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Executive Summary

High-dimensional data is often difficult to analyze because of the exponential growth of the

size of the space in which the data lives as the dimension increases. [16, 3] One example of

high-dimensional data comes from language, which contains many different characteristics (di-

mensions) with which it can be quantified, but not always sufficient data to detect patterns in it.

This is especially true for ancient languages, as there is a sparsity of texts from which to draw. [6]

The ancient Etruscan language is currently classified as a non-Indo-European isolate. However,

the Etruscans lived in an Indo-European-speaking region and appear to be genetically related to

Indo-Europeans. [12, 28] This study aims to bring a quantitative measure, topological data analysis

(TDA), to ongoing investigations of Etruscan to more concretely determine Etruscan’s similarity to

different Indo-European languages. Phonetic patterns in a specific word list translated into different

languages by large-language models are encoded, and the distance between two given phonemes

based on this encoding is calculated. Results indicate that Sanskrit has the highest correlation to

Etruscan. Etruscan appears similar to older Indo-European languages and thus may be older than

neighboring languages, explaining its uniqueness compared to Indo-European languages that de-

veloped later in time.
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Introduction

The Questions Behind Etruscan as a Non-Indo-European Language

Etruscan was spoken in the Etrurian region of Italy around 800 to 100 BC (see Figure 1). [12]

With more than 13,000 examples of Etruscan text, we have enough data to understand a fair amount

of vocabulary but not to concretely determine the origins of the language. [12] In addition, while

much about the language is unknown, linguists have been able to reconstruct in part the sounds of

the language because the Etruscan alphabet was borrowed from that of the Euboean Greeks and

subsequently passed on to the Romans. [4] Thus, the phonology of the language is fortunately

available for use in this study.

The current reigning theory posits that Etruscan was one of the few Pre-Indo-European lan-

guages not displaced by the arrival of the Indo-European language family. The only languages

that seem most certainly to be related to Etruscan are the obscure Rhaetic and Lemnian languages,

of which only a handful of texts are extant. [37] Despite this, however, a recent genetic analysis

indicates that the Etruscans were indigenous to Italy and had very similar genes to those of the

Romans. [28] If this is the case, then why is their language believed to be so different from that of

their Indo-European-speaking relatives?

Etruscan

Hittite, Lydian, Luwian

La Tène Celtic

Rhaetic

LemnianGreekLatin

Old Norse

Figure 1: Etruria compared to regions where other ancient languages were spoken. [18]
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Other Theories

While the Pre-Indo-European theory is currently most popular, other studies have suggested

alternatives. The Anatolian theory originates from writings of the ancient historian Herodotus,

which claim that the Etruscans were Lydians who migrated from Anatolia (modern-day Turkey)

to Italy. [30] If this is true, Etruscan should exhibit similar linguistic properties to Hittite, a better-

recorded relative of Lydian. Others suggest Etruscan was a Greek creole language made up of a

mixture of the Greek dialects. The enigma of Etruscan’s origin runs so deep that even hypothetical

links between Old Norse, the Celtic languages, and Aryan languages such as Sanskrit have been

suggested. [32, 13, 7, 15]

Purpose of Project

This project compares the phonology of ancient and contemporary Indo-European languages

to that of Etruscan using topological data analysis (TDA), with the aim of discovering which Indo-

European languages are most closely related to Etruscan. While statistics aims to fit data points to

lines or other geometries, TDA quantifies the distance between data points in a high-dimensional

space using topological structures such as n-dimensional holes. [31, 35, 33] This means that

it captures higher-level information about the inherent structure of data rather than looking for

specific patterns in it that might not exist. [31, 38] Because of this, previous studies have used TDA

to detect similarities between languages based on their phonological and grammatical structures.

[26, 38] It is known to perform well in comparison to other techniques because of its insensitivity to

sparsity of data and noise, which could make it particularly useful in analyzing poorly-documented

ancient languages. [38, 35, 33]

Prior Works

While TDA appears to be a novel approach to implement comparative linguistics, two studies

that develop a methodology for doing so for different aspects of linguistics are cited here. The first

uses TDA to compare grammatic parameters between modern languages [26], while the second

proposes an algorithm for comparing the phonetics of languages [38]. The methodology of this

study is largely based on the latter’s work.
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Wolfram’s study (2017) performed TDA for large families of modern languages using a list of

200 words and, although laying an extensive groundwork for future work, ultimately determined

that a larger data set was needed to prove more conclusive results. In contrast, this study chooses

a set of 1700 words and performs Wolfram’s (2017) methodology on an ancient language whose

ancestry is uncertain. In order to obtain a larger dataset than Wolfram (2017) could acquire, this

study uses large-language models (LLMs) to translate a single word list into different languages.

Methods

Data Collection and Preparation

A word list of 1700 Etruscan words and their English translations is drawn from McCallister

[1999], and each phoneme in an Etruscan word is then converted to its corresponding International

Phonetic Alphabet (IPA) character using conversions provided by Rix [2008] and Ager [Omniglot.

2023]. IPA is a system for encoding phonemes spoken in different languages such that the list of

sounds is universal across all languages.

Having acquired an Etruscan word list with its corresponding English translation and converted

it to IPA, translations of the word list into other languages are then obtained through the use of

large-language models (LLMs). LLMs are chosen to overcome the roadblock of limited available

translation data that previous studies met. [38] Each of five LLMs is run from the Ollama server

[24] on one of two desktop computers (see Table 1), depending on the size of the models. In

addition, a relatively larger model, ChatGPT4o, is run from the OpenAI server. [25] Its running

time and cleanliness of the output are notably better.

Each LLM is passed a message communicating its role as an assistant, as well as the prompt, “I

will give you a number of words to translate into [a language]. Provide the International Phonetic

Alphabet. Do not provide any notes or commentary. Use the format: English: [language]: /IPA/.”

The list of 1700 words in English is then read from a file and passed in batches of five words as

input to the model. Output is then written to a file and parsed to obtain a list of the translation

in IPA. While all LLMs are fairly consistent in providing output in the correct format, manual

parsing of certain sections in models mistral-small and nous-hermes is required. In addition, all
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model parameters vocabulary size

ChatGPT4o [34] 200 billion 175k

Mistral-large [20] 123 billion 128k

Mistral-small [22] 22 billion 32k

Command-r [10] 35 billion 128k

Nous-hermes [36] 34 billion 64k

Mistral-nemo [21] 12 billion 128k

Table 1: Characteristics of the large-language models used to translate the Etruscan word list into

other languages.

IPA characters outputted across all LLMs are researched, and outdated or nonstandard symbols

are replaced to ensure that all translations of the word list conform to the same IPA encoding.

Ultimately, this results in an IPA character list of 34 symbols. Etruscan phonology consists of 21

of those characters. [29]

Following the procedure designed by Wolfram 2017, the contextual relations between different

IPA characters within a given language are quantified by creating a list of the IPA characters that

come before and after each IPA character in a word. This is known as the context list. For example,

the context list of ū for the English IPA word list Sūt, St, sūn, rn would consist of (S,t),(s,n), and

the context list of would be (S,t),(r,n). The cosine similarity C between two such characters for a

given language is then calculated, where S is number of contexts two characters share, N1 and N2

are the length of each character’s context list, and C is defined as:

C =
S√

N1 ∗
√
N2

(1)

This quantifies how irreplaceable one phoneme is with another within a given language. [38] One

would expect, for example, that two vowels would have a higher cosine similarity than a vowel

and a consonant.

This information can be encoded in a matrix, where each axis is the set of IPA characters and
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each value is the cosine similarity between any two IPA characters in a given language. [38] As

such, the matrix should be a symmetric, square matrix with values of 1 along the diagonal, as the

cosine similarity between two identical IPA characters is 1. A visualization for Etruscan’s cosine

similarity matrix can be seen in Figure 2, where characters are arranged by vowels (top left corner)

and consonants (bottom right). The lighter the color, the more two characters have in common.

Dark rows and columns indicate that a given character does not appear in a language.

Figure 2: Colorplot for Etruscan’s cosine similarity matrix created in matplotlib. [14]

Having quantified the relation between every two IPA characters in a given language, each

character is embedded in a coordinate system such that its coordinate axis is the set of cosine

similarities between it and each other IPA character. Thus, this point cloud lives in a space with the

same number of dimensions as there are IPA characters, which, in this case, is a 34-dimensional

space. If an IPA character does not occur in the word list translated into a given language, its cosine

similarity with each other character is set to 0. The particular TDA used in this study, persistent

homology, is then performed on the point cloud.
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Persistent Homology

Figure 3: Example 2-simplex.

Persistent homology is performed using the Scikit-TDA python library Ripser. [31] Persistent

homology is a type of topological data analysis that draws nth-dimensional balls, n-balls, around a

point cloud in an nth-dimensional space. [38] At a set radius of the n-ball, all n-balls that overlap

are connected by an n-simplex An, where an An is the simplest geometry determined by (n + 1)

connected points in the Euclidean space Rn. [38] For example, 0-simplex A0 is 1 point, 1-simplex

A1 is 2 connected points (a line segment), and 2-simplex A2 is three connected points (a triangle).

An n-chain is a sum of n-simplices. It can be described by its boundary δ:

δ(An) = A
(n−1)
0 +A

(n−1)
1 + . . .+A(n−1)

n (2)

for n-simplices An.

For example, the boundary of an n-chain that contains one simplex, a 2-simplex shown in

Figure 3, is

δ(A2) = A
(1)
0 +A

(1)
1 +A

(1)
2 (3)

For this 2-simplex, the boundary of the boundary is defined as:

δ(δ(A2)) = δ(A1
0 +A1

1 +A1
2)
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= δ(A1
0) + δ(A1

1) + δ(A1
2)

= [(v1)− (v0)] + [(v2)− (v1)] + [(v0)− (v2)] = 0

(4)

Because of the 2-simplex’s orientation, the boundary of each edge (1-simplex) is defined as the

difference of its endpoints (the vertices of the 2-simplex). Summing the edges causes vertices to

cancel, leaving δ(δ(A2)) = 0. This tells us that the vertices of the 2-simplex are connected. This

generalizes to higher-dimensional simplices.

The homology group of the nth dimension, then, is the set of all n-chains that do not cause

vertices to cancel. Thus, it describes groups of simplices that are unconnected and have δ(δ(An)) ̸=

0:

Hn =
Zn

Bn

(5)

where Zn is the set of all n-chains and Bn ∈ Zn that have δ(δ(An)) = 0. [23, 8]

Essentially, Hn measures which points are not connected at a certain radius of the n-balls

through calculation of nth dimension holes, where n is the dimension of the simplex. [31] Since a

0-dimensional hole describes the disconnected parts of a 0-simplex, the H0 homology group is the

set of components that are not connected to each other. Each given component, then, contains all

points in the 34-dimensional space that are connected by n-balls at a given radius. Each component

is known as a cluster.

H1 measures 2-dimensional holes, and H2 measures cavitites, known as voids. Note that in the

case of language studies, topological structures of a higher order than clusters and holes are often

noise and, thus, will not be considered in this study. [38, 27]

Ripser encodes relations between simplices of different dimensions in a boundary matrix,
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where each row is an n-simplex and each column represents an (n + 1) simplex. If the n-simplex

is part of the (n+ 1)-simplex’s boundary, it is encoded as a non-zero value in the matrix. [31]

Persistence Diagrams

The Persim library within Scikit-TDA [31] is then used to generate persistence diagrams describ-

ing results of the TDA. Figure 4 gives two such graphs, one for German and one for Dutch. These

diagrams display the radius of the n-balls at which each cluster or hole is “born” (when it first

appears) or “dies” (when it is consumed by another topological structure). Each axis describes the

birth or death radius of a topological structure. All clusters (H0) should fall on a vertical line, since

all are born at radius r = 0, and it follows that only one will remain as r approaches ∞.

Figure 4: Persistence diagrams for German (left) and Dutch (right); input data for TDA were drawn

from mistral-small translations.

Holes (H1, shown in orange) tend to be near the diagonal, or when birth radius is equal to death

radius. The farther a hole is from the diagonal, the larger the radius must become before clusters

are joined and the hole disappears. Linguistically, this indicates how similar various IPA characters

are to each other, based on how often they appear in the same context in a given language’s word

list.

Comparison Methods for Persistence Diagrams

After generating persistence diagrams, Persim compares those for Etruscan and eight other lan-
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guages. Thus far, these languages consist of Latin, Breton, Koine Greek, Homeric Greek, Modern

Greek, Icelandic, Hittite, and Sanskrit. Languages were chosen based on the time and proximity to

Etruscan (see Figure 1), as well as availability of LLMs to accurately provide words from their vo-

cabulary. (Icelandic, for example, is known to be linguistically similar to the less well-documented

Old Norse.)

For each persistence graph representing a language, the Betti number βn gives the number

of nth dimensional holes across all radii of the n-balls. Thus, β0 represents the total number of

clusters, and β1 represents the total number of holes. [8] As n increases, βn decreases; thus, there

will be fewer holes than clusters for each language. Since not all IPA characters are used in a given

language, the number of clusters and holes for different languages’ persistence diagrams will vary.

In this study, the Bottleneck distance B is used to compare persistence diagrams:

B∞(X, Y ) = inf
η:X→Y

sup
x∈X

||x− η(x)|| (6)

where X and Y are persistence diagrams showing a certain homology group and inf sup, or the

infimum of the supremum, is the largest minimum distance between a point x in X and its bijection

in Y , η(x). [1]

Conceptually, the Bottleneck distance minimizes the maximum distance between two neigh-

boring clusters or holes of two different diagrams, and B itself is that maximum distance. In the

event that one language has more of one topological feature than the other, extra points are paired

with the diagonal. [31]

A similar method of comparing persistence diagrams, sliced Wasserstein distance W , approxi-

mates distances between birth-death pairs by slicing them N number of ways and projecting them

onto one-dimensional lines. Mathematically, it is defined as:

W∞(X, Y ) =
1

N

N∑
i=1

||µi − νi|| (7)

where µ and ν are the distribution of points for X and Y , respectively, projected onto one-

dimensional lines. [5] This metric is similar to the Bottleneck distance, but rather than taking
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only the largest distance between two nearest-neighbors into account, it averages across all pairs

of clusters or holes.
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Validation

Figure 5: Visualization of cosine similarity matrices for German (left), Dutch (middle), and French

(right) before TDA is performed on them.

To determine accuracy of the method detailed above, this study performed TDA on a set of

thirteen modern Indo-European languages. Visually, the mistral-small translations for German and

Dutch appear more similar through their cosine similarity matrices than German and French (see

Figure 5). They can be compared quantitatively using the Frobenius norm metric F , which is

defined as:

F = ||A−B||F =
m∑
i=1

n∑
j=1

|aij − bij|2 (8)

where A and B are cosine similarity matrices and (m,n) describes their dimensions. [9] Quantita-

tively, the Frobenius metric agrees with the visual colorplots, with F for German and Dutch being

much smaller than F for German and French (see Figure 6).
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Figure 6: Frobenius norm between cosine similarity matrices compared to sliced Wasserstein dis-

tances after TDA.

Now we perform TDA on each cosine similarity matrix and compare persistence diagrams for

the above languages using the sliced Wasserstein metric for clusters and holes (see Figure 6). While

the more sensitive H0 sliced Wasserstein distance agrees that German is more similar to Dutch than

French, there are some deviations from the patterns in the Frobenius metric. However, this is to

be expected, as the purpose of TDA is to detect higher-level information about the language’s

structure than other metrics (like the Frobenius metric) provide. Thus, validation confirmed that

results make sense given general knowledge of modern languages, while also demonstrating the

utility of TDA in analyzing data from a different perspective.

Because of biases introduced by variability in LLM translations and using one specific word

list, the study must also investigate whether results can be distinguished from arbitrary results. If

persistence diagrams do not differ greatly from randomly generated matrices, then results in this
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study carry no meaning due to the arbitrary nature of obtaining data. Thus, this study follows

Wolfram’s (2017) approach in comparing TDA performed on randomly generated matrices with

the same symmetry and diagonal as the input cosine similarity matrices. Figure 7 shows three such

randomly generated matrices, and Figure 8 gives their corresponding persistence diagrams.

Figure 7: Random cosine similarity matrices generated in numpy and plotted in matplotlib. [11, 14]

Figure 8: Persistence diagrams corresponding to the above cosine similarity matrices.

Persistence of clusters and holes in the random matrices did not match that of the language data;

each topological feature appeared to have less variation in birth and death radii, and β1 tended to

be larger than for the language data. Thus, trends in my data were not random.
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Results

Figure 9 gives the persistence diagram for Etruscan. Figure 10 then compares it using the bot-

tleneck distance to each of the eight other languages across the six LLMs. While this is a valid

and popular measure, this study found that it produced a very low distinguishability between data,

especially for holes.

Figure 9: Persistence diagram for Etruscan.
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Figure 10: Bottleneck distances between Etruscan and eight other languages.

Figure 11 then performs the comparison using the more sensitive sliced Wasserstein distance.
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While Figure 11 shows more variation in the data, there is still no clear trend.
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Figure 11: Sliced Wasserstein distances between Etruscan and eight other languages.

We must now consider the size of each LLM. To test the correlation between size of model and

similarity in translations, each model’s translation of the word list to Latin is compared to that of

ChatGPT4o, the largest LLM. TDA is performed, and the sliced Wasserstein distances for H0 and

H1 are shown in Figure 12. Mistral-large, the next largest model, produced the most similar Latin

translations to that of ChatGPT4o. Thus, larger models will produce more similar translations. One

can now hypothesize that as model size increases, a trend of the most similarity between Etruscan

and a particular language from those tested will emerge.
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Figure 12: Comparison of LLMs to ChatGPT4o using Latin translations.

Figure 13 gives the sliced Wasserstein distance for H0 between Etruscan and each of eight
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other languages, arranged from greatest to smallest based on ChatGPT4o’s output. As can be seen

in the figure, ChatGPT4o translations point towards the Indo-Aryan language Sanskrit as being

phonetically closest to Etruscan. A distinct trend can now be visualized; as models increase in

size, they vary less from the results of ChatGPT4o, and the sliced Wasserstein distance between

Sanskrit and Etruscan becomes progressively smaller (right side of Figure 13). Mistral-large and

mistral-small agree that Sanskrit is closest to Etruscan. However, the smaller models of nous-

hermes, command-r, and mistral-nemo show less of a trend, and other languages have a smaller

sliced Wasserstein distance to Etruscan.

Figure 13: Sliced Wasserstein H0 distance shows a correlation between Sanskrit and Etruscan.

The idea of Etruscan as a relative of Sanskrit is not currently a mainstream theory. There is

little evidence that the Etruscans, supposed relatives of the Romans, were Aryans and spoke a

variant of Sanskrit. How, then, do these results make sense? Since Sanskrit is the oldest Indo-

European language considered here, it may be closer linguistically to the original Indo-European

language, Proto-Indo-European (PIE), than other languages. Two other languages older than the

majority of the dataset, Homeric Greek and Latin, appear next-most-similar to Etruscan using

ChatGPT4o data. This is summarized in Figure 14, which shows a moderate correlation between

age of the Indo-European language and its sliced Wasserstein distance to Etruscan. Thus, Etruscan

appears most similar to the oldest of the Indo-European languages, indicating that it may be older

than Latin and other languages spoken nearby. This would explain why the Etruscans’ language

appears unique compared to that of their genetically related neighbors.
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Figure 14: H0 sliced Wasserstein distance vs. age of language compared to Etruscan.

Conclusions

Analysis of Results

In conclusion, results negate the Anatolian and Greek theories discussed in the Introduction,

instead implying that Etruscan is most phonologically similar to older languages than to its neigh-

bors. As such, it may have developed at an earlier time than some Indo-European languages. This

would explain why the Etruscans lived in an Indo-European-speaking region and appear to be ge-

netically related to the Romans but spoke a seemingly different language.

To test this hypothesis, access to phonological data for the original Indo-European language,

PIE, is needed. However, PIE is a reconstructed language, and its IPA characters do not conform

to those of better-understood languages. [17] In addition, LLMs even as large as ChatGPT4o may

not provide translations to PIE to an adequately high percent of accuracy.

Analysis of Biases and Limitations

While this algorithm can be extended to a variety of other languages, the results obtained are

dependent on the word list chosen, as well as the accuracy of the LLMs in providing transla-

tions. This study aimed to eliminate such biases by picking Etruscan words that are not proper

names shared across languages, regardless of their inherent phonetic similarity, and utilizing mul-

tiple LLMs for translation to other languages. In addition, results could be skewed in the case of

multiple IPA characters denoting the same phoneme, as the cosine similarity would not encode
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all similarities that exist between two IPA characters. In fact, using more IPA characters than is

linguistically accurate biases comparisons between persistence diagrams; the more noisy IPA char-

acters are generated in a particular machine translation, the larger the bottleneck distance between

that translation and Etruscan (see Figure 15).
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Figure 15: The greater the number of distinct IPA characters in a machine translation and language,

the larger the Bottleneck distance between that translation and Etruscan.

To mitigate this bias, all IPA characters were researched, and superseded and nonstandard sym-

bols were replaced to ensure that all translations of the word list conform to the same IPA encoding.

Ultimately, this resulted in an IPA character list of 34 symbols.

Next Steps

Having constructed a working model for phonetic comparison between Etruscan and other lan-

guages, a more in-depth analysis of current findings and a study of Etruscan compared to a variety

of other languages can be conducted. Immediate next steps also include comparing Etruscan to

not only Indo-European languages but others language families (Semitic, Sino-Tibetan, etc.). In

addition, more LLMs run on online servers, such as Claude and Gemini, will be used in collecting
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translation data, and output of TDA will be analyzed through other metrics, such as the distribution

of Betti numbers. [38] Hence accuracy of data will be improved.

Summary

Ultimately, the purpose of this project is threefold:

1. To determine the amount of variability between LLMs based on the parameter space in

machine translations,

2. To discover the effectiveness of persistent homology as a more quantitative method for com-

parative historical linguistics, and

3. To conclusively compare the phonetic structure of Etruscan to various Indo-European lan-

guages in an effort to determine its origins and thus provide insight into the history behind

the Etruscan people.
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Appendix

Mathematical Glossary

topological data analysis (TDA): mathematical method of analyzing structure in data using topo-

logical features such as clusters and holes

persistent homology: form of TDA used in this study; analyzes how clusters and holes within a

data structure persist over multiple scales

simplex: simplest method of connecting a given number of points in a given space; 0-simplex:

point, 1-simplex: line segment, 2-simplex: triangle; etc.

n-chain: combination of simplices

birth radius: radius of n-balls drawn around each point in an nth-dimensional point cloud at

which a topological feature is formed

death radius: radius of n-balls drawn around each point in an nth-dimensional point cloud at

which a topological feature is consumed by another feature

persistence diagram: plot of death radius vs. birth radius for every cluster, hole, etc., that occurs

in a point cloud

Linguistic Glossary

phonology: the system of sound values associated with different written characters in a given lan-

guage

phoneme: a single sound associated with one or multiple written characters

Indo-European: language family from which the majority of Eurasian languages derive

Proto-Indo-European: a completely reconstructed language from which scholars believe all Indo-

European languages derive

International Phonetic Alphabet (IPA): system for encoding phonemes as characters that are

standardized across all languages
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