

You Only Look Once Machine Learning Solution to Orbital Debris Detection and

Classification

New Mexico

Supercomputing Challenge

Final Report

April 2, 2025

La Cueva High School

Team Members:

Hadwyn Link

Ximena Serna

Teacher:

Jeremy Jensen

Project Mentor:

Mario Serna

2

Table of Contents

Table of Contents... 2

Abstract...3

Introduction..4

The Problem...4

The Objective...5

Solution..6

Orbit Generation.. 6

Orbit Visualization...7

The Setup... 7

Optimization.. 8

Dataset Generation...10

Object Detection.. 10

The Structure of YOLO... 10

Attempts at Making a Custom Network.. 12

Training YOLOv5 Instead... 12

Results... 13

Conclusion...14

Acknowledgements.. 15

Works Cited.. 16

Links To Products.. 19

Graphs and Tables... 20

Graph of loss and precision during training.. 20

Confidence Curve.. 20

Precision-Recall Curve.. 21

Precision-Confidence Curve..21

Recall-Confidence Curve.. 22

3

Abstract

As the amount of debris in Low Earth Orbit (LEO) increases, satellites are more likely to

collide with it. Debris travels at such high speeds that even small debris colliding with a satellite

could cause catastrophic damage. As satellites are crucial to many important systems, it is

important to protect these satellites. The common methods of preventing collision are by either

removing the debris, forcing it to re-enter the atmosphere and burn up, or by maneuvering

satellites around debris to avoid it entirely. Additionally, it is important to be able to classify

objects in orbit to catalogue the type of debris. Classifying debris allows us to better determine

risk and which method of removal to use. However, both classifying and detecting debris are

extremely difficult with the current strategies. By using novel machine learning algorithms to

more efficiently analyze debris classes and orbits, we can vastly improve the performance of

satellite systems and debris removal protocols.

Recent studies pertaining to this field suggest trying You Only Look Once (YOLO), a

new type of machine learning. It is extremely fast at detecting objects and works much more

efficiently than any previous object detection models, making it more likely that it would work

on less powerful space hardware. Our goal was to find how effective YOLO is at classifying

debris in LEO.

Our solution was to create a simulation which can test YOLO’s ability to classify debris.

To do so, we generated over 14,000 orbits containing information such as position versus time.

With this information, we created a graphical simulation of the debris orbiting Earth. Then, we

procedurally took screenshots of the simulation and saved object classes and positions to a file.

After slight adjustment, the images were fed into the YOLO program for training, and once it

was fully trained we fed the simulation directly into the model to see how it would perform in a

real-time environment as opposed to still pictures.

The program finished its training with a very high percentage accuracy of classification.

The program had minimal difference between the different types of background in the images.

Our results support the conclusion that YOLO can classify debris accurately and can be

implemented for the purpose of addressing free floating debris in space. We encourage future

researchers to continue this course of study for possible space implantation.

4

Introduction

The Problem

In the past few decades, society has grown to rely on wireless internet, smart phones, and

instantaneous communication networks. Many of these commodities, however, rely on satellite

technology. With most of the modern world dependent on satellites in some way, it is important

to address problems that threaten their existence. By far the largest one is debris; these pieces of

residual payloads, broken satellite parts, and asteroids have begun

to litter Earth’s orbit on an unprecedented scale. As more satellites

are put in space, more debris is created: more payloads are left

over, and more old satellites are forgotten and broken down. A

piece of debris can reach a speed of 18,000 miles per hour, seven

times faster than the speed of a bullet. At that velocity, even a

collision between a flake of paint and a satellite could prove

catastrophic. The image to the left demonstrates the proportion size

between a piece of debris in Low Earth Orbit and its collision impact crater. A single collision

could easily decommission a satellite, as well as create more debris to worsen the problem.

Repairing damaged satellites costs tens of billions to hundreds of millions of dollars, especially

if it requires a human mission. Leaving them vulnerable jeopardizes every function they perform,

is a danger to society's way of life, and makes sustainability in space very precarious.

Current methods to detect debris are radar systems which can pinpoint locations of

nearby objects as well as contact with a ground-based tracking system with more heavy-duty

tools. Neither of these methods can directly determine what exactly the debris is but can collect

information such as material. However, in some cases this may not be enough to fully classify

the debris, and in the case of ground-based tracking it has a delay between data transfers and can

also be very expensive to operate the ground-based tracking systems. Another, newer option is to

stream images down from the satellite and perform object detection algorithms on earth.

However, streaming such a large amount of data from a satellite would be very expensive and

would have a large enough delay for the data to be outdated when it reaches the

satellite—remember, debris can move at up to 18,000 miles per hour.

Without information about the debris near a satellite in real time, there is little we can do

to reduce collisions. Solutions such as removing the debris, forcing their orbit to burn on reentry,

5

or having satellites maneuver around debris would all require information about the class and

location of the debris that would be necessary in order to determine which approach to use.

Clearly, another method is necessary to accurately and completely classify and detect debris with

attention to both cost and speed.

The Objective

Our proposed solution is to find a way of detecting and classifying pieces of debris with a

common type of artificial neural network: YOLO. First introduced by Joseph Redmon et al. in

2015, it is a quick and efficient object detection neural network. It has never been implemented

in space before but has been proposed for being more effective than current methods of detection

according to studies by Mahendrakar et al. and Ahamed et al. However, no previous studies have

suggested any ability of YOLO’s classification skills in space.

Classification of debris could help us understand the risk of each piece of debris, provide

information on the best way of removal, and gauge whether the debris would burn up in the

atmosphere during reentry. Providing this information would be valuable for addressing the

debris problem and is an area that has not yet been explored in YOLO’s abilities, thus addressing

a gap in scientific understanding.

YOLO sets itself apart from many other machine learning algorithms because it is the

most likely object detection model to work on current satellite hardware because of its speed and

relatively low resource requirements. Realistically, a surveying satellite does not have the time to

be able to detect and classify every object it sees. Instead, it has to be able to process the required

information before the object disappears. Speedy calculations will lead to a more efficient system

of surveying and give the satellite a greater amount of time to act and attempt to remove or avoid

the debris. Because LEO has the highest concentration of debris, our simulations have been

based on receiving its data from this altitude (2,000km or less). At the conclusion of this study,

our results should show how effective YOLO is at detecting and classifying debris in 7 classes:

Asteroid, Cube Satellite, Envisat, Voyager, Hubble, the ISS, and the SaturnV5 Rocket. These

classes include common objects seen in space along with specific, universally recognised objects

that would demonstrate YOLO’s ability to classify different types of objects such as Envisat,

Voyager etc.

6

By separating the project into two sections: generating the debris orbits, and creating and

training the YOLO program. We generated the debris orbits based on a dataset of real debris

orbits, which output individual characteristics of around

14,000 orbits and saved each orbit to a file. These

generated files, containing the position versus time of

each item of debris, were then converted into a real-time

graphical simulation of the debris, as shown in the image

to the left. The graphical simulation was adjusted to

demonstrate the vantage point of a LEO satellite.

Screenshots of the simulation from this vantage point were fed into the YOLO model for

training. Afterward, the YOLO was able to receive information live from the generated debris

visualization.

Solution

Orbit Generation

The debris orbits were generated

from a dataset obtained from Kaggle. The

dataset quantified one debris item per line

summing to a total of around 14,000 pieces

of tracked debris and 14,000 lines of data.

To describe each orbit, the dataset gave over

20 Kepler's characteristics along with name,

ID, country of origin, and date of creation

using a Comma Separated Value(CSV) file.

As the information may suggest, the debris

information was recorded from real debris in

space and does not contain randomly

generated numbers.

Kepler characteristics are values that

describe an orbit in a way that allows us to

derive specific information about its path.

For example, a characteristic could include

an object's closest and farthest point radius,

eccentricity, inclination off the xy plane and

‘w’ rotation away from the zy plane. Using

7

these values, the radius of the debris from

earth are given by where 𝑅 = 𝐴* (1−𝑒2)
1+𝑒*𝑐𝑜𝑠(𝑉)

‘A’ is the semi major axis, ‘e’ is the

eccentricity, and ‘V’ is the true anomaly

(angle from). A python program θ = 0

input the required values and calculated the

radius based on incrementing calculating θ,

one full orbit at

a time. This provided a basic outline of the

orbit’s position over an orbit. It was then

rotated off the xy, yz, and zx axis based on

the ‘w,’ ‘i,’ and the RA node. The rotation

matrix used for adjusting the orbits is given

by

 . This translates the 𝑅 =
𝑠𝑖𝑛θ 𝑐𝑜𝑠θ
𝑐𝑜𝑠θ −𝑠𝑖𝑛θ⎡⎢⎣

⎤⎥⎦
Kaggle orbits into the 3D path of the orbit.

After the piece of debris’ actual path

through space has been found, the time steps

need to be calculated. To do this, we used

the conservation of momentum, to 𝑃 = 𝑚𝑣

find the time between each calculated

position. The velocity was calculated by

subtracting the potential energy from the

total energy and solving for ‘v’. The

equation for total energy is given by

 , the potential energy at 𝐸
𝑡𝑜𝑡𝑎𝑙

=− 𝐺𝑀𝑚
2𝐴

the time of measurement is , 𝑈 =− 𝐺𝑀𝑚
𝑟

and the Kinetic energy is given by

 Using pythagorean theorem, 𝐾 = 1
2 𝑚𝑣2.

we calculated the distance between the said

measurement and used to find ∆𝑡 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
𝑣

the time. At the completion of finding each

time step, the information was saved to a

CSV file for further use. It is saved to the

format time since the start of orbit, x, y, z.

The python program repeated the process for

the rest of the debris, reading one more line

of the dataset and creating another debris

CSV file until every debris file was made.

Orbit Visualization

The Setup

 Each individual orbit is saved to a

CSV file, with each line containing

information about the x, y, and z coordinates

of the debris along with the time. There are

14,372 debris orbits in total, with two extra

files for the orbits of the Earth and moon.

The Sun orbits around the Earth for the sake

of not having to deal with massive

8

floating-point numbers causing precision

loss on satellite positions. Instead of a full

orbit it changes between 8 approximation

positions in a circle around the Earth. The

Earth also rotates around its axis on a

24-hour time interval. To keep the sun and

earth’s rotations synced up with the debris’

timescale, they use one of the orbit files to

determine the timescale being used, and then

take reference to the timestep while using

their own logic for positioning. Below is

what our simulation currently looks like.

The sun is not directly seen by the satellite

at its current angle, but it helps simulate the

day/night cycle.

For convenience, the simulation is

sped up significantly, and the xyz

coordinates of every orbit are decreased by a

scale of 256. This scaling down is necessary

because with 3D simulations such as Unity,

as a number gets larger the amount of

floating-point precision a number can hold

decreases. By scaling down the number we

get more decimal precision, and it is easier

to move around the environment during

testing. The earth and moon are scaled down

in size to match the coordinate shrinking, so

the simulation is an overall 1/256 scale

model of the Earth-Moon-Sun system.

 At runtime, a debris generator object

instantiates all 14,372 pieces of debris with

one of seven random debris models. Each

piece of debris is instantiated at a random

angle as well. The camera is attached to a

survey satellite in the same orbit zone as the

debris, and pointed directly towards the

Earth. The debris are scaled up to 100 times

their real world sizes to make it easier for

the low resolution images we are training

the neural network with to actually capture

the 3D models. This would not be as much

of a problem in a real-world situation

because the camera would take higher

resolution images that could capture

important features from further away.

Optimization

 14,372 pieces of debris is a lot to

simulate individually. Each piece must

update its position in almost every frame

and has a fairly dense 3D model attached to

it which also uses a significant amount of

computing power. On a RTX 3060 graphics

card and an intel i9 cpu, the simulation runs

at under 10 Frames Per Second(FPS)

without optimization. The simulation is

9

intended to run alongside a neural network

and must run at or near “real-time” (30-60

FPS) to be viable.

 To optimize the simulation without

compromising on the amount of debris,

everything the camera can’t see doesn’t need

to be fully simulated. We can do this by

checking if a debris item is past a certain

distance from the camera, and if it is we turn

its model off. By running this every time

when a piece of debris moves, we create a

“mask” around the camera where things are

visible, and hide everything else.

This saves some computational

power, but not enough to get a “real time”

frame rate. The main thing causing FPS to

drop is the number of times each debris item

changes position. Every piece of debris

updated its position every few milliseconds

or so. This meant the CPU was always

swamped with requests, making each frame

take longer to process. To fix this, we again

use the principle of not spending resources

on debris the camera cannot see. To do this,

we again need to know how far the debris is

from the camera. First, we have a script on

the debris that calculates each time it moves

how far away it is from the camera. Then,

we calculate an “optimization number”-a

number that the debris’ delta time and lines

skipped will be multiplied by, making its

motion choppier (but still following the

same path at roughly the same time) and less

computationally expensive. After trying a

few different methods, we settled on taking

‘e’ (Euler’s number) to the power of the

distance minus the radius around the camera

that we want the debris moving smoothly in

with a minimum value of one and a

maximum value of 45, rounded to the

nearest integer. Using this function means

we get a tight sphere around the camera

where everything moves smoothly, but after

that point the debris gets optimized quickly

(but not so much that the orbit becomes

completely unusable). By doing this, the

simulation can now run all 14,372 pieces of

debris simultaneously with a range of FPS

between 30-60. Another thing to note is that

the simulation is rendered at a resolution of

256x256, for two reasons: One reason is that

it makes the simulation run faster, and the

second reason is that it makes the neural

network faster to train and run. In a

real-world scenario the resolution would

10

need to be much larger than this, so there

would be some necessary loss in

performance past what we use in this project

in order to make the model work better in

space.

Dataset Generation

 With the simulation complete, the

dataset for the object detection model could

be generated. This is relatively easy with

Unity’s built in GUI functions: existing

functions can detect which objects are on

screen and where they are on screen (this

does not use machine learning, as Unity has

access to the 3D simulation and can figure

all of this out deterministically). We used

more GUI functions to draw the rectangles

on screen as a sanity check for the boxes

before we screenshot each frame of the

simulation and write the important

information such as class and bounding box

of each object to another CSV file (YOLO

uses the format center x, center y, width and

height for its bounding boxes). Below is an

example of one of these boxes and the sanity

check:

For the most part this gives relatively

good bounding boxes to use in training the

neural network. This code runs until each

object class has a certain number of

screenshots with it in the picture. We

generated 100 images per class as this is the

recommended minimum for such a model.

However, the format of the dataset

cannot be used with YOLO out of the box:

the standard format for YOLO requires a

multitude of text files containing object

information with one text file per image

rather than a CSV file with every image’s

data in it. We made this transition with a

single python script. We also divided each

value for the bounding box by the resolution

of 256 by 256 since YOLO works off of

screen ratio rather than pixels, and changed

the definition of the Y value on the image

from starting at the bottom, as Unity has it,

to starting at the top. After everything was in

the proper format, the YOLO object

detection model could be trained.

Object Detection

The Structure of YOLO

 YOLO stands for You Only Look

Once, and it is currently the most popular

11

neural network for object detection. There

are many different versions of YOLO,

ranging from the original YOLO to the most

recent YOLOv12 model. During this

challenge, we focused on YOLOv4 but

eventually switched to YOLOv5 after we

ran into a critical bug in our v4 code that

required us to switch over to v5 just in case

we couldn’t solve the bug in time.

 YOLO’s structure consists of three

parts: a backbone, a neck, and a head. The

backbone is a convolutional neural network

for object classification, and is the part that

actually determines what objects are in the

scene as well as a great deal of where they

are. A convolutional neural network

classifies objects using convolutional layers,

which extract various “features”, such as

closed circles or even something as

complicated as the contours of a face. Below

is an example of what these features and

feature extractors look like if visualized.

Typically, convolutional neural networks are

used to identify a single object in a picture

as a standalone neural network, but YOLO

modifies the network by essentially splitting

the given image into a grid that the

backbone classifies individually. This gives

the neck and head a starting approximation

of where each object is as well as what the

objects are. This is the largest part of the

neural network, and does most of the heavy

lifting.

 The neck is relatively small

compared to the backbone and head, but

serves as an important bridge of information

between the two. This section collects the

features that were extracted from the image

during the backbone section and sends this

information to the head. This is commonly

done with a Feature Pyramid Network

(FPN), which can aggregate features on

several layers of the backbone at different

scales (convolutional layers shrink the

image’s dimensions, creating vastly different

sizes of features). By feeding accurate data

into the head, the head works better and can

draw more accurate boxes.

 The head is where most of the output

of the neural network is put together. The

head takes the output from the neck and runs

it through a series of “YOLO layers” which

generate thousands of boxes. Each box has

its own confidence value representing how

confident YOLO is that there is an object in

the box and class prediction. The class

12

prediction is a list of confidence values

where the index of the highest value in the

list is the class it believes is in the box.

(Object types during computation are

represented by numbers.) YOLO outputs a

list of three separate tensors with these

boxes for low, medium, and high box size

based on the different scales the neck inputs

to the head. This ensures that regardless of

an object's proximity to the screen or

relative size, the neural network can still

pick up on it.

 However, YOLO’s output is

completely unfiltered and outputs thousands

of boxes that need to be sorted through to

find the best ones. This is done by the

second step of the algorithm, which is

separate from the neural network and

deterministically culls the low-confidence

boxes so that only the most accurate ones

remain. This turns thousands of useless

boxes into a select few usable boxes that are

much closer to the actual object’s position

and class.

Attempts at Making a Custom Network

 Our original idea was to make a

custom implementation of YOLO based on

researcher Wong Kin-Yiu’s Github

repository demonstrating YOLOv4’s

architecture in Pytorch. We coded this

implementation with a dataloader that would

have taken our original CSV file dataset

format, along with a more specialized

structure for our specific needs. The bulk of

the code was finished in late February, but

when we tried to train the model, the loss of

box accuracy plateaued at 0.3 (a very high

number) and the output was completely

unusable. Unfortunately, attempts to fix this

issue didn’t look promising, and after a

month of bug fixing we decided to switch to

a professional implementation of YOLO and

continue fixing the problem after we had

something working. Having to use a version

of YOLO we didn’t personally program and

customize was disappointing, but through

making our own implementation at the start

we were able to understand the structure of

the tool on a deeper level than if we had

started out with a premade model.

Training YOLOv5 Instead

 Since we already had a large amount

of experience getting our YOLOv4 set up,

getting YOLOv5 to train on our dataset was

13

simple. We switched the dataset from the

CSV file to a set of txt files so the dataloader

could read it, and added a .yaml

configuration file that would point towards

our dataset and the number and names of our

classes. After this, we loaded up a python

virtual environment to run 100 epochs of the

YOLOv5 nano model, which is the smallest

version of YOLO that is typically used. We

chose this version because it has the best

chance of running on current space

technology, while also being accurate

enough to pick up on all of the features it

needs to pick up.

 As seen above in one of the output

testing images, the model draws boxes over

each piece of debris it detects along with the

class it believes the object is. After it was

trained, we ran the neural network

simultaneously with the graphical simulation

and visualized the output much like the

above image. This worked extremely well,

even when the camera was looking at a

darker image like when it was nighttime. To

improve accuracy at a marginal increase of

computational stress, we could increase the

resolution and the number of classes.

However, we have not given up on fixing

YOLOv4. We will continue work on it after

the report is finished and try to get it fixed

for the expo.

Results

YOLOv5 ended its training with a

box loss of 0.278, an object loss of 0.016,

and a class loss of 0.007. Its ending

precision was slightly under 94%. If

necessary or if we wanted to add more

classes, we could train it for longer to get an

even more accurate model. The “nano”

model structure didn’t even need two

computers to run it in real-time as we

originally planned, and it could run easily

alongside the real-time graphical simulation

and a communication script that fed the

simulation’s window into the neural

network. Here is the YouTube video that

demonstrates the simulation and the

detection side by side:

https://www.youtube.com/watch?v=W5LQc

zcIe_4. While there is a slight delay in

https://www.youtube.com/watch?v=W5LQczcIe_4
https://www.youtube.com/watch?v=W5LQczcIe_4

14

presentation of the detection boxes and the

original simulation due to using python as a

visualizer of the boxes, the detection

algorithm ran at a much higher framerate

than the simulation, running at hundreds of

FPS and drawing accurate boxes around

debris. Additionally the simulation’s debris

and angle are randomly generated, so there

is little overlap between what the neural

network explicitly trained on and the

material it was tested on here. The model’s

high performance in this case indicates that

the neural network did not overfit while

training. The neural network was also able

to perform well during the night,

demonstrating its ability to accurately

discern class and box location based on less

clear information. If required we could

easily up the image resolution to something

more accurate for a satellite, as well as

improve the model from YOLOv5 Nano size

to small or even medium with a manageable

tradeoff of speed in return for more

accuracy. Below is the graph of our loss

metrics (left) and accuracy (right) during

training. For a larger version of this graph

along with other important graphs, see the

end of this document in the Graphs and

Tables section.

Conclusion

YOLO has proven to be an accurate,

performant way of analyzing and classifying

space debris. However, it is also rather

delicate and difficult to get working, and

there are many edge cases and direct attacks

that can decrease its accuracy significantly,

as is the case with many neural networks.

With our own implementation, programming

around these issues and getting it running in

the first place was complicated and required

us to learn a great deal about neural

networks, convolutional neural networks,

and object detection algorithms in general.

This makes it our most significant

achievement in the project, even though we

were unable to get YOLOV4 working in the

final product.

 YOLO as a solution to detecting and

classifying objects in space has some

downsides. Primarily, it can only classify

objects it has been explicitly trained on. We

used only seven classes in our project, but

there are hundreds, if not thousands of types

of debris currently in orbit and it would be

impossible to catalogue them all and train a

15

network on it. Classification needs more

training the more classes you train on, and

even though the relatively primitive

YOLOv2 could hypothetically guess over

9000 classes relatively accurately (for its

time), this creates a larger neural network

that requires more memory and power.

However, one advantage indicated by

research is that a larger neural network

would be more “robust” when exposed to

radiation than a smaller one, as there would

be more redundancies and pathways that the

model could still perform relatively well

without.

Additionally, YOLO cannot

explicitly find the distance to or relative

position of the debris in 3D space, just

where it is on the screen (Although this can

be paired with other algorithms to figure this

part out). Finally, we once again run into the

issue of performance: current space

technology is at least ten years behind

modern graphics cards and CPUs, and even

in 2017 the most efficient object detection

algorithms ran at 6 FPS and were considered

extremely performant at the time, as seen in

Tsung-Yei Lin’s paper on feature pyramid

networks. This is due to radiation being hard

on modern, fragile graphics cards and frying

them easily, along with the amount of power

neural networks use. This is a relatively

small problem, as even now there is research

going into getting neural networks such as

this into space and even some commercially

available satellite parts that YOLO could

reasonably run on without too much trouble.

These weak points are a significant

concern, but using other technologies in

combination with object detection can cover

these weak points and result in a much more

accurate debris detection system than we

currently have. In particular, a supporting

onboard radar system would be able to tell

where exactly the debris is (one of the

problems with YOLO) as well as provide

auxiliary information about objects such as

their material or mass. This last point is

important because it would let YOLO train

on fewer, more general classes of objects

(such as satellite, rocket stage, etc.) but still

have enough context clues for a

deterministic algorithm to piece together the

output of both the radar and YOLO for a

much more extensive list of detections than

either one could give alone.

Acknowledgements

16

Special thanks to Francisco

Viramontes, one of our teammate’s

internship mentor who has provided helpful

insight on both the inner workings of YOLO

as well as advice on how to frame our

problem to be both accurate to space

technology’s current ability to handle

machine learning algorithms, as well as

giving us ideas as to how machine learning

could be used effectively in space.

Regina Hunter also helped in

proofreading this paper in the final stages,

and helped us catch points where we needed

to elaborate for clarity of concepts.

We would also like to thank Jeremy

Jensen, our team Sponsor for the last three

years of competition. Without him we would

not have been able to compete, and it would

have been much more difficult to

communicate with SCC without him.

Finally, Hamilton Link provided us

with crucial input on troubleshooting the

YOLOv4 network along with Mario Serna

who helped with our orbital simulations and

calculation.

17

Works Cited

Bochkovskiy, Alexey, et al. “YOLOv4: Optimal Speed and Accuracy of Object Detection.”

Institute of Information Science, 23 April 2020, YOLOv4: Optimal Speed and Accuracy

of Object Detection. Accessed 15 January 2025.

David, Leonard. “Space Junk Removal Is Not Going Smoothly.” 14 April 2021,

https://www.scientificamerican.com/article/space-junk-removal-is-not-going-smoothly/.

Accessed 20 March 2025.

“Earth Textures | 1.0.0.” Github, 29 May 2024,

https://github.com/RSS-Reborn/RSS-Earth/releases/tag/V1.0.0. Accessed 6 February

2025.

“Envisat.” Sketchfab, 2016,

https://sketchfab.com/3d-models/envisat-65b0ec49681a44f68dfc8bd4efe95839. Accessed

30 January 2025.

“Hubble space telescope.” Sketchfab,

https://sketchfab.com/3d-models/hubble-space-telescope-e22236fab9634c959c0525c7ab

9c83d7. Accessed 20 January 2025.

“International Space Station 3D Model.” NASA, 22 April 2019,

https://science.nasa.gov/resource/international-space-station-3d-model/. Accessed 17

February 2025.

Keeter, William. “NASA 3D Resources.” NASA,

https://nasa3d.arc.nasa.gov/detail/cubesat-1RU%5C. Accessed 20 February 2025.

18

KHANDEKA, KANDHAL. “SATELLITES AND DEBRIS IN EARTH'S ORBIT.” Kaggle,

2022,

https://www.kaggle.com/datasets/kandhalkhandeka/satellites-and-debris-in-earths-orbit.

Accessed 4 November 2024.

Lin, Tsung-Yi, et al. “Feature Pyramid Networks for Object Detection.” Cornell University and

Cornell Tech, 19 April 2017, https://arxiv.org/pdf/1612.03144. Accessed 1 February

2025.

Mahendrakar, Trupti, et al. “SpaceYOLO: A Human-Inspired Model for Real-time, On-board

Spacecraft Feature Detection.” Florida Institute of Technology,

https://arxiv.org/pdf/2302.00824. Accessed 29 October 2024.

“Orbit Orientation.” AI Solution,

https://ai-solutions.com/_freeflyeruniversityguide/orbit_orientation.htm. Accessed 24

December 2024.

“Planetary Physics: Kepler's Laws of Planetary Motion.” Orbits and Kepler’s Laws, NASA, 26

June 2008, https://science.nasa.gov/resource/orbits-and-keplers-laws/. Accessed 30

October 2024.

Redmon, Joseph, et al. “You Only Look Once: Unified, Real-Time Object Detection.”

https://arxiv.org/pdf/1506.02640. Accessed January 2025.

“Space Debris.” HQ Library Navigation, NASA,

https://www.nasa.gov/headquarters/library/find/bibliographies/space-debris/. Accessed 26

October 2024.

19

“Space Debris Velocities.” RULES OF THUMB AND DATA FOR SPACE DEBRIS STUDIES,

NASA, https://science.nasa.gov/resource/international-space-station-3d-model/. Accessed

25 October 2024.

“Space Rocket Saturn V 3D Model.” Free3D, 23 April 2020,

https://free3d.com/3d-model/space-rocket-saturn-v-360313.html. Accessed 23 January

2025.

“Space Rocks.” CGtrader,

https://www.cgtrader.com/free-3d-models/space/other/space-rocks-9351486c-0cd0-46e7-

ab36-62c8a621820d. Accessed February 14 2025.

“Voyager.” NASA, 31 March 2025, https://nasa3d.arc.nasa.gov/detail/jpl-vtad-voyager. Accessed

11 February 2025.

Yiu, Wong Kin. “PyTorch implementation of YOLOv4.” Github,

https://github.com/WongKinYiu/PyTorch_YOLOv4. Accessed 27 January 2025.

“YOLO9000: Better, Faster, Stronger.” Allen Institute for AI, 25 December 2016,

https://arxiv.org/pdf/1612.08242. Accessed 10 January 2025.

“YOLO, Ultralytics.” Github, 22 November 2022, https://github.com/ultralytics/yolov5.

Accessed 2 January 2025.

20

Links To Products

https://github.com/HadwynLink/SCC-2024-2025

(results table can be found in Yolov5/Runs/results.csv)

https://www.youtube.com/watch?v=W5LQczcIe_4

https://github.com/HadwynLink/SCC-2024-2025
https://www.youtube.com/watch?v=W5LQczcIe_4

21

Graphs and Tables

Graph of loss and precision during training

22

Confidence Curve

Precision-Recall Curve

23

Precision-Confidence Curve

Recall-Confidence Curve

	Table of Contents
	Abstract
	Introduction
	The Problem
	The Objective

	Solution
	Orbit Generation
	Orbit Visualization
	The Setup
	Optimization
	Dataset Generation

	Object Detection
	The Structure of YOLO
	Attempts at Making a Custom Network
	Training YOLOv5 Instead

	Results
	Conclusion
	Acknowledgements
	Works Cited
	Links To Products
	Graphs and Tables
	Graph of loss and precision during training
	Confidence Curve
	Precision-Recall Curve
	Precision-Confidence Curve
	Recall-Confidence Curve

