, AIs require extensive data sets, which, combined with the 

already significant size, complexity, and scale of point clouds, leads to high computational cost 

and time complexity. Furthermore, training an AI on complex surface topology proves 

challenging as there are countless variations and a lack of structure or unified patterns between 

or inside data sets. These factors limit the adaptability and generalization of AI implementations, 

making them fall short of the overarching goal of this project. 

 There are many other miscellaneous solutions, although this project focuses on level-set 

methods. Level-set-based methods rely on mathematically extracting the isosurface level through 

various means. Many implementations utilize signed distance fields (SDFs) to represent the point 

cloud. SDFs are often much more structured, even with an adaptive data structure (for example, 

an octree or kd-tree), allowing for more traditional methods, such as marching cubes or dual 

contouring, to be combined into a systematic pipeline. In other words, utilizing SDFs in 

conjunction with other techniques allows for hybrid methods, balancing accuracy, performance, 

memory consumption, and adaptability. This adaptability while maintaining reasonable 

performance makes a hybrid level-set-based method well-suited for the project’s goal. 

 

3. Signed Distance Field Representation 

While point clouds may be highly variable, the signed distance to the nearest point at any given 

position has much more structure. A primitive way to choose which points to sample the signed 

distance is to create a 3D array with known bounds and positioning. This primitive solution is the 

exact approach taken for the prototype in Python 3. However, it has inherent flaws. 

 Because arrays are a fixed size and spacing, areas of low detail (i.e., very few or no 

points) require the same amount of memory allocation as an area with lots of detail. Additionally, 
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when computing the signed distance, low-detail regions will receive the same computation time 

and resources as those of high detail. Additionally, areas of low detail, which don’t need a lot of 

expensive computation or significant memory allocation, receive a large portion of the available 

resources. The over-allocation of resources in low detail areas also takes away critical 

computation and memory necessary to evaluate complex topology regions accurately. 

 However, using an adaptive octree data structure can fix this issue. While octrees are far 

more complex than traditional grids, the implementation mentioned in this paper adaptively 

subdivides the structure in areas of high and complex detail while giving sparse areas more 

limited representation. This data structure, for one, saves a lot of memory. In a simple test case, it 

consumed nearly 29,000% less memory when storing just the signed distances (from 8MB down 

to 30KB for a basic grid of 64-bit floats, not including additional information on the actual 

structure). The benefit of the octree is further compounded because there are fewer nodes or 

points at which to sample the signed distance, and less computation is needed overall. This 

reduction in computation and memory allows for increased resources in more complex and 

intricate point cloud sections, resulting in greater detail and precision. More depth on this octree 

implementation and other data structures are in Section 4. 

 There is one issue with this current method. A known surface contour is necessary to 

create a signed distance field (SDF) instead of a regular distance field. Constructing an unsigned 

distance field from the point cloud instead of an SDF alleviates this problem. After this, an 

algorithm determines which sections are solid and which are hollow. A shell around the surface 

is then created by generating the exterior edges of the part(s). Because this shell is solid, the 

known surface contour allows for calculating a proper SDF. This pipeline process is broken 

down further in Section 3.1. 

 

3.1 Signed Distance Pipeline 

One inherent issue in generating a signed distance field, as discussed in Section 3, is that a 

known surface contour is necessary to get the signed part of an SDF. The solution is to break the 
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process into four steps: calculating an unsigned distance field, signs, solid edges, and finally, 

computing the complete SDF. 

 The initial step of creating an unsigned distance field is relatively trivial. The process 

involves looping over every node or grid cell in a given data structure and performing a nearest 

neighbor search on the point cloud (calculating the minimum distance to the nearest point). 

However, some complexity arises when optimizing and executing the search on an octree. 

Section 4.1 details the implementation of the nearest neighbor search on an octree. 

 A more straightforward optimized solution for a fixed grid is a chunking system, also 

referred to as hashing. The process relies on grouping all the points into unique vectors or arrays 

based on their local position. A good example is how the game Minecraft divides the world into 

16x16 chunks. These chunks allow for a smaller, localized search to expand as needed to find the 

nearest point. Creating a smaller search radius improves performance by looking over fewer 

points in any given search. Implementing this solution in the prototype script in Python 3 gave 

decent performance gains, considering the reduced complexity compared to other algorithms. 

 Step two calculates the signs for the unsigned distance field using a novel algorithm. The 

algorithm calculates every grid cell by repeating the following set of 4 steps. (1) The initial step 

is to loop over all 1D slices facing a single axis and step through each cell one by one. (2) At 

each marched step through a given slice, check the unsigned distance; if the distance is less than 

the isosurface level, continue stepping along until the distance is greater than or equal to the 

isosurface level. (3) If the grid cell in the corresponding array for storing signs contains a filled 

point, save the current tracking sign as that sign and continue along; otherwise, flip the tracking 

sign and fill the entire region between the boundaries created by the isosurface and unsigned 

distance field with that sign. (4) Repeat these steps until every slice finishes its calculation. Like 

previous algorithms, octrees cause complications and require modifications to the underlying 

algorithm; Section 4.1 goes into these necessary modifications. 

 Step three involves calculating a shell around any object’s exterior edges (in other words, 

voxelizing the distance field of the point cloud). Similar to the first step, the process is relatively 

simple. The primary step is to go through every grid cell or node and check a few conditions: if a 
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hollow point is directly adjacent to the cell or node (diagonals don’t count) and the current 

position is solid, add a new surface point. 

 The final step builds upon the previous step to generate the final SDF. Similar to the first 

step, start by going through every point and calculating the unsigned distance. However, this 

time, use the surface shell rather than the point cloud to calculate the unsigned distance. After 

getting the distance, check the sign at the given node or grid cell position; if the sign indicates 

it’s solid or the original unsigned distance is less than the isosurface level, flip the sign of the 

current distance. This final step concludes the calculation of a proper SDF, allowing a 

continuation in the larger pipeline. 

 

3.2 Surface Tension Simulation 

Due to the nature of the SDF generation, natural surface ungulations occur in the reconstructed 

part. However, a scalar field surface tension simulation solves this problem by smoothing higher 

frequency bumps on the surface; this method also preserves a lot of lower frequency bumps, 

although it won’t work as well on every application. [2] breaks down the math behind the surface 

tension method. The surface tension simulation works by finding the curvature of the surface and 

raising the troughs while dropping the peaks. A summary of the math from [2] is as follows: 

 The first Equation (1) solves for the level set field while applying a front velocity of F. ɸ 

represents the level set field. i, j, k represent the position, and they can also represent the index 

within the grid. t represents time. 

                 (1) 
ϕ
𝑖,𝑗,𝑘
𝑛+1−ϕ

𝑖,𝑗,𝑘
𝑛

∆𝑡 = 𝑚𝑎𝑥(𝐹, 0)∇
𝑖,𝑗,𝑘
+ + 𝑚𝑖𝑛(𝐹, 0)∇

𝑖,𝑗,𝑘
−

Where: 

 ∇
𝑖,𝑗,𝑘
+ = [𝑚𝑎𝑥(𝐷−𝑥ϕ, 0)

2
+ 𝑚𝑖𝑛(𝐷+𝑥ϕ, 0)

2
+...
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... 𝑚𝑎𝑥(𝐷−𝑦ϕ, 0)
2
+ 𝑚𝑖𝑛(𝐷+𝑦ϕ, 0)

2
+...

 ... 𝑚𝑎𝑥(𝐷−𝑧ϕ, 0)
2
+ 𝑚𝑖𝑛(𝐷+𝑧ϕ, 0)

2
]

1
2

 ∇
𝑖,𝑗,𝑘
− = [𝑚𝑖𝑛(𝐷−𝑥ϕ, 0)

2
+ 𝑚𝑎𝑥(𝐷+𝑥ϕ, 0)

2
+...

... 𝑚𝑖𝑛(𝐷−𝑦ϕ, 0)
2
+ 𝑚𝑎𝑥(𝐷+𝑦ϕ, 0)

2
+...

 ... 𝑚𝑖𝑛(𝐷−𝑧ϕ, 0)
2
+ 𝑚𝑎𝑥(𝐷+𝑧ϕ, 0)

2
]

1
2

D-x refers to the backwards finite difference operation in the x direction. Dx refers to the forwards 

finite difference operation in the x direction. This applies to all three dimensions – x, y, and z. V 

is a constant representing a constant velocity inwards or outwards; it can either keep the object’s 

size or shrink or expand the object depending on its value. F is defined as the front velocity and 

equals: 

 𝐹 = 𝑉 − κ

V is a constant that moves the level set field in the normal direction. Kappa is the curvature of 

the front: 

 κ = ∇ • ∇ϕ
∇ϕ| |

The second term equates to the surface normal. Multiple iterations each solve these equations 

and adjust the scalar field, smoothing it over time. The more time steps (while shrinking the time 

duration), the better the results. Some parameters can lead to instability and undesired results if 

not correctly set. 

 

8 



A. Morgan – Point Cloud Surface Reconstruction 

3.3 Isosurface Extraction 

Signed distance fields are the first step to reconstructing the surface of a point cloud. However, 

an intermediary step is necessary to provide a more discrete representation. Some traditional 

reconstruction algorithms, like marching cubes and dual contouring, become useful here. The 

previous year’s submission, which implemented marching cubes, acted as an initial solution for 

the Python 3 prototype and basic C++ implementation. 

 However, complications arise when applying marching cubes to a more dynamic 

structure, like an octree. While many solutions exist, most create intersecting geometry, which 

can lead to inconsistencies in physics simulations and other applications, or have non-watertight 

gaps. A method that solves this, proposed in [3], not only creates watertight meshes but also does 

so efficiently and without modifying the underlying octree; in other words, the octree is 

unconstrained, allowing for optimizations tailored directly to point clouds. The method relies on 

constructing a set of edge trees and using them to properly align geometry to intersecting node 

boundaries when using a hybrid-dual contouring approach. Section 4.1 dives into the 

implementation a bit deeper. 

 

3.4 Hybrid Reconstruction Pipeline 

Combining these steps — unsigned distance field calculation (Section 3), calculating 

discontinuities and signs (Section 3.1), surface tension simulation (Section 3.2), and isosurface 

extraction (Section 3.3) — creates an efficient pipeline from a point cloud to a discrete polygonal 

mesh representing its approximate surface. 

 Each step serves a purpose in the greater pipeline. The first step is gathering a more 

useful and structured representation of the point cloud — this initial step contains multiple steps, 

which Section 3.1 breaks down. From there, the surface tension simulation can smooth any 

artifacts and unnatural surface undulations. Finally, extracting a level set of that final scalar field 

produces a discrete and water-tight polygonal mesh; this step produces an STL file, allowing 

seamless integration of the mesh into most commercial software along with many algorithms. 
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4. Octree Data Structures 

While this pipeline can create great results, it also consumes excessive resources from 

unnecessary computation and a massive memory footprint. A solution to this overconsumption 

of resources, albeit far more complex than a fixed 3D array, is to use an octree data structure 

instead. By dynamically subdividing the octree’s node structure — essentially just adding more 

children to create a deeper tree — in areas of high complexity and detail, the octree can represent 

sparse sections with limited memory and computation while also redirecting those resources to 

regions of higher topological complexity. 

 Like other tree-data structures, octrees have a root node but, from there, have exactly 

eight children, each of which are nodes capable of creating more children nodes to branch the 

tree further out. Each node represents a cube or rectangle, and each subdivision divides the 

parent bounding box into eight equally sized boxes. The leaf nodes, which represent the deepest 

nodes that have no children of their own, store a vector of indexes referencing which points in a 

static array, representing the point cloud, fit within their bounding box. One way to do this is to 

keep a constant address or pointer referencing the original array. Alternatively, when needed, 

provide a parameter for the point cloud in the methods of the octree structure in languages like 

Rust. By passing the point cloud in as a parameter, it keeps its ownership within its original 

scope, preventing ownership and borrowing errors. 

 To dynamically subdivide the octree, follow a set of 3 rules. (1) If the current depth has 

reached the maximum specified depth for the octree, push all point indexes within the bounding 

box into an array or vector for the current node, and then stop subdividing as it’s now a leaf 

node. (2) If there is either one or no points within the current node’s bounding box, turn the node 

into a leaf node; in other words, stop subdividing the particular node. (3) If there are multiple 

points within the node’s bounding box, which means the previous two rules weren’t satisfied, 

subdivide the current node into eight children nodes and continue the rule-set for each of those 

individual nodes. 
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 Just these steps alone can provide significant performance gains. However, there are 

other possible improvements. These other optimizations rely on linearizing the data structure. 

Linearizing an octree involves representing all the data in a single, contiguous array. This paper's 

linearization implementation involves utilizing an array where each element contains another 

array of eight integers. Each of those eight integers represents an index to that exact same array 

to act as a pointer to the node’s children. In the case of a leaf node, the eight indexes can either 

be replaced by null or by a value representing null; in the context of Rust, Some(index) 

represents standard indexes, while leaf nodes contain 8 None’s. This structuring provides an 

efficient way to follow the tree’s many branches and determine whether a node has children or is 

a leaf node. To store points in a leaf node, another array aligning with the original contains 

vectors to store references to points in the point cloud; an array with a predetermined size also 

works for representing the vector in memory. Utilizing that vector, adding a point is as easy as 

accessing the array at the index of the leaf node and pushing the points’ indexes in the point 

cloud to the vector. 

 This linearized design has a few notable advantages. The first benefit is that the octree’s 

data lines up contiguously in memory, allowing for more cache hits and quicker data fetches; 

cached information is also naturally aligned sequentially in increasing order, allowing for more 

efficient lookup algorithms, such as binary searches (also known as a bisect search). 

pub fn BinarySearch <T: Eq> (points: &Vec <T>, searchValue: &T) ->   

.    Option <T> { 
  let mut currentIndex: usize = 0; 
  let mut dividedSize = points.len(); 

  
  let mut halfWidth: usize; 

  // this could also be a loop; however, this prevents runaway code 
  for _ in 0..MAX_BINARY_SEARCH_ITERATIONS { 
    halfWidth = dividedSize / 2; 
    dividedSize -= halfWidth;  // splitting the bounding size 
    if let Some(middleValue) = points.get(currentIndex + halfWidth) { 
      if middleValue == searchValue { 
         return Some(currentIndex + halfWidth); 
      } if middleValue < searchValue { 

        // splitting the search 
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        currentIndex += halfWidth; 
      } 
    } 
  } None 
}  // Rust 

Mortan codes (Z-order curves) [4] are another useful and performant hashing technique 

involving bit manipulation to create unique codes for any position that maintain spatial locality 

(two neighboring points will have similar hash codes). Hash maps are sometimes useful due to 

some variability in the codes’ values. The algorithm works by taking three 32-bit numbers 

representing the three axes. The bits interweave, so every three bits contain a bit from the x, y, 

and z coordinates, creating the pattern: x1y1z1x2y2z2…. This results in a 96-bit unique hash, 

although Rust has 64-bit and 128-bit integers, so a larger number than the code is necessary. 

Because of the implementation within the octree, the code gets represented as an unsigned 

integer (this makes the final type a 128-bit unsigned integer or, in Rust, u128). 

pub fn GetMortonCode (&self, xi: u32, yi: u32, zi: u32) -> u128 { 
    let mut x = xi as u128; 
    x = (x | (x << 16)) & 0x030000FF;  // magic nums -> stackoverflow 
    x = (x | (x <<  8)) & 0x0300F00F;  // spacing the x bits out 
    x = (x | (x <<  4)) & 0x030C30C3;  // creates room for y, and z 
    x = (x | (x <<  2)) & 0x09249249; 
    //... the same as above for y and z 

    x | (y << 1) as u128 | (z << 2) as u128  // interweaving all bits 
}  // Rust 

Another performance gain occurs as accessing an array at an index is faster than chasing 

repeated pointers to other instances of nodes. This second point compounds with the previous 

ones and also alleviates the issue of slow neighboring node computation times; neighboring 

nodes are expensive to find and scale alongside the number of points and depth of the octree. 

This expensive calculation becomes problematic because the nearest neighbor search traverses 

the octree from node to node to identify nearby points while minimizing the search radius, and 

many neighboring nodes are needed to do this. Further compounding that issue, the nearest 

neighbor search must run for every node multiple times. However, because each node in the 

linearized structure is represented by a single integer index/identifier, another array that aligns 
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with every node’s index can store a vector containing the indexes to every neighboring node for 

that given node. While this caching system requires an expensive computation for every node to 

find all its neighbors upfront, it prevents the necessity of doing these computations many times 

during each search. In fact, with this caching method, traversing the octree is possible in constant 

time, regardless of the number of points or the octree's depth (the search algorithm runs in log n 

time due to incorporating additional algorithms beyond traversal). Implementing a similar 

caching system with a nonlinear structure would be incredibly difficult; any solution would still 

involve an expensive descent from pointer to pointer every single time a cache lookup happens. 

While challenging to implement, these two major optimizations provide significant performance 

gains, making them worthwhile. The specific implementation of the nearest neighbor query on 

an octree is very complex compared to chunk or grid-based methods. Section 4.2 details the 

exact implementation used in this paper. 

 

4.1 Octree Pipeline Integration 

While the octree provides notable improvements, other algorithms within the greater pipeline are 

inherently unable to handle the variability. The sign generation algorithm falls short here because 

it traverses line by line, row by row; however, octrees don’t have a perfectly aligned structure 

because of their adaptive structure. One solution is using a system where all nodes bounding the 

edges of the outline get pushed to a vector, and that vector acts as the starting point for further 

iterations; every iteration, the sign gets flipped, beginning at a point on the outside with a value 

of one representing hollow space. 

 The second issue falls within the surface tension algorithm. Octree-based scalar-field 

surface tension simulations are much more complex than their grid-based counterpart. The 

solutions go beyond the scope of this paper. Because of the complexity and scope, the surface 

tension simulation was discluded for the octree-optimized pipeline despite the notable 

improvements on lower resolution point clouds. 

 The final problem arises when reconstructing the surface of the scalar field. With a 

grid-based solution, marching cubes provided excellent results. However, Marching Cubes 
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doesn’t translate as well to an octree. A solution proposed by [3] uses a hybrid method stemming 

from dual contouring. The approach proposed in that paper took in an unconstrained octree and 

returned a water-tight mesh. Again, this solution goes a bit beyond the scope of this paper. The 

paper cited below [3] provides an excellent breakdown, though. 

 

4.2 Nearest Neighbor Query 

One of the more complex aspects of integrating the octree is the nearest neighbor search 

algorithm (related to voronoi cells). [5] proposes an elegant solution and inspired some 

optimizations. For this paper’s implementation, an expanding search radius provides the fastest 

results by pruning unnecessary data. However, finding the neighboring nodes to any given leaf 

node proves challenging. Additionally, searching for neighbors is too costly. A solution is to use 

a neighbor caching system; an array the length of the number of leaf nodes stores vectors 

containing the integer indexes of all neighboring nodes (discussed in Section 4). 

 From there, the solution is relatively trivial. Get all the neighbors starting at the node 

nearest to the sample position. Add all those neighbors to a priority queue (4.3) based on their 

distance to the query point. Then, for every iteration, pop the root node from the queue and 

continue. For every point encountered, keep track of the shortest distance. Finally, once the 

queue is empty or the shortest distance to the nearest node falls beyond the minimum distance 

found, return that minimum distance. 

 Locating the nearest leaf node to a given position is another challenge, though not nearly 

as complex. The first step is to force the query point into the bounding box of the octree using 

min and max. From there, start at the root node and iterate the number of times as the octree is 

deep. While iterating, keep track of the current node. The size of all nodes at a given depth is 

stored in a pre-computed array (1.0 / 2.0depth). Take the query point and find its distance from the 

node's base. From there, divide that difference's x, y, and z components by half the node’s size. 

Take the result and cast it to an integer of 0 or 1. Each node’s eight children have different offsets 

from the node’s base, which get stored in a constant order; using that known order, the current set 

of three integers allows for a reverse lookup of offsets to get the child’s index within the current 
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node. Repeat that until encountering either a leaf node or the maximum depth (which would also 

be a leaf node). Some algorithms may require tracking the path to the node for traversal up the 

tree; usually, this only requires the last calculated leaf node, resulting in a negligible memory 

size. 

 

4.3 Min-Heap Binary Trees 

Min-heap binary trees, also referred to as priority queues, are binary trees where the root node 

always contains the smallest value. The counterpart would be a max heap binary tree; however, 

in the context of this paper, it isn’t needed. Binary trees are similar to octrees. However, each 

node only has two children. GeeksforGeeks [6] provides a great article that breaks down binary 

heaps and inspired the implementation used in this paper. 

 The C++ standard library has a priority queue implementation that has min and max heap 

variants (the following is a min-heap binary tree, dictated by std::greater): 

std::priority_queue<double, std::vector<double>,                     

.    std::greater<double> > nodeQueue; 

 Some other languages’ standard libraries may include an implementation with varying 

performance and versatility. For a manual implementation, the following dictates a min-heap 

binary tree; max-heap trees would be the same except search for the maximum instead of the 

minimum value. Insertion, popping, and swapping are the most important methods for this binary 

tree. 

 Swapping. The backbone of the other two algorithms relies on swapping values to satisfy 

the tree’s rules: no value should be below a value greater than itself. When inspecting a node, 

look at the first branch; if the value is less than the current one, swap their values (ideally 

without altering the underlying data structure to reduce memory movement). Otherwise, check 

the right branch and do the same. If the condition fails for both branches, the value is in the 

correct position. Usually, this method gets called until the condition fails or the value reaches the 

bottom of the tree. This swapping method can also begin at the bottom of the tree and swap 

upwards to meet the condition until the parent is equal to or smaller than the current value. 
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 Insertion. The first step requires constructing a new node with the given value. This new 

node becomes a child for one of the leaf nodes. After that, the swapping method iteratively 

places the value into the proper position. 

pub fn Push (&mut self, value: (f64, usize)) {  ...  }  // Rust 

 Popping. The first step involves popping the root node and returning its value (and 

possibly co-value or index so it can reference additional information) – the root is always the 

smallest value. However, the binary tree requires a root node to function. The solution involves 

first removing one of the leaf nodes. From there, the leaf node replaces the root node. Then, the 

swapping method satisfies the conditions by swapping the root node downwards. 

pub fn Pop (&mut self) -> Option <(f64, usize)> {  ...  }  // Rust 

 One way to optimize the queue is to attempt to balance the tree in the form of a perfect 

binary tree (1.1). Because the tree repeatedly gets restructured, there isn’t always a perfect 

solution. The approximate solution explored in this paper relies on tracking the children of all 

leaf nodes. Two buffers are necessary to do this: one for future children below the maximum 

depth reached and one for the next deepest layer. The first buffer gets used when appending a 

new node; the final index of the first buffer represents the child, which receives the new value. 

After placing the value, the swapping method moves the value into position to satisfy the 

conditions. By having the two buffers, the tree will initially fill voids within the maximum depth 

of the tree before expanding the tree’s depth. The second buffer dumps its contents into the first 

when it becomes empty. Most of the complexity comes from maintaining both these buffers as 

the tree mutates. 

 

5. Validation 

A few different scenarios validated the effectiveness of 

the approach and implementation. The first method used 

mathematical equations to generate a point cloud around a 

known shape. After that, the reconstruction pipeline took                Figure 1. Hollow Fib. Sphere 

in the point cloud, and the results reasonably matched the inputted shape, as seen in Fig. 1. A 
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known geometric model further tested the pipeline—an obj file from the Stanford Bunny (Fig. 2) 

allowed for a known comparison while also containing points 

that, on their own, have no spatial connection to each other. 

Similar to the first test, the results aligned reasonably well with 

the test model   (Fig. 3). The 

specific Stanford Bunny 

model used had multiple 

holes in the surface geometry. 

However, the pipeline properly       Figure 2. Stanford Bunny 

filled those holes while maintaining a reasonable level of 

accuracy in the overall model. This specific test didn’t use 

surface tension smoothing. 

Figure 3. Reconstructed Bunny   The adaptive subdivision of 

the octree required rendering all corner points for every node 

to verify the structure and subdivision method. The corner 

points aligned with expectations, forming smaller nodes in 

regions of denser data while minimizing nodes in lighter areas 

(Fig. 4).                                                                                         Figure 4. Hollow Sphere1 Octree 

The following are examples of the holes before and after reconstruction: 
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5.1 Results 

All of the code and assets within this project are available on GitHub. The link is in Section 6.1. 

The point cloud data files (the program can load .pcd files, which are similar to .ply files that 

contain a slightly different header) used for reconstruction came from [7]. It provided a number 

of detailed point clouds, which were invaluable and allowed for excellent results. 

 Fig. 5 and Fig. 6 show the reconstruction of the Stanford Dragon. The reconstruction 

shows a decent improvement after running the surface tension simulation (Fig. 6). Additionally, 

the reconstructed model shows a decent handling of sharp corners (Fig. 7) and finer details (Fig. 

8) while also keeping small gaps separated correctly (Fig. 9). Note that the mesh is water-tight. 

 

 

 

 

 

 

Figure 5. Unsmoothed Dragon                                        Figure 6. Semi-Smoothed Dragon 

 

 

 

 

 

Figure 7. Sharp Claws                                                             Figure 8. Finer Face Features 
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The second result comes from the Egyptian mask [7]. 

The model contains a thin mask without a bottom. 

Additionally, the point cloud is somewhat noisy, 

complicating the reconstruction. Fig. 10 shows the 

reconstructed mesh, which handled the noisy data and 

gaps in the model well, only containing a few minor 

artifacts. Fig. 11 shows the bottom of the mask where 

the opening is along with the thinness of the 

Figure 9. Narrow Gaps                             mask (the mask should be fairly thin). 

 

 

 

 

 

 

Figure 10. Egyptian Mask Front                                     Figure 11. Bottom of the Mask 

The final point cloud is a 3D scanned vase [7]. Similar to the mask, the vase has thin walls and a 

hollow interior (the Stanford Bunny and Dragon both had solid interiors). Additionally, the vase 

has a couple of sharper corners, presenting a challenge that the algorithm handled well. 

 

 

 

 

 

19 



A. Morgan – Point Cloud Surface Reconstruction 

 

5.2 Versitility and Limitations 

The implementation covered has many strengths but also many weaknesses. Starting with the 

strengths, the algorithm can handle anywhere from a single point to millions – some other 

algorithms can’t handle such significant disparities in data sets. Additionally, the algorithm can 

perform well on noisy or incomplete data sets (as seen with the Stanford Bunny in Section 5). In 

addition, while computational parallelization hasn’t been implemented yet, many steps within the 

pipeline are well suited to run in parallel, which would provide significant performance 

improvements over the current results. 

 However, there are some limitations facing the current iteration of this project. The first 

is that the many steps in the pipeline each require allocated memory, and when combined, they 

result in a larger memory footprint than ideal; according to the activity monitor, mac’s version of 

task manager, the program was using upwards of 1.25GB of ram while running on a dataset of a 

quarter million points when not using an octree. Additionally, thin objects can get slightly 

thickened due to the SDF generation. Furthermore, because of the SDF generation, surface 

tension simulation, and Marching Cubes in the non-octree pipeline, sharp corners and 

higher-frequency data can sometimes get smoothed over if the resolution becomes too small 

relative to the data. Also, the pipeline as a whole isn’t running quite as efficiently as desired, and 

as such can’t be used in real-time applications – although, with additional improvements, there is 

potential for significant performance gains over the current iteration. Reconstruction speeds 

varied from 30 seconds to 45 minutes (from around 40,000 points to upwards of 500,000 on a 

high-resolution grid), depending on the version, optimizations, and parameters like grid size or 

the number of points in the point cloud. Note that all benchmarks were taken on an older Mac 

M1, so a more performant computer would likely provide better benchmarks. 
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6. Summary 

A hybrid level-set method provides a dynamic and versatile means to reconstruct the surface of 

arbitrary point clouds. Combinations of other algorithms expand that versatility and also offer 

greater performance while reducing the memory footprint. The first step of approximately 

voxelizing the point cloud provides a decent base to work from – some applications may only 

want the voxelized data and nothing beyond.  From there, the generation of a proper SDF allows 

for a smoother and more accurate representation of the object. Additionally, that SDF is 

compatible with the surface tension simulation, Marching Cubes, and other algorithms. 

 A surface tension simulation is one such algorithm, providing a smooth output that 

removes artifacts and surface ungulations formed from the nature of SDFs. Additionally, a 

seamless integration of the simulation into the greater pipeline is relatively trivial. 

 Sparse, linearized octrees prove promising, providing excellent performance and memory 

with the only tradeoff being the complexity. Caching neighboring cells utilizing the benefits of 

the linearization further improves the nearest neighbor search, which has to run many times. 

Min-heap binary trees can further optimize the search query, efficiently generating signed and 

unsigned distance fields. 

 

6.1 Final Remarks 

I would like to thank Nathaniel Morgan for helping me come up with the initial idea for this 

project. I would also like to thank him for helping me interpret some of the math involved in the 

surface tension simulation. 

 In addition, I would like to thank a group at LANL for allowing me to present my project 

and for providing feedback on everything. Their library, MATAR, was also very helpful by 

providing a memory-safe multi-dimensional array structure for C++ (in place of alternatives like 

std::shared_ptr, std::unique_ptr, or unsafe raw pointers). 

 All of the code and assets used within this project are on GitHub: 

https://github.com/AndrewDMorgan/Point-Cloud-Surface-Reconstruction. The code is 54% 
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C++, 29% Rust, and 17% Python 3. In total, all three program versions came out to a total of a 

little over 4,800 lines. Through development, prototyping, iteration, and revision, over 8,000 

lines were written, although much of that got refined and compressed over time. 
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